
Statically Detecting Likely Buffer
Overflow Vulnerabilities

David Larochelle and David Evans
USENIX'01

David Larochelle and David Evans
IEEE Software Jan/Feb 2002

Presented by Adam Polyak

30.03.2014

Outline of talk

• Introduction

• Suggested Solution: Splint

• Evaluation

• Related work

• Conclusions

Introduction

• Before command:

• After command:
Var name A B

Value ‘e’ ‘x’ ‘c’ ‘e’ ‘s’ ‘s’ ‘i’ ‘v’ 25856

Hex Value 65 78 63 65 73 73 69 76 65 00

Var name A B

Value [empty] 0

Hex Value 00 00 00 00 00 00 00 00 00 00

1 int B=0;

2 char A[8]={};

3 strcpy(A, "excessive");

It can get worse

• Code execution

1 void foo (char *bar){

2 char c[12];

3 strcpy(c, bar);

4 }

5 int main (int argc, char **argv) {

6 foo(argv[1]);

7 }

It can get worse

http://en.wikipedia.org/wiki/Stack_buffer_overflow

It can get worse

http://en.wikipedia.org/wiki/Stack_buffer_overflow

It can get worse

• Why limit ourselves to stack? Heap buffer
overflow

– Heap is a linked list

– What if we corrupt one of the links?
1 #define unlink(y, BK, FD) {

2 BK = P->bk;

3 FD = P->fd;

4 FD->bk = BK;

5 BK->fd = FD;

6 }

Why Is It Important?

RSAConference2013 – 25 Years of Vulnerabilities

Critical Vulnerabilities By Type

RSAConference2013 – 25 Years of Vulnerabilities

Causes

• Programs written in C
– Prefer space and performance over security

– Unsafe language – direct access to memory

• Lack of awareness about security

– Code is written to work

• Legacy code
– Knowledge about code isn’t preserved

• Inadequate development process

Defense: Limiting Damage

• Mostly runtime methods:

– Compiler modifications (stack cookies) - StackGuard

– Safe libraries - Baratloo, Singh and Tsai

– Modify program binaries - (assert) SFI

• Pros:

– Minimal extra work is required from developers

• Cons:

– Increase performance/memory overhead

– Simply replace the flaw with a DOS vulnerability

Defense: Eliminating Flaws

• Human code review
– Better than automatic tools

– Can overlook problems

• Testing
– Mostly ineffective (security wise)

– Checks expected program behavior

• Fuzzing – doesn’t check all possibilities

• Static analysis
– Allows to codify human knowledge

Defense: Static Analysis

• Pros:
– Analyze source code directly, lets us make claims

about all possible program paths

– It still possible to generate useful information

• Cons:
– Detecting buffer overflows is an undecidable

problem

– Wide range of methods:
• compilers (low-effort, simple analysis)

• Full program verifiers (expensive yet effective)

Solution: Splint – lightweight static
analysis

• “Useful results for real programs with
reasonable effort”

Lightweight

Soundness Completeness

Splint

Solution: Splint – main ideas

• Static Analysis:

– Use semantic comments to enable checking of
interprocedural properties

– Use loop heuristics

• Lightweight:

– good performance and scalability

– sacrifices soundness and completeness

Annotations

• Splint is based upon LCLint

– Annotation assisted static checking tool

• Describe programmer assumptions and
intents

• Added to source code and libraries

• Associate with:

Function parameters Local variables

Function return values Structure fields

Global variables Type definitions

Example: @null@

mstringnn.c: (in function mstring_space1)
mstringnn.c:6,4: Dereference of possibly null
pointer m: *m

1 typedef /*@null@*/ char *mstring;

2 static mstring mstring_createNew (int x) ;

3 mstring mstring_space1 (void) {

4 mstring m = mstring_createNew (1);

5 /* error, since m could be NULL */

6 *m = ' '; *(m + 1) = '\0';

7 return m;

8 }

Example: @notnull@

1 static /*@notnull@*/ mstring

2 mstring_createNewNN (int x) ;

3 mstring mstring_space2 (void) {

4 mstring m = mstring_createNewNN (1);

5 /* no error, because of notnull annotation */

6 *m = ' ';

7 *(m + 1) = '\0';

8 return m;

9 }

Annotations: Buffer Overflow

• In LCLint – references are limited to a small
number of possible states.

• Splint extends LCLint to support a more
general annotation

• Functions pre(requires) and post
(ensures) conditions

• Describe assumptions about buffers:

 minSet maxSet

minRead maxRead

Example: Buffer Annotations

• The declaration:
char buf[MAXSIZE];

 Generates the constraints:
maxSet(buf) = MAXSIZE - 1

minSet(buf) = 0

• Functions conditions:
 char *strcpy (char *s1, const char *s2)
 /*@requires maxSet(s1) >= maxRead(s2)@*/
 /*@ensures maxRead(s1) == maxRead(s2)
 /\ result == s1@*/;

Annotations: Buffer Overflow Cont.

• Constraints are used to validate conditions

• Conditions are found 3 ways:

– By Splint:

– Library functions are annotated

– User generated

buf[i] = ‘a’ Precondition: maxSet(buf) >= i

char a = buf[i] Precondition: maxRead(buf) >= i

buf[i] = ‘a’ Postcondition: maxRead(buf) >= i

Example: Buffer Overflow Conditions

Unable to resolve constraint:
 requires maxSet(str @ bounds.c:6) >=
 maxRead(getenv("MYENV")@bounds.c:4)
needed to satisfy precondition:
 requires maxSet(str @ bounds.c:6) >= maxRead(tmp @ bounds.c:6)
derived from strcpy precondition:
 requires maxSet(<parameter 1>) >=maxRead(<parameter 2>)

1 void updateEnv(char * str)

2 {

3 char * tmp;

4 tmp = getenv(MYENV);

5 if (tmp != NULL)

6 strcpy(str, tmp);

7 }

Analysis: Settings

• Static analysis is limited
– Depends on several undecidable problems

• Unsound -> False positives

• Incomplete -> False negatives

• Scalability over precision

• Highly configurable for users

Analysis: Settings cont.

• Analysis is mostly intraprocedural

– i.e. at function level

– Achieve interprocedural (dataflow between
functions) using annotations

• Flow-sensitive (order of statements matters)
with compromises

– Handle loops using heuristics

Analysis: Algorithm

• Programs are analyzed at the function level

• Generate constraints for each C statement
– By conjoining the constraints of sub expressions

– Simplify constraints: maxSet(ptr+ i) = maxSet(ptr) - i

• Constraints are resolved at call site
– Done at statement level

– Use function preconditions and postconditions of earlier
statements

Analysis: Algorithm Cont.

• All variables used in constraints have an
associated location

• Leads to the constraints:

 requires maxSet(t @ 1:1) >= 1,

 ensures maxRead(t @ 3:4) >= -1 and

 ensures (t @ 3:4) = (t @ 1:1) + 2

1 t++;

2 *t = x;

3 t++;

Axiomatic semantics

• Mathematical logic for proving the correctness
of computer programs

• P & Q are state predicates, C a command

• If P holds and if C terminates, then Q will hold

{ P } C { Q }
precondition postcondition

statement
a.k.a command

Slide credit :http://www.cs.tau.ac.il/~maon/teaching/2013-2014/paav/paav1314b.html

http://www.cs.tau.ac.il/~maon/teaching/2013-2014/paav/paav1314b.html
http://www.cs.tau.ac.il/~maon/teaching/2013-2014/paav/paav1314b.html
http://www.cs.tau.ac.il/~maon/teaching/2013-2014/paav/paav1314b.html
http://www.cs.tau.ac.il/~maon/teaching/2013-2014/paav/paav1314b.html

Analysis: Control Flow - If

• Condition and loops can make unsafe
operations, safe

• Analyze an if based on the predicate, for
example:

– If the condition holds, the operation is safe

if (sizeof (s1) > strlen (s2))

 strcpy(s1, s2);

Analysis: Control Flow - Loops

• Statically analyzing loops is hard. Simplify:
– Analyze loops according to common idioms
– First and last iteration matter

• First iteration:

– Treated as If statement

• Last iteration:

– Determine number of runs base on loop heuristics:
• for (index=0;expr;index++) body
• for (init;*buf;buf++)

Evaluation

• Analyzed two popular programs

– wu-ftpd

– BIND

• Checked detection of known and unknown
buffer overflows

Evaluation: wu-ftpd

• Version wu-ftp-2.5.0 with known security
vulnerabilities

• Execution:

• Source code wasn’t modified – resulted 243
warnings(related to buffer overflow)

• Detected both known and unknown buffer
overflows

Code size(lines) Time(minutes)

17,000 1

wu-ftpd: Unknown Bug
1 char ls_short[1024];

2 …

3 extern struct aclmember *

4 getaclentry(char *keyword,

5 struct aclmember **next);

6 …

7 int main(int argc, char **argv,

8 char **envp)

9 {

10 …

11 entry = (struct aclmember *) NULL;

12 if (getaclentry("ls_short", &entry)

13 && entry->arg[0]

14 && (int)strlen(entry->arg[0]) > 0)

15 {

16 strcpy(ls_short,entry->arg[0]);

17 …

wu-ftpd: Unknown Bug Cont.

• Will generate the following warning:
Possible out-of-bounds store.

Unable to resolve constraint:

 maxRead ((entry->arg[0] @ ftpd.c:1112:23)) <= (1023)

needed to satisfy precondition:

 requires maxSet ((ls_short @ ftpd.c:1112:14))

 >= maxRead ((entry->arg[0] @ ftpd.c:1112:23))

derived from strcpy precondition:

 requires maxSet (<param 1>) >= maxRead (<param 2>)

wu-ftpd: Known Bug

• dir is entered by a remote user
• Reported buffer overflow:

– http://www.cert.org/historical/advisories/CA-1999-13.cfm

1 char mapped_path [200];

2 …

3 void do_elem(char *dir) {

4 …

5 if (!(mapped_path[0] == '/'

6 && mapped_path[1] == '\0'))

7 strcat (mapped_path, "/");

8 strcat (mapped_path, dir);

9 }

wu-ftpd: False positive

• Unable to determine that 1 < k < j
• Can be suppressed by the user

1 i = passive_port_max - passive_port_min + 1;

2 port_array = calloc (i, sizeof (int));

3

3 for (i = 3; … && (i > 0); i--) {

4 for (j = passive_port_max

5 - passive_port_min + 1;

6 … && (j > 0); j--) {

7 k = (int) ((1.0*j*rand()) /

8 (RAND_MAX + 1.0));

9 pasv_port_array [j-1]

10 = port_array [k];

wu-ftpd: Summary

• Unmodified code:

– 243 warnings

• After adding 22 annotations

– 143 warnings

– Of these, 88 unresolved constraints involving maxSet

– The rest, can be suppressed by the user

• 225 calls to unsafe functions(strcat, strcpy, …)

– Only 18 reported by Splint

– 92% of the calls are safe by Splint

Evaluation: BIND

• Berkley Internet Name Domain – reference for
DNS implementations

• Version 8.2.2p7

• Execution:

• Check limited to a subset of code(~3,000 lines)

– Because of time of human analysis

Code size(lines) Time(minutes)

47,000 3.5

BIND: Library Annotations

• Extensive use of internal libraries instead of C
library functions
– Requires annotating large code base

– Iteratively run Splint and annotate

• To reduce human analysis required
– Only interface library functions were annotated ->

based on code comments and parameters names

• For example:
– int foo(char* p, int size)

– Resulted: MaxSet(p) >= (psize - 1)

BIND: Library Annotations

• Extensive use of internal libraries instead of C
library functions
– Requires annotating large code base

– Iteratively run Splint and annotate

• To reduce human analysis required
– Only interface library functions were annotated ->

based on code comments and parameters names

• For example:
– int foo(char* p, int size)

– Resulted: MaxSet(p) >= (psize - 1)

BIND: req_query

• Code called in response for querying the
domain name server version

• Version string read from configuration file and
appended to a buffer

– OK if used with default

• However, sensitive to

– Code modification

– Configuration changes

BIND Cont.

• BIND uses extensive run time bounds checking
– This doesn’t guarantee safety

– Buffer overflow was detected, because buffer sizes
were calculated incorrectly

• ns_sign – the functions receives a buffer and its
size
– Splint detected that the size might be incorrect

– Occurs, If the message contains a signature but the
key isn’t found

– Bug was introduced after feature was added

Related work – Lexical analysis

• Idea:

– Put simply , use grep to find unsafe code

• Tool:

– ITS4 - [VBKM00]

• Pros:

– simple and fast

• Cons:

– Very limited, deserts semantics and syntax

Related work – Proof-carrying code

• Idea [NL 96, Necula97] :

– Executable is distributed with a proof and verifier

– Ensures the executable has certain properties

• Pros:

– Sound solution

• Cons:

– At time of paper, wasn’t feasible automatically

Related work – Integer range analysis

• Idea [Wagner et al]:

– Treat strings as integer range

• Cons:

– Non-character buffers are abandoned

– Insensitive analysis – ignore loops and conditions

Related work – Source transformation

• Idea [Dor, Rodeh and Sagiv]:
– Instrument the code

– Assert string operations

– Then use integer analysis

• Pros:
– Can handle complex properties – pointer

overlapping

• Cons:
– Doesn’t scale

Conclusions

• Splint isn’t perfect but improves security with
a reasonable amount of effort

• Splint is lightweight

– Scalable

– Efficient

– Simple

• Hard to introduce to a large code base

– However, done incrementally can be just right

Reflections

• Practical approach!
– 80/20 principle in action

• Human effort vs security gained

• Improves code base readability and

maintainability

• Can be leveraged as part of Continuous
Integration process – Code Quality

Continuous integration

• “The practice of frequently integrating one's
new or changed code with the existing code
repository”

• Some of its advantages:

– Immediate unit testing of all changes

– Early warning of broken/incompatible code

– Frequent code check-in pushes developers to
create modular, less complex code

Continuous integration

Source code

Version
control
system

Build system

Static analysis

Run unit tests
Code

coverage
analysis

Build product

Run
application

tests

Publish report

Continuous integration

• Static analysis on source code:

– Ensures coding standards

– Assists in avoiding common bugs

Questions?

Discussion

• Would you use Splint\LCLint in your projects?

– Security wise?

– Code quality wise?

• What about dynamic languages?

– Not necessarily security

