Static Analysis with Abstract
Interpretation

Outline

Introduction

Concrete & Abstract Semantics
Abstract Domain

Abstract Domains - examples
Conclusion

Introduction

e Static Analysis — automatically get

information about the possible executions of
computer programs

* Main usages:

— Compilers: decide whether
certain optimizations are applicable

— Certification of programs against classes of bugs

Introduction

* Last week: Splint —unsound static analysis
(can miss errors)

e Abstract Interpretation (Al) - a theory of
sound (conservative) approximation of
the semantics of computer programs

Introduction

e Soundness

— |If we proved some property: we are sure it is true
for all possible executions of the program

— |f we were not able to prove a property: we
cannot infer anything

* For example, if our analysis showed that:
— No divisions by zero — it’s for sure

— A division by zero may occur — it might be a false
alarm

Concrete semantics of programs

Representation of the set of all possible
executions of a program in all possible execution

environments

Environment: Input parameters, values of
uninitialized variables, input from user, clock
value, etc.

Execution: a curve x(t)
— A vector representing the state of the program
State of the program: everything that interests

us: values of variables, heap status, elapsed time,
etc.

Concrete semantics: a set of curves

Possible
" trajectories

» [

Undecidability

* The concrete semantics of a program is an
infinite mathematical object which is not
computable

= All non trivial questions about the concrete
semantics of a program are undecidable

Safety Properties

* Given a program, we want to prove properties
of it which express that no possible execution
can reach an erroneous state

x(1)

Forbidden zone
fiﬁ_ N Possible
M " trajectories

I |

Safety Properties

* However, this verification problem is
undecidable

x(1)

Forbidden zone
W Possible
m " trajectories

I |

Testing

* Testing is an under-approximation of the
program semantics:

— Only part of executions are examined
— Only the prefix of executions

Testing

* Some erroneous executions might be
forgotten:

x(7)

Forbidden zone

‘ Possible
“~-- [trajectories

Test of a few trajectories

I

Abstract Interpretation

* Considers an abstract semantics: a superset of the
concrete semantics of the program

* An over-approximation of the possible executions

x(z) 4

| Possible
trajectories

Abstraction of the trajectories

Abstract Semantics

e Abstract Semantics should be:
— computer representable
— effectively computable from the program text

Abstract Interpretation

e |f the abstract semantics is safe, then so is the
concrete semantics

= Soundness: ho error can be missed

Forbidden zone

i Possible
trajectories

Abstraction of the trajectories

False Alarms

* |f the over-approximation is too large, we
might get false alarms:

x(t)

Forbidden zone False alarm
Possible
D " trajectories

Imprecise trajectory abstraction

Abstract Interpretation

* If no alarms: ensures safety
* In case of alarms: we don’t know if they false or true:

x(1)
Forbidden zone “‘ Alarm I}

| Possible
trajectories

o

To Summarize

* Testing: under-approximation, can miss errors

* Abstract Interpretation: over-approximation
— Cannot miss any potential error
— May vield false alarms

— The objective: to get as precise abstraction as
possible

Example

* Let’s analyze a program with 3 local variables:

X,V,Z
* Program Semantics: the values of these
variables.

e Values are from Z (integers)

void f()
{
int x,y,z;
while (1)
{
X = read();
if (x >=2)
z=3;
else
z=4;
}

Example

Control Flow
Graph:

skip

Concrete Semantics

We are interested in all possible states at each
node

Denote by X the set of all mappings Var—2
o Var={xyx}

A state is a mapping g€X
Each node has a subset S€X of possible states

skip

skip

skip

skip

I3 ={[x—a, y=b, z—c//

skip a>2,beZ €2}

ki e 13 ={[x—a, y—=b, 2-¢] |

a=2,b€”z, ceZ}

I
w

Z.

U5 ={[x—a, y—b,z-3]/
a=2,bes}

SU4 ={[x—>a, y—b,z—>c]/ e U3 ={[x—a, y=b,z->c]/
a<2,bez, e} a=>2,bez, e}
2:=3
SI6 ={[x—a, y—b,z—4]/ U5 ={[x—a, y—=b,z—3]/

a<2, beZ} a>2, be)

SU4 ={[x—>a, y—b,z—>c]/

e 13 ={[x—a, y—=b, 2-¢] |
a<2,be’z, cez}

a=2,b€”z, ceZ}

SU6 ={[x—a, y—b,z—4]/
a<2,bes}

U5 ={[x—a, y—b,z-3]/
a=2,bes}

SU4 ={[x—>a, y—b,z—>c]/ e U3 ={[x—a, y=b,z->c]/
a<2,bez, e} a=>2,bez, e}
2:=3
SI6 ={[x—a, y—b,z—4]/ U5 ={[x—a, y—=b,z—3]/
a<2,bez} a=2,bes}

SU4 ={[x—>a, y—b,z—>c]/ a U3 ={[x—a, y=b,z->c]/
a<2,b€z ce} a>2,bez, ce2}
=3
SI6 ={[x—a, y—b,z—4]/ U5 ={[x—a, y—=b,z—3]/
a<2,bes} a=2,be}
SI5U Whatis

Concrete Semantics

When we go on from node 7 to 1 and update SY1 :
SY1 =501 USL7 =XUSl7 =X

SJ1 remained the same — we can stop the analysis

So we computed concrete semantics of the program:
the real possible states at each node

We can infer, for example, that in node 7, the value
of z is either 3 or 4.

Concrete Semantics

* The problem: in realistic programs:

— The representation of the unions of states can
explode

— The analysis might not stop (we always discover
new information)

Abstract Semantics

e Solution: we will use abstraction:
— At each node: Instead of .S, use ST4A 2.5
— By this we lose information
— But we will be able to represent S74
— And our analysis will necessarily stop

— If we prove a property for all SESTA, then this
property holds for all s€S

Abstract Semantics

Let’s define the following abstract domain:
STA:Var-ZTT

ZTT =2U{T}

STA (v)=T" (top) denotes that the variable v can
have any value

STA is an abstract mapping which represents a
set of concrete states
— E.g.: STA =[x->T,y—T,z—>3] represents:

{[x—a, y—b,z—3] [aEZ, beS}

SU4 ={[x—>a, y—b,z—>c]/ a U3 ={[x—a, y=b,z->c]/
a<2,b€z, ceZ} a=>2,bez, e}
2:=3
SI6 ={[x—a, y—b,z—4]/ U5 ={[x—a, y—=b,z—3]/
a<2,bes} a=2,bes}

SU0TA =[x->T,y-T,z->T]

SU4 ={[x—>a, y—b,z—>c]/ e U3 ={[x—a, y=b,z->c]/
a<2,bez, e} a=>2,bez, e}
2:=3
SI6 ={[x—a, y—b,z—4]/ U5 ={[x—a, y—=b,z—3]/
a<2,bez} a=2,bes}

SU0TA =[x->T,y—>T,z>T]

SI1TA =[x->Ty-T,z->T]

SU2T4A =[x->Ty-T,z->T]

Sl4 ={fx—a, y—b, z-c] | e I3 = {fx—a, y—=b, z-¢] |
a<2,bez €2} a>2,bez €2}
z:=3
SI6 ={[x—a, y—b,z—4]/ U5 ={[x—a, y—=b,z—3]/
a<2, beZ) a>2, beZ)

SU0TA =[x->T,y—>T,z>T]

SI1TA =[x->Ty-T,z->T]

SU2T4A =[x->Ty-T,z->T]

Loss of information!

SU3TA =[x->T,y->T,z->T]

SU4 ={[x—a, y—b,z—>c//

a<2,bez €2} SU3 ={[x—a,y—=b,z—>c] |
a=2,bez, cez}
2:=3
SI6 ={[x—a, y—b,z—4]/ U5 ={[x—a, y—=b,z—3]/
a<2,be’} a=>2,bez}

SI0TA =[x->T,y—T,z>T]

SU1TA4 =[x->Ty-T,z->T]

SU2TA=[x->Ty-T,z->T]

Sl4 ={fx—a, y-b, z—c] | SI3TA=[x->Ty-T,z>T]

a<2,bez €2} SU3 ={[x—a,y—=b,z—>c] |
a=2,bez, cez}
2:=3
SU6 ={[x—a, y—b,z—4]/ SUSTA =[x->T,y—T,z-3]
a<2, beZ} SU5 ={[x—a, y—b,z—3]/
a=2, bes}

SU0TA =[x->T,y—>T,z>T]

SI1TA =[x->Ty-T,z->T]

SU2T4A =[x->Ty-T,z->T]

SU3TA =[x->T,y->T,z->T]

SU3 ={[x—a, y—b,z—>c//
a=2,bez, cez}

S TA =[x->T,y->T,z>T]

SY4 ={[x—a, y—b,z—>c//
a<2,be€’z, ces}

SU6TA =[x->T,y—T,z—4]
6 ={[x—a, y—b,z—>4]

SUSTA =[x->T,y—T,z-3]

SU5 ={[x—a, y—b,z-3]/
a=2, bes}

SU0TA =[x->Ty—-T,z->T]

SI1TA =[x->Ty-T,z->T]

SU2T4A =[x->Ty-T,z->T]

SU3TA =[x->T,y->T,z->T]

SU3 ={[x—a, y—b,z—>c]/
a=2,bez, cez}

SU4TA =[x->T,y->T,z-T]

SY4 ={[x—a, y—b,z—>c//
a<2,be€’z, ces}

SUSTA =[x->T,y—T,z-3]

SU5 ={[x—a, y—b,z-3]/
a=2, bes}

SU6TA =[x->T,y—T,z—4]
6 ={[x—a, y—b,z—4]/

SY074 =[x>T,y-T,z>T]

SU1TA =[x>T,y-T,z>T]

SY2TA =[x>T,y-T,z>T]

SY3TA =[x—>T,y-T,z>T]

SY3 ={[x—a, y—b, z—>c] |
a=2,bez, ceZ}

SU4TA =[x->Ty-T,z>T]

S¥4 ={[x—a, y—ob, z—c] |

a<2,be€’z, ces} z:=3

SU6TA =[x—>T,y—-T,z—4]
16 ={[x—a, y—b,z—4] |

SI5TA =[x->T,y-T,z2-3]

SU5 ={[x—a, y—b,z-3]/
a=2, bes}

skip
SU7 14 =[x>T,y-T,z>T]

5¢I7 =SJ5U Loss of information!
Cla

We lost not only the value of =2 SY074 =[x->T,y—>T,z>T]

z, but also the relation

between value of x and value

f
o SI1TA =[x->Ty-T,z->T]

SU2T4A =[x->Ty-T,z->T]

SU3TA =[x->T,y->T,z->T]

SU3 ={[x—a, y—b,z—>c//
a=2,bez, cez}

S TA =[x->T,y->T,z>T]

SY4 ={[x—a, y—b,z—>c//

a<2,bez cez} -

SU6TA =[x->T,y—T,z—4]
6 ={[x—a, y—b,z—>4]

SUSTA =[x->T,y—T,z-3]

SU5 ={[x—a, y—b,z-3]/
a=2, bes}

skip

SU7TA =[x->T,y-T,z-T]
SY7 =SJ5U

Cl/a

What properties of the
possible concrete states at
node 6 can we prove?

SU0TA =[x->T,y—>T,z>T]

SI1TA =[x->Ty-T,z->T]

SU2T4A =[x->Ty-T,z->T]

SU3TA =[x->T,y->T,z->T]

SU3 ={[x—a, y—b,z—>c//
a=2,bez, cez}

S TA =[x->T,y->T,z>T]

SY4 ={[x—a, y—b,z—>c//

a<2,b€z ceZ} ,23

SU6TA =[x->T,y—T,z—4]
6 ={[x—a, y—b,z—>4]

SUSTA =[x->T,y—T,z-3]

SU5 ={[x—a, y—b,z-3]/

a=2, bes}

skip skip

SU7TA =[x->T,y-T,z-T]
SY7 =SJ5U

Cl/a

What properties of the
possible concrete states at
node 6 can we prove?

SU0TA =[x->T,y—>T,z>T]

E.g.: >0, z is even, z=4 SU1TA =[x->T,y-T,z->T]

SU2T4A =[x->Ty-T,z->T]

S TA =[x->T,y->T,z>T]

SY4 ={[x—a, y—b,z—>c//
a<2,be€’z, ces}

SU3TA =[x->T,y->T,z->T]

SU3 ={[x—a, y—b,z—>c//

a=2,bez, cez}
z2:=3

SU6TA =[x->T,y—T,z—4]
6 ={[x—a, y—b,z—>4]

SUSTA =[x->T,y—T,z-3]

SU5 ={[x—a, y—b,z-3]/

skip skip a=2,bez}

SU7TA =[x->T,y-T,z-T]
SY7 =SJ5U

Cl/a

What properties of the
possible concrete states at
node 6 can we prove?

SU0TA =[x->T,y—>T,z>T]

Can we prove that x<107? SI1TA =[x->Ty-T,z->T]

SU2T4A =[x->Ty-T,z->T]

S TA =[x->T,y->T,z>T]

SY4 ={[x—a, y—b,z—>c//
a<2,be€’z, ces}

SU3TA =[x->T,y->T,z->T]

SU3 ={[x—a, y—b,z—>c//

a=2,bez, cez}
z2:=3

SU6TA =[x->T,y—T,z—4]
6 ={[x—a, y—b,z—>4]

SUSTA =[x->T,y—T,z-3]

SU5 ={[x—a, y—b,z-3]/

skip skip a=2,bez}

SU7TA =[x->T,y-T,z-T]
SY7 =SJ5U

Cl/a

What properties of the
possible concrete states at
node 6 can we prove?

SU0TA =[x->T,y—>T,z>T]

No (although it is true) SU1TA =[x->T,y-T,z->T]

SU2T4A =[x->Ty-T,z->T]

S TA =[x->T,y->T,z>T]

SY4 ={[x—a, y—b,z—>c//
a<2,be€’z, ces}

SU3TA =[x->T,y->T,z->T]

SU3 ={[x—a, y—b,z—>c//

a=2,bez, cez}
z2:=3

SU6TA =[x->T,y—T,z—4]
6 ={[x—a, y—b,z—>4]

SUSTA =[x->T,y—T,z-3]

SU5 ={[x—a, y—b,z-3]/

skip skip a=2,bez}

SU7TA =[x->T,y-T,z-T]
SY7 =SJ5U

Cl/a

Abstract Interpretation

e Abstract Interpretation: inferring properties
from an abstract state

e Abstract state is an over-approximation
(superset of the concrete states)

— cannot infer all properties of the concrete
states

Definition of Semantics

e We defined Concrete Semantics:
1. Concrete Domain: X (all possible states)

2. Transfer functions: for each command t between

2 nodes /and /41, we have a function [&] o
Jlc:2TE -2 712 which maps SY7 to SJi+1 :) o

[V’ZB]\[C (S): {O'[V—)BJ / 0-65} i+1 Sli+1
[r=read()]Jic (S)={o[v—a] | o€S, a€L}
[v=2]dc (S)={o[v—a] | o€S, a=2}

Definition of Semantics

e We defined Concrete Semantics:
3. Join operation Uc:

Slel 6 5) S5I5

skip skip

SI5 Ul 56 =5I5 U506

Definition of Semantics

* In addition, we defined abstract semantics:
1. Abstract Domain: XTT =Var—>Z7TT

2. Transfer functions: for each command t between

2 nodes 7and 741, we have a function Jt]
JA which maps SY¢iT4 to SJi+174

i) SUiTA
t

i+1) SY+1T74

The Abstract Transfer Functions

[r=3]IA (STA)=5TA [—>3]
[v<2]iA (STA)={BSTA STA(v)<25TA
STA(v)=7L STA (v)>2

1 (bottom): the “undefined mapping” which
represents the empty set of states.

Definition of Semantics

3. Join:

Example:
SU1TA =[x—>2,y—>7,7-3]
SY2TA =|x->2,y—5,7-4]

SULTAUSI2TA =[x—=2,y—>7,2-7]

Join

* Formally:
(SI1TALUSI2TA)(v)={ BT SY1TA
(v)=7T SV2TA (v)=1T

SULTA (v)#SI2TA (v)SILTA (v) SU1TA
(v)=SI2TA (v)

STALIL=STA

Stopping Problem?

* |s it possible that we discover new information
forever?

e Define order relation:

SILTACTSI2TA if SUIITACSI2TA

* Notice that the join operation is monotonic

* At each node: each variable can go up at most 2
levels of abstraction:

1->7->7

 Therefore: we will stop after finite number of
steps.

Example

x:=0

X = x+1

skip ('a’

Example

0)
x:=0
X :=x+1

skip a

Example

skip Q

Example

2o
skip

skip

Example

skip

Example

Example

o) oty
x:=0
(1) B0 o

X = x+1

(2) B ot

We can stop now!

skip

To Summarize

* With our Abstract Semantic:
— Abstract states are representable
— No stopping problem

— Soundness: each abstract state is a superset of the
concrete states

* If we prove a property of the abstract state, this is also
true for the concrete states

Abstraction & Concretization functions

* Concretization function:
V(ST)=S
— Maps each abstract state to the set of concrete
states it represents
* Abstraction function:
a(S)=S5T14

— Maps each set of concrete states to the
“smallest” (most precise) abstract state which

represents it

Abstract Domains

* |[n our example: very low precision
— Because abstraction is coarse

* Better precision = more complexity
— Representation of abstract states
— Computation of the Transfer functions and Join

— Takes more time to get to fixpoint (end of
analysis)

Interval Abstraction

* Let’s define a more precise abstract domain
* Possible values of a variable: an interval
/=[a,b]
ac/JU{—oo}, hpeZU{x0}
* Transfer function: trivial

[, x=2 - /N[2,x0]
* Join:
/=[a,b], /=]s,t]
/U/=[inf(as),sup(Ht) |

(the smallest interval which contains both 7))

Interval Abstraction

* |s it guaranteed that analysis will reach a
fixpoint and stop?

Interval Abstraction

x:=0

X = x+1

skip "!’

Interval Abstraction

* The sequence of values assigned to x:

0,07, [1,17,/2,2],/3,3], ...

 What would be the corresponding sequence
of abstract states?

Interval Abstraction

* The sequence of values assigned to x:

0,07, [1,17,/2,2],/3,3], ...

 What would be the corresponding sequence
of abstract states?

/0,0], /0,1/,/0,2],/0,3]....

* Analysis will not stop!

Interval Abstraction

e Let’s try a different Join
* Choose L=[-2,2]
* Define UT.L:

/UTL /={// If[ELV JE/[—00,00]
otherwise

Interval Abstraction

UTL /={l/1/ If [=ELV JE/[—c0,0]
otherwise [=[-22]

* The sequence of values assigned to x:

[0,0/, [1,1]/2,2],[3,3],[4,4], ...

 What would be the corresponding sequence
of abstract states?

Interval Abstraction

UTL /={l/1/ If [=ELV JE/[—c0,0]
otherwise [=[-22]

* The sequence of values assigned to x:

[0,0/, [1,1]/2,2],[3,3],[4,4], ...

 What would be the corresponding sequence
of abstract states?

10,07, /0,17, f0,2], /0,3], 2

Interval Abstraction

UTL /={l/1/ If [=ELV JE/[—c0,0]
otherwise [=[-22]

* The sequence of values assigned to x:

[0,0/, [1,1]/2,2],[3,3],[4,4], ...

 What would be the corresponding sequence
of abstract states?

/0,0/, /0,1, /0,2],/0,3], [-00,00/, [—00,00], ...

Interval Abstraction

UTL /={l/1/ If [=ELV JE/[—c0,0]
otherwise [=[-22]

o /UT/L /can grow bigger than /only if /=/

Interval Abstraction

[0,0/, /0,1], /0,2], [0,3], [~o0,00], [—00,00], ...

* Going up from [0,3/to [—oo,00/is called
Widening

 We forget information

 We do it conservatively (maintaining over-
approximation)

* This loss of information ensures stopping

Interval Abstraction

* Interval abstraction is more precise, but ...
* |t doesn’t maintain any relation between variables

* Consider 2 variables x, y. Suppose the relation
between them is:

Interval Abstraction

* |In the interval domain, the best over-
approximation is a rectangle with sides
parallel to the axis:

zzzzzzzzzzzzzzzzzzzzz
zzzzzzzz

aaaaaaaaaaaaa

......................
zzzzzzzzzzzzzzz

Octagon Abstraction

e Octagon Abstraction: a more complex domain
with a better precision

* For each 2 variables, maintain inequalities of
the form: tax+y<c

* Here we do maintain relations between
variables

Octagon Abstraction

* Here, the best over-approximation is octagon
— a polygon with at most eight edges:

Polyhedron Abstraction

* And a more precise domain: Polyhedron

* For each 2 variables, maintain inequalities of
the form: ax+4y<c

e Here we maintain more informative relations
between variables

Polyhedron Abstraction

* Here, the best over-approximation is the
convex polygon defined by the inequalities:

Conclusion

* Non-trivial questions about a program:
undecidable

* Abstract Interpretation: an over-
approximation of the possible executions

— Sound static analysis

* Abstract Domains
— Tradeoff between precision and complexity

Questions?

