Static Analysis with Abstract Interpretation

Presented by Guy Lev 06.04.2014

Outline

- Introduction
- Concrete & Abstract Semantics
- Abstract Domain
- Abstract Domains examples
- Conclusion

Introduction

- Static Analysis automatically get information about the possible executions of computer programs
- Main usages:
 - Compilers: decide whether certain optimizations are applicable
 - Certification of programs against classes of bugs

Introduction

- Last week: Splint <u>unsound</u> static analysis (can miss errors)
- Abstract Interpretation (AI) a theory of sound (conservative) approximation of the semantics of computer programs

Introduction

- Soundness
 - If we proved some property: we are sure it is true for all possible executions of the program
 - If we were not able to prove a property: we cannot infer anything
- For example, if our analysis showed that:
 - No divisions by zero \rightarrow it's for sure
 - A division by zero may occur → it might be a false alarm

Concrete semantics of programs

- Representation of the set of all possible executions of a program in all possible execution environments
- Environment: Input parameters, values of uninitialized variables, input from user, clock value, etc.
- Execution: a curve x(t)
 - A vector representing the state of the program
- State of the program: everything that interests us: values of variables, heap status, elapsed time, etc.

Concrete semantics: a set of curves

Undecidability

- The concrete semantics of a program is an infinite mathematical object which is not computable
- ⇒ All non trivial questions about the concrete semantics of a program are *undecidable*

Safety Properties

 Given a program, we want to prove properties of it which express that no possible execution can reach an erroneous state

Safety Properties

 However, this verification problem is undecidable

Testing

- Testing is an under-approximation of the program semantics:
 - Only part of executions are examined
 - Only the prefix of executions

Testing

• Some erroneous executions might be forgotten:

Abstract Interpretation

- Considers an abstract semantics: a superset of the concrete semantics of the program
- An over-approximation of the possible executions

Abstract Semantics

- Abstract Semantics should be:
 - computer representable
 - effectively computable from the program text

Abstract Interpretation

- If the abstract semantics is safe, then so is the concrete semantics
 - ⇒ Soundness: no error can be missed

False Alarms

• If the over-approximation is too large, we might get false alarms:

Abstract Interpretation

- If no alarms: ensures safety
- In case of alarms: we don't know if they false or true:

To Summarize

- Testing: under-approximation, can miss errors
- Abstract Interpretation: over-approximation
 - Cannot miss any potential error
 - May yield false alarms
 - The objective: to get as precise abstraction as possible

Example

- Let's analyze a program with 3 local variables:
 x, y, z
- Program Semantics: the values of these variables.
- Values are from Z (integers)

Example

```
void f()
    int x,y,z;
    while (1)
         x = read();
         if (x >= 2)
              z = 3;
         else
              z = 4;
```


Concrete Semantics

- We are interested in all possible states at each node
- Denote by Σ the set of all mappings $Var \rightarrow Z$
 - $Var=\{x,y,x\}$
- A state is a mapping $\sigma \in \Sigma$
- Each node has a subset $S \subseteq \Sigma$ of possible states

Concrete Semantics

- When we go on from node 7 to 1 and update $S \downarrow 1$: $S \downarrow 1 := S \downarrow 1 \cup S \downarrow 7 = \Sigma \cup S \downarrow 7 = \Sigma$
- $S \downarrow 1$ remained the same \rightarrow we can stop the analysis
- So we computed concrete semantics of the program: the real possible states at each node
- We can infer, for example, that in node 7, the value of z is either 3 or 4.

Concrete Semantics

- The problem: in realistic programs:
 - The representation of the unions of states can explode
 - The analysis might not stop (we always discover new information)

Abstract Semantics

- Solution: we will use abstraction:
 - At each node: Instead of *S*, use $S \uparrow A \supseteq S$
 - By this we lose information
 - But we will be able to represent STA
 - And our analysis will necessarily stop
 - If we prove a property for all $s \in S \uparrow A$, then this property holds for all $s \in S$

Abstract Semantics

- Let's define the following abstract domain:
- $S\uparrow A: Var \rightarrow Z\uparrow T$
- $Z \uparrow T = Z \cup \{T\}$
- $S\uparrow A(v)=T$ (top) denotes that the variable v can have any value
- STA is an abstract mapping which represents a set of concrete states
 - E.g.: $S \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow 3]$ represents: {[x → a, y → b, z → 3] / a ∈ Z, b ∈ Z}

We lost not only the value of z, but also the relation between value of x and value of z

skip

$$S \downarrow 4 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$$

$$S \downarrow 4 = \{ [x \rightarrow a, y \rightarrow b, z \rightarrow c] / a < 2, b \in \mathbb{Z}, c \in \mathbb{Z} \}$$

$$S \downarrow 6 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow 4]$$

 $S \downarrow 6 = \{[x \rightarrow a, y \rightarrow b, z \rightarrow 4] / a < 2, b \in Z\}$

6 skip

7

5
$$S \downarrow 5 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow 3]$$

 $S \downarrow 5 = \{[x \rightarrow a, y \rightarrow b, z \rightarrow 3] / a \ge 2, b \in \mathbb{Z}\}$

$$S \downarrow 7 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$$

$$S \downarrow 7 = S \downarrow 5 \cup$$

$$S \downarrow 6$$

What properties of the possible concrete states at node 6 can we prove?

skip

$$S \downarrow 4 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$$

$$S \downarrow 4 = \{ [x \rightarrow a, y \rightarrow b, z \rightarrow c] / a < 2, b \in \mathbb{Z}, c \in \mathbb{Z} \}$$

$$S \downarrow 6 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow 4]$$

 $S \downarrow 6 = \{[x \rightarrow a, y \rightarrow b, z \rightarrow 4] / a < 2, b \in \mathbb{Z}\}$

6

7

skip

5
$$S \downarrow 5 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow 3]$$

 $S \downarrow 5 = \{[x \rightarrow a, y \rightarrow b, z \rightarrow 3] / a \ge 2, b \in \mathbb{Z}\}$

$$S \downarrow 7 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$$

$$S \downarrow 7 = S \downarrow 5 \cup$$

$$S \downarrow 6$$

What properties of the possible concrete states at node 6 can we prove?

E.g.: z>0, z is even, z=4

skip

$$S \downarrow 4 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$$

$$S \downarrow 4 = \{ [x \rightarrow a, y \rightarrow b, z \rightarrow c] / a < 2, b \in \mathbb{Z}, c \in \mathbb{Z} \}$$

4

6

skip

7

7:=4

$$S \downarrow 6 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow 4]$$

$$S \downarrow 6 = \{ [x \rightarrow a, y \rightarrow b, z \rightarrow 4] / a < 2, b \in \mathbb{Z} \}$$

$$5 \int S \cdot \int A = [x \rightarrow T, y \rightarrow T, z \rightarrow 3]$$

$$S \cdot \int 5 = \{ [x \rightarrow a, y \rightarrow b, z \rightarrow 3] / a \ge 2, b \in \mathbb{Z} \}$$
skip

$$S \downarrow 7 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$$

$$S \downarrow 7 = S \downarrow 5 \cup$$

$$S \downarrow 6$$

What properties of the possible concrete states at

node 6 can we prove? Can we prove that x<10? skip x<2 $S\downarrow4\uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$ 4 $S \downarrow 4 = \{ (x \rightarrow a, y \rightarrow b, z \rightarrow c) / (x \rightarrow a, y \rightarrow b, z \rightarrow c) \}$ a<2, b∈*Z*, *c*∈*Z*} 7:=4

$$S \downarrow 6 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow 4]$$

$$S \downarrow 6 = \{ [x \rightarrow a, y \rightarrow b, z \rightarrow 4] / a < 2, b \in \mathbb{Z} \}$$

6

skip

 $0 \mathcal{S} \downarrow 0 = \Sigma$ $S \downarrow 0 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$ skip $1S \downarrow 1 = \Sigma$ $S\downarrow 1 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$ x:=read() $2 S12 = \Sigma$ $S12 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$ x>=2 $S\downarrow3\uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$ $S \downarrow 3 = \{ [x \rightarrow a, y \rightarrow b, z \rightarrow c] / \}$ $a \ge 2$, $b \in \mathbb{Z}$, $c \in \mathbb{Z}$ z := 3 $\int S \downarrow 5 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow 3]$ $S \downarrow 5 = \{ [x \rightarrow a, y \rightarrow b, z \rightarrow 3] / \}$ $a \ge 2$, $b \in \mathbb{Z}$ skip $S\downarrow7\uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$ 7

 $S17 = S15 \cup$ 916

What properties of the possible concrete states at node 6 can we prove?

No (although it is true)

skip

$$S \downarrow 4 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$$

$$S \downarrow 4 = \{ [x \rightarrow a, y \rightarrow b, z \rightarrow c] / a < 2, b \in \mathbb{Z}, c \in \mathbb{Z} \}$$

4

6

skip

7

7:=4

$$S \downarrow 6 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow 4]$$

 $S \downarrow 6 = \{[x \rightarrow a, y \rightarrow b, z \rightarrow 4] / a < 2, b \in Z\}$

 $S \downarrow 3 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$ $S \downarrow 3 = \{ [x \rightarrow a, y \rightarrow b, z \rightarrow c] / a \ge 2, b \in \mathbb{Z}, c \in \mathbb{Z} \}$ z := 3

5
$$S \downarrow 5 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow 3]$$

 $S \downarrow 5 = \{[x \rightarrow a, y \rightarrow b, z \rightarrow 3] / a \ge 2, b \in \mathbb{Z}\}$

$$S \downarrow 7 \uparrow A = [x \rightarrow T, y \rightarrow T, z \rightarrow T]$$

$$S \downarrow 7 = S \downarrow 5 \cup 0$$

$$S \downarrow 6$$

Abstract Interpretation

- Abstract Interpretation: inferring properties from an abstract state
- Abstract state is an over-approximation (superset of the concrete states)
 - → cannot infer all properties of the concrete states

- We defined Concrete Semantics:
 - 1. Concrete Domain: Σ (all possible states)
 - 2. Transfer functions: for each command t between 2 nodes i and i+1, we have a function $tc:21\Sigma \rightarrow 21\Sigma$ which maps $S \downarrow i$ to $S \downarrow i+1:$

$$[v = 3] \downarrow c(S) = \{\sigma[v \to 3] \mid \sigma \in S\}$$

$$[v = read()] \downarrow c(S) = \{\sigma[v \to a] \mid \sigma \in S, a \in Z\}$$

$$[v \ge 2] \downarrow c(S) = \{\sigma[v \to a] \mid \sigma \in S, a \ge 2\}$$

- We defined Concrete Semantics:
 - 3. Join operation ⊔ \downarrow c:

 $S15 \sqcup 1cS16 := S15 \cup S16$

- In addition, we defined abstract semantics:
 - 1. Abstract Domain: $\Sigma T = Var \rightarrow Z T$
 - 2. Transfer functions: for each command t between 2 nodes i and i+1, we have a function [t] $\downarrow A$ which maps $S \downarrow i \uparrow A$ to $S \downarrow i + 1 \uparrow A$

The Abstract Transfer Functions

$$[v=3] \downarrow A (S\uparrow A) = S\uparrow A [v \rightarrow 3]$$

$$[v \le 2] \downarrow A (S\uparrow A) = \{ \blacksquare S\uparrow A \quad S\uparrow A (v) \le 2S\uparrow A \}$$

$$S\uparrow A (v) = T \bot \quad S\uparrow A (v) > 2$$

⊥ (bottom): the "undefined mapping" which represents the empty set of states.

3. Join:

$$S \downarrow 1 \uparrow A = [x \rightarrow 2, y \rightarrow T, z \rightarrow 3]$$

$$S\downarrow2\uparrow A = [x\rightarrow2,y\rightarrow5,z\rightarrow4]$$

$$S \downarrow 1 \uparrow A \sqcup S \downarrow 2 \uparrow A = [x \rightarrow 2, y \rightarrow T, z \rightarrow T]$$

Join

• Formally:

$$(S \downarrow 1 \uparrow A \sqcup S \downarrow 2 \uparrow A)(v) = \{ \blacksquare T \qquad S \downarrow 1 \uparrow A \\ (v) = T \qquad S \downarrow 2 \uparrow A(v) = TT \\ S \downarrow 1 \uparrow A(v) \neq S \downarrow 2 \uparrow A(v) S \downarrow 1 \uparrow A(v) \qquad S \downarrow 1 \uparrow A \\ (v) = S \downarrow 2 \uparrow A(v)$$

$$S \uparrow A \sqcup \bot = S \uparrow A$$

Stopping Problem?

- Is it possible that we discover new information forever?
- Define order relation:

$$S \downarrow 1 \uparrow A \sqsubseteq S \downarrow 2 \uparrow A$$
 if $S \downarrow 1 \uparrow A \subseteq S \downarrow 2 \uparrow A$

- Notice that the join operation is monotonic
- At each node: each variable can go up at most 2 levels of abstraction:

$$\perp \rightarrow 7 \rightarrow T$$

 Therefore: we will stop after finite number of steps.

To Summarize

- With our Abstract Semantic:
 - Abstract states are representable
 - No stopping problem
 - Soundness: each abstract state is a superset of the concrete states
 - If we prove a property of the abstract state, this is also true for the concrete states

Abstraction & Concretization functions

Concretization function:

$$\gamma(S\uparrow A) = S$$

- Maps each abstract state to the set of concrete states it represents
- Abstraction function:

$$\alpha(S) = S \uparrow A$$

 Maps each set of concrete states to the "smallest" (most precise) abstract state which represents it

Abstract Domains

- In our example: very low precision
 - Because abstraction is coarse
- Better precision → more complexity
 - Representation of abstract states
 - Computation of the Transfer functions and Join
 - Takes more time to get to fixpoint (end of analysis)

- Let's define a more precise abstract domain
- Possible values of a variable: an interval

$$I=[a,b]$$

$$a\in Z\cup\{-\infty\},\ b\in Z\cup\{\infty\}$$

Transfer function: trivial

$$I, x \ge 2 \rightarrow I \cap [2, \infty]$$

• Join:

$$I=[a,b], J=[s,t]$$
 $I\sqcup J=[\inf(a,s), \sup(b,t)]$
(the smallest interval which contains both I,J)

 Is it guaranteed that analysis will reach a fixpoint and stop?

- The sequence of values assigned to x: [0,0], [1,1],[2,2],[3,3], ...
- What would be the corresponding sequence of abstract states?

The sequence of values assigned to x:

 What would be the corresponding sequence of abstract states?

Analysis will not stop!

- Let's try a different *Join*
- Choose L = [-2,2]
- Define $\sqcup \uparrow L$:

$$I \sqcup \uparrow L J = \{ \blacksquare I \sqcup J \quad if \ I \sqsubseteq L \lor J \sqsubseteq I [-\infty, \infty] \}$$
otherwise

$$I \sqcup \uparrow L J = \{ \blacksquare I \sqcup J \quad if \ I \sqsubseteq L \lor J \sqsubseteq I [-\infty, \infty] \}$$

otherwise $L = [-2,2]$

- The sequence of values assigned to x: /0,0/, /1,1/,/2,2/,/3,3/,/4,4/, ...
- What would be the corresponding sequence of abstract states?

$$I \sqcup \uparrow L J = \{ \blacksquare I \sqcup J \quad if \ I \sqsubseteq L \lor J \sqsubseteq I[-\infty,\infty] \}$$

otherwise $L = [-2,2]$

The sequence of values assigned to x:

 What would be the corresponding sequence of abstract states?

$$I \sqcup \uparrow L J = \{ \blacksquare I \sqcup J \quad if \ I \sqsubseteq L \lor J \sqsubseteq I[-\infty,\infty] \}$$

otherwise $L = [-2,2]$

The sequence of values assigned to x:

 What would be the corresponding sequence of abstract states?

$$[0,0], [0,1], [0,2], [0,3], [-\infty,\infty], [-\infty,\infty], ...$$

$$I \sqcup \uparrow L J = \{ \blacksquare I \sqcup J \quad if \ I \sqsubseteq L \lor J \sqsubseteq I[-\infty,\infty] \}$$

otherwise $L = [-2,2]$

• $I \sqcup \uparrow L J$ can grow bigger than I only if $I \sqsubseteq L$

$$[0,0], [0,1], [0,2], [0,3], [-\infty,\infty], [-\infty,\infty], ...$$

- Going up from [0,3] to $[-\infty,\infty]$ is called **Widening**
- We forget information
- We do it conservatively (maintaining overapproximation)
- This loss of information ensures stopping

- Interval abstraction is more precise, but ...
- It doesn't maintain any relation between variables
- Consider 2 variables x, y. Suppose the relation between them is:

 In the interval domain, the best overapproximation is a rectangle with sides parallel to the axis:

Octagon Abstraction

- Octagon Abstraction: a more complex domain with a better precision
- For each 2 variables, maintain inequalities of the form: $\pm x \pm y \leq c$
- Here we do maintain relations between variables

Octagon Abstraction

- Here, the best over-approximation is octagon
 - a polygon with at most eight edges:

Polyhedron Abstraction

- And a more precise domain: Polyhedron
- For each 2 variables, maintain inequalities of the form: $ax+by \le c$
- Here we maintain more informative relations between variables

Polyhedron Abstraction

 Here, the best over-approximation is the convex polygon defined by the inequalities:

Conclusion

- Non-trivial questions about a program: undecidable
- Abstract Interpretation: an overapproximation of the possible executions
- → Sound static analysis
- Abstract Domains
 - Tradeoff between precision and complexity

Questions?

