
Shape Analysis  

Tal Zelmanovich 

Seminar in automatic tools for analyzing 
programs with dynamic memory 2013/2014B 



Subjects 

• Introducing shape analysis 

• TVLA method 

• Cutpoint-free method 

• Separation logic method 

• Conclusion & Personal view 

 

 



Part 1 – General shape analysis 

• The idea behind shape analysis 

• Goals 

• Analysis scope & limits 

• Termination problem 

• Common definitions & symbols 

 

 



What is the best way to describe a list or a binary tree? 

 



The concept 

Analyze program behavior through shapes of 
data structures occurring in the heap 

• In-depth analysis that answers advanced 
questions about the program 

• Static analysis 

• No single algorithm – a family of methods 
with common principles 



The concept 

Structures are usually kept as pointing-graphs or 
logical statements 

Example: 

void three_func() 

{ 

 List_element * L = NULL; 

 for (int i=0; i<3; i++) 

  L = append_element(L, i) 

} 

Possible states inside loop: 

L 

0x100 

e1 L 

0x100 0x40 

e2 e1 L 

0x100 0x54 0x40 

e3 e2 e1 L 

0x100 0x30 0x54 0x40 



Goals 

The analysis allows us to answer some common 
pointer-analysis questions: 

• Does a pointer points at NULL? 

• Are two pointers aliasing? 

• Can we reach y from x? 

• Is there an access violations? 

Using shape analysis we can get answers about 
both stack pointers and heap locations 



Goals 

Shape analysis also answers more complicated 
questions: 

• How many places points to a single location? 

• Is x a part of a pointing cycle? 

• Is there a memory leak? 

• Does x points to a list\double list\tree? 

In some shape analysis methods it is even possible 
to define questions\properties on our own 

 



Analysis scope 

Shape analysis may be a part of a complete 
analysis system, but the basic version cannot 
answer questions about: 

• Pointer arithmetic 

• Arrays 

• Data values (follows pointer only) 

• Flow questions (is code reachable?) 

It only gives info about memory structures! 

 



Analysis example 
struct Tree {int data = DC, Tree * left = NULL, Tree * right = NULL}; 
 
Tree * generate_tree(int times) 
{ 
 Tree * t = new Tree(); 
  Tree * cur_node = t; 
 for (int i=0; i<times; i++) 
 { 
  Tree * left_son = new Tree(); 
  Tree * right_son = new_Tree(); 
  cur_node->left = left_son; cur_node->right = right_son; 
  cur_node = cur_node->left 
 } 
 return t; 
} 



Analysis example 
Tree * t = new Tree(); Tree * cur_node = t; 
 for (int i=0; i<times; i++) 
  … 
  cur_node->left = left_son; cur_node->right = right_son; 
  cur_node = cur_node->left 

1. 
2. 
 
3. 
4. 

step 1 

e1 cur 

t 

step 3 step 4 

e1 cur 

t 

e2 e3 

e1 cur 

t 

e2 e3 



Analysis example 
step 4 (1) 

e1 cur 

t 

e2 e3 

e1 cur 

t 

e2 e3 

e4 e5 

step 4 (2) 

e1 cur 

t 

e2 e3 

e4 e5 

e6 e7 

e8 e9 

step 4 (100000000) 

When should we stop? 
How should we stop? 



Summarization 

Recall abstraction from a few lectures ago: 

• {1,2,3}  [1,3] 

• {1,2,3}  T 

 

How can we do the same for pointing graphs? 

Summarize – represent memory locations with 
similar connectivity attributes as one node\place 

Summarization allows us to treat a set of (possibly 
infinite) graphs as if it was a single graph 



e1 cur 

t 

e2 e3 

e4 e5 

e6 e7 

e8 e9 

Summarization 

e1 cur 

t 

e2 e3 

left 

right 
left left 

left 

left 

left 

right 

right 

right 

right 



Summarization 

e1 cur 

t 

e2 e3 

e4 

e5 e6 

right 

right 

right 

left 

left 

left 

Summarization shrinks the 
representation, but may  

lose information! 

e1 cur 

t 

e2 e3 

left 

right 
left 



Summarization 

e1 cur 

t 

e3 
e6 

right 

left 

A good summarization method must keep the 
traits we care about correct 

e1 cur 

t 

e2 e3 

left 

right 
left 



Symbols & conventions 

Pointer placed on stack 

 

Single heap cell\struct 

 

Collection of heap cells\structs (at least 1) 

 

Has attribute t (examples: points_to_NULL, 
is_on_cycle, reachable_from_pointer_P) 

 

 

 

P 

u 

v 

u 

t 



Symbols & conventions 

x 

y 

n 

x 

y 

n 

x 

y 

n 

x 

y 

n 

x points to y by 
n field 

x may point to y 
by n field 

x may point to 
one element of y 

by n field 

Some 
elements of 
x may point 

to some 
elements of 
y by n field 



Part 2 – the TVLA method 

• About the TLVA method 

• 3 valued – logics 

• Predicates used in TLVA 

• Command translation in TLVA 

• Special uses and versions of TLVA 

• Runtime & bottleneck 

 



The TVLA method 

• Method: Mooly Sagiv, Tom Reps & Reinhard Wilhelm 

• Tool: Mooly Sagiv, Tal Lev Ami & Roman Manevich 



Three valued logic 

• Instead of {T, F} use {1, ½, 0} where ½ means 
“don’t know” 

• Expressions are evaluated as expected: 

– 𝑇 ∧
1

2
=

1

2
 

– 𝑇 ∨
1

2
= 𝑇 

• Attributes and connections may have value ½ 
(represented as dotted lines in graphs) 

 



Predicates 

• Attributes and connections are represented as 
unary and binary predicates operating on 
heap locations 

• Core predicates – basic shape analysis 
properties such as points-to 

• Instrumentation predicates – additional 
properties we’d like to follow (reachability for 
example) 

• Predicates have {0, ½, 1} values 



Core predicates 

• points_to_by_x(y) – stack pointer x points to 
heap location y 

• connected_through_n(x,y) – n property of 
heap location x points to y 

• sm(x) – special predicate stating whether x is a 
summarized location (cannot be ½) 



Examples of instrumentation predicates 

• r[n, p](x) – location x can be reached by going 
throw n-fields of stack pointer p 

• Is_Null(x) – x is not an actual heap location, 
but NULL 

• Is[n](x) – is x heap shared, meaning does more 
then one element points to x 

• c[n](x) – x is a part of a cycle using n field 

• we can even define instrumentation 
predicates of our own 



Predicates 

x 

u1 

y 

u4 

n 
n 

n 
u2 u3 

u0 

n 

n 

n 
n 

Core predicates? 
Reachability predicate? 
Cycle predicate? 
Is predicate? 

r[n, x] 

r[n, y] 
r[n, x] 
r[n, y] 

r[n, x] 
r[n, y] 

r[n, x] 
r[n, y] 

c[n] c[n] is[n] 
is[n] 



Summary operation 

• In TVLA summary is done by grouping together 
connected elements sharing the same set of 
abstraction predicates 

• abstraction predicates are a set of unary 
predicates (can be chosen however you like) 

• abstraction predicates are the properties that 
summary will conserve 

• more abstraction predicates means better 
analysis and usually (although not always) longer 
running time 



Summary operation 

Possibilities for abstraction predicates: 

{r[n,x], r[n,y]} 

x 

u1 

y 

u4 

n 
n 

n 
u2 u3 

u0 

n 

n 

n 
n 

r[n, x] 

r[n, y] 
r[n, x] 
r[n, y] 

r[n, x] 
r[n, y] 

r[n, x] 
r[n, y] 

c[n] c[n] is[n] 
is[n] 

{c[n]} {} 



Revisit: summary information lost 

e1 cur 

t 

e2 e3 

left 

right 
left 

e1 cur 

t 

e3 
e6 

right 

left 

e1 cur 

t 

e2 e3 

e4 

e5 e6 

right 

right 

right 

left 

left 

left 

r[left, t] = 1 

is[right] = 0 



Command Translation 

The TVLA process for translating a command: 

• Focus – if the command relates a property 
we’re not sure of (for example x.n=u0 is ½), 
instantiate it for all possible values 

• Update – preform command on current state 
graph + update predicates 

• Coerce – remove impossible structures 

• Blur – perform summary operation (promises 
process termination) 

 

 



Runtime 

0
10
20
30
40

50

60

70

80

90

TVLA Runtime

2.6GHz Pentium, 1GB Ram, Win XP 
Time unit: minutes 



Runtime 

TLVA works well on small programs, but when 
trying to scale up the solution running time may 
reach double exponent! 

Most of the time is wasted due to the fact even a 
simple command may affect all predicates along the 
way. That means that every function call\loop 
cannot be analyzed out of its context – function 
analysis cannot be reused. 

Next up: two different methods to ease this 
runtime bottleneck 

 



More uses & versions of TVLA 

• TLVA is very versatile and may be used to 
analyze (or relay on) other properties beside 
structures: 

• Determining program correctness (sort example) 

• Adding type predicates 

• Adding allocation position predicates 

• Time stamping heap cells creation 



Things we learned up to now… 

Shape analysis is a form of static\dynamic program 
analysis. 

Summary is the process of: 

Converging multiple heap locations with similar 
attributes (predicates) to a single representation 

The core predicates are: pointed_by_x \ c[n] \ 
connected_through_n \ r[x,n] \ is[n] 

TLVA’s runtime bottleneck is: 

A single update may require pass on the entire 
structure, no analysis reuse 



Break 

 



Part 3 – cutting down on runtime 

• Cutpoint-free & separation logic methods: 

– Main concept 

– Algorithm implementation & examples 

– Runtime 

• Comparing both methods 



Cutpoint-free shape analysis 

Noam Rinetzky, Mooly Sagiv & Eran Yahav 

(based on TVLA) 



Cutpoint-free concept 

• Function calls usually affects only memory 
pointed by the function arguments, and not 
other pointers\heap cells 

• Such calls are called cutpoint-free 

• A cutpoint-free call can be analyzed 
considering only the heap accessible through 
the function arguments – faster analysis 

• Caller function analysis will treat calle analysis 
as sort of a black box 

 



Cutpoints 

n 

Call func(x,y) 
Is the call cutpoint free? 

x y z 

x y z 

n n 

n 

x y z 

n 

n 

n n 

n 

Definition of cutpoint? 



Cutpoint-free concept 

• Cutpoint: a location reachable from a function 
argument, as well as reachable from a non-
argument pointer while not passing through an 
argument. 

• Exception: cutpoints cannot be pointed directly 
by a parameter 

• Cutpoint-free algorithm can analyze only cutpoint 
-free programs (happens a lot, yet not always) 

• If some call is not cutpoint free the algorithm can 
detect it using is-cutpoint[func] predicate 



Cutpoint-free analysis example 

List splice operation: 

x 

y 

splice 

x 

y 



Cutpoint-free analysis example 

Splice(x, y) 

x 

y 

z 

y1 

x1 

z1 

y2 

x2 

z2 

n 

n 

n 

splice 

p 

q q1 

p1 
n 

n 



Cutpoint-free analysis example 

Splice(x, y) 

x 

y 

z 

y1 

x1 

z1 

y2 

x2 

z2 

n 

n 

n 

splice 

p 

q q1 

p1 

n 

n 
n 



Cutpoint-free analysis example 

Splice(x, y) 

x 

y 

z 

y1 

x1 

z1 

e2 

e1 

z2 

n 
n 

n 

n 



Cutpoint-free analysis example 

Splice(x, z) 

x 

y 

z 

y1 

x1 

z1 

e2 

e1 

z2 

n 
n 

n 

n 



Cutpoint-free analysis example 

Splice(y, z) 

x 

y 

z 

y1 

x1 

z1 

e2 

e1 

z2 

n 
n 

n 

n 

splice 

p 

q 

p1 

q1 

n 

n 

n 



Cutpoint-free analysis example 

Splice(y, z) 

x 

y 

z 

y1 

x1 

z1 

e2 

e1 

z2 

n 
n 

n 

n 

splice 

p 

q 

p1 

q1 

n 

n n 

n 



Cutpoint-free analysis example 

Splice(y, z) 

x 

y 

z 

y1 

x1 

z1 

e2 

e1 

e3 

n 
n 

n 

n 



Tabulation 

• Beside that time saved by not updating 
properties of the entire heap, the algorithm 
employs another useful technique to save time 

• Since functions are analyzed separately, we can 
remember results of analyzed calls with various 
inputs and re-use them (Tabulation) 

• This even allows us to treat different call locations 
the same way – and therefore compute them 
only once. 

• Separation of functions from calling context 
reduces runtime to single-exponent! 



Cutpoint-free analysis runtime 

0

20

40

60

80

100

120

Recursion

Iterative

1.5GHz Pentium, 1GB Ram, Win XP 
Time unit: seconds 



Separation logic based shape analysis 

Method: Peter O’Hearn & John C. Reynolds 

Tool: Dino Distefano, Peter W. O’Hearn & Hongseok Yang 



Separation logic method 

• Use specific logic with specific set of rules to 
represent memory pointing structure  

• taking completely different approach from TVLA 

• Commands affects the logical state with O’Heran 
logic style – {P} C {Q} 

• Use reasoning to bound the locations command c 
might update to reduce runtime 

• Presented version works only for lists (each cell 
has at most one pointer in it) 



Separation logic – memory presentation 

• Explicit pointers addresses – x, y, z… 

• Implicit pointers addresses – x’, y’, z’… 

 

 

• Locations aliasing x=y, x’=y’: 

e1 cur 

t 

e2 e3 x x’ y z’ y’ 

x, y 

x’ 

x 

x’,y’ 



Separation logic – memory presentation 

Two types of pointing: 

• Straight forward pointing: xy, x’y’, x’x’ 

 

 

• Path indirect acyclic pointing: ls(x’, y’), ls(x’, x’) 

x y y’ x’ x’ 

y’ x’ 

t1’ x’ y’ t2’ 

y’ x’ 

x’ 



Separation logic – memory presentation 

Operations between stacks\heaps: 

• s1,h1  s2,h2 – a structure that matches both: 
{xy’  ls(z, z’)} 

 

• s1,h1  s2,h2 – guarantees separation: 
{xy’  ls(z, z’)} 

 

     
    {xx’  x’y} 
 

x, z y’,z’ 

x y’ y’ z z’ x y’,z’ z 

x y’ x’ y’ 



Separation logic example 

void reverse_list(List * x) 
{ 
 List *t = NULL, *y=NULL; 
 while (x != NULL) 
 { 
  t = x->n; 
  x->n = y; 
  y=x; 
  x=t; 
 } 
} 

y 

p’ c’ n’ 

x t 



Separation logic example 

void reverse_list(List * x) 
{ 
 List *t = NULL, *y=NULL; 
 while (x != NULL) 
 { 
  t = x->n; 
  x->n = y; 
  y=x; 
  x=t; 
 } 
} 

{x  NULL t=x  ls(x) ls(y)}  
 

{ls(x)}  {yNULL}  {tNULL}  
 

Unfold: {∃x’.t=xxx’ls(x’)ls(y)} 
 {xtls(t) ls(y) } 

t,x y x y 

t 

{xyls(t) ls(y) } 

x 

y t 
{x=y  ls(t) ls(y) } x,y t 

{t=x  ls(x) ls(y)}  
 

t,x y 

{t=x  x=NULL ls(y)}  
 

y 



Abstraction of separation logic 

We allow two types of abstraction: 

• Collecting unreachable cells (memory leak): 
mark - {junk} 

 

 

• Trimming sequences of primed locations: 

 

x x’ 
j3’ 

j2’ 

j1’ 

x x’ 

junk 

x x’ 

j2’ j1’ 

y y’ 

c’ 

x x’ 

y y’ 

c’ 



Locality principle 

• What do we gain from analyzing the structure using 
separation logic? 

• “” separates different memory slices 
{xx’ls(y, x’)ls(x’)} 

 

 

 

• When an update occurs we only need to update slices 
directly affected 

• saves a lot of time when the slices are relatively small 

x 

x’ 

y 



TVLA VS Separation 

Category TVLA\Cutpoint-free Separation logic 

Model Abstraction by grouping 
predicates (graph oriented) 

Logical proof 

Predicates 
based on 

Mainly reachability 
properties 

Inductive predicate (ls for example) 

Coverage Soundness Soundness 

Operation Automatic only Automatic  or manually 

Achilles' heal Small updates  can  effect 
everything and impact 
runtime 

Lower expressability 

Locality  
principle 

Function calls separation  & 
tabulation 

Locality & Tabulation 

Reception One of the two leading 
methods for shape analysis 

The other of the two leading 
methods (Linux kernel analyzed) 



Part 3 – Conclusions & Personal View 

• Summary 

• My thoughts 

• My idea 

• Questions 

• Discussion 

 

 



Summary 

• Shape analysis allows us to analyze the heap 
structure 

• It can answer advanced questions (is this a 
doubly liked list? Is this a part of a cycle?) 

• We’ve seen 3 methods of shape analysis: 

 

 

• Last two attempt to solve runtime bottleneck 

 

TVLA 

Separation logic 

Cutpoint-free 



Summary 

• TVLA -  uses three valued logic, easily allows 
definition of user properties (predicates) 

• Cutpoints algorithm – attempts to decrease 
runtime by separating function points from 
their calling context (based on TVLA) 

• Separation logic – uses tailored logic reasoning 
to bound the area requiring updates 

 



My thoughts & Conclusions 

• Ground breaking idea & techniques 

• Presented algorithms are complex, but are also 
straight forward and very versatile 

• Competitive field 

• The distance to practical use is still far: 

• Long runtime (hard time scaling up) 

• Not a complete solution (structures only, libs support) 

• Maybe general idea may solve other problems? 

• Image analysis 

• Pattern recognition 

 



B 

My* idea – Template analysis 

• Compress structure representation by 
identifying reoccurring structures 

• For each new (small) heap state build a 
template, reuse templates to define entire 
heap                           A                       B 

 
        . 

                              

out1 

in1 

B 

B 



My idea – template analysis 

• Representation can be recursive (abstraction): 

 

T T 

in1 

OR NULL 

in1 

T 



My idea – template analysis 

Open Questions: 

• How to make pattern search feasible without 
loss of quality? 
(subgraph isomorphism is NP-complete) 

• How to select between few possible matches? 

• How to generate recursive structures? 



Shape analysis vs Template analysis 

Template analysis advantages: 

- Properties calculated only once per shape 

- Utilizes recursion definition of structures 

- Allows short representation of common 
objects (similar to dictionary contraction) 

Template analysis disadvantages: 

- Many open questions – not even sure possible 

- Runtime (probably) longer 

 



q6 

q1 

Q 

q2 

q3 

q5 

q4 

n 
n 

n 

n 

n 

q6 q6 

n 

q6 
n 



Discussion 

• Which method is better? 

• Which properties\predicates would you 
define? 

• Would you use shape analysis? 

 

 

• Any comments about the lecture itself? 
(don’t be afraid to be rough) 

 



References 

• Shape analysis terms: 
Shape Analysis 
by Reinhard Wilhelm, Mooly Sagiv & Thomas Reps 

• TVLA algorithm: 
TVLA: a system for implementing static analyses 
by Tal Lev-Ami & Mooly Sagiv 

• Cutpoint-free algorithm: 
Interprocedural shape analysis for cutpoint-free programs 
by Noam Rinetzky, Mooly Sagiv and Eran Yahav 

• Separation logic algorithm: 
A local shape analysis based on separation logic 
by Dino Distefano, Peter W. O’Hearn & Hongseok Yang 

• TVLA runtime examples: 
Revamping TVLA: making parametric shape analysis competative 
by Igor Bogudlov, Tal Lev-Ami, Thomas Reps & Mooly Sagiv 

 


