
Shape analysis
TVLA: a system for implementing static analyses

Tal Lev-Ami & Mooly Sagiv
Interprocedural shape analysis for cutpoint-free programs

Noam Rinetzky, Mooly Sagiv and Eran Yahav
A local shape analysis based on separation logic

Dino Distefano, Peter W. O’Hearn & Hongseok Yang

Presented by Tal Zelmanovich
4.5.2014

Shape analysis is a family of static analysis methods attempting to identify the general shape of the

memory structures occurring through the program’s run. These methods usually try to present the

memory states of the program using a pointing graphs, or equivalent logical expressions. This

advanced analysis can deal with non-trivial questions such as “is heap location x pointed by stack-

pointer y?” and as “is heap location x a part of a cyclic list?”, and therefore requires the graph

representation to be in-depth.

One of the main issues in these algorithms is the ensuring of termination, this is commonly

achieved by means of abstraction: Collapsing a sub-graph into a singular presentation or loosen

properties that were concluded to apply in the graph.

Three shape-analysis methods will be presented:

TVLA: An approach utilizing three-valued logic, oriented by defining attributes as predicates

Cutpoint-free: TVLA-based method to allow interprocedural analysis

Separation logic: Representing the state as logical formula, gain speed up using locality.

The TVLA method relies on attributes (predicates) creating relations between memory locations.

The user of the program can define predicates on his own as well as on which of them he is willing

to compromise in the abstraction process. Three valued logic values 0, 1 or ½ are assigned to each

predicate telling whether we know if it applies.

The cutpoint-free method handles only cases where function calls separates its arguments from the

rest of the heap. Having this assumption allows us to cut on runtime by analyzing each procedure

separately taking into account only the heap accessible from the function’s arguments.

The separation logic method represent abstracted memory states as logical statements, using core

properties such as: aliasing, points to, indirectly points to (ls). The power of this method lies in the

locality principle: the heap is kept as a series of separated parts, and hence updates can be done

locally.

At the end of the talk, I presented the approach I expected the algorithms to take prior to reading

them. In this approach common subgraphs appearing throught the analysis are kept as memory

templates, and can be reused to shrink the representation of the pointing graphs. This method

leaves many open questions that should be handled, but will hopefully gain us the advantage of

calculating attributes for each template only once. Such methods were already investigated in the

past, as a possible extension to separation logic oriented analysis.

During the discussion after the presentation the following points came up:

- Can these tools be used for practical usage today?

Although separation logic method was successfully run on the Linux kernel, the road to wide

usage is still far. These methods require a lot of fine tuning (which properties we wish to

analyze?, which level of abstraction to use?), and do not scale up well unless many demands are

loosen.

- When should these methods be applied?

The strong point of the algorithms is identifying heap-properties, and therefore they’re well

suited for verifying data-structure handling code (for example: a code implementing a dictionary

as a binary tree)

- Also during the lecture itself one of the students had the idea to bound analysis pointing-depth

instead of summarization, that idea is also mentioned in the TVLA article.

