

Grades

e Final grade = min(100, Weighted average)
e Exam: 50%

Must pass: Exam grade < 60 = Final grade = Exam grade
Max grade: 100
Format: Same as last year (but no bonus questions)

e Exercises: 60% - Bonuses accumulate up to 10%

Ex0: 2.5%
Ex1l: 5%
Ex2: 7.5%
Ex3: 12.5%
Ex4: 12.5%
Theoretical Ex: 10%
Ex5*%: 10%

*Inform Orr if you want to do it. If you do, then you will get your final grade after Moed B
(even if you decide not to submit.)

Compilation

0368-3133 2014/15a
Lecture 12

Optimize

Data Flow Analysis & Optimizations
Noam Rinetzky

Optimization points

source Front Code target
—> — > |R ——> —>
code end : generator code
User Compiler Compiler
profile program intraprocedural IR register allocation
change algorithm Interprocedural IR instruction selection
IR optimizations peephole transformations

NOW

Program Analysis

e Reasons about the behavior of a program

e An analysis is sound if it only asserts an
correct facts about a program

 An analysis is precise if it asserts all correct
facts (of interests)

e Sound analysis allows for semantic-
preserving optimizations

— “More precise” analyses are “more useful”:
may enable more optimizations

Examples

e Available expressions, allows:
»Common sub-expressions elimination
» Copy propagation

e Constant propagation, allows:
» Constant folding

e Liveness analysis
» Dead-code elimination
» Register allocation

Local vs. global optimizations

e An optimization is local if it works on just a
single basic block

e An optimization is global if it works on an
entire control-flow graph of a procedure

e An optimization is interprocedural if it
works across the control-flow graphs of
multiple procedure

— We won't talk about this in this course

Formalizing local analyses

Input Value
Vin
Transfer Function

a=btec Vout — 1:a=b-l-c(\/in)

|

Output Value
VOUt

Available Expressions

Input Value
Vin

a=>b + c V .= (Vi,\ {e | e contains a}) U {a=b+c}

|

Output Value Expressions of the forms
\V/ a=... and X=...a...

out

Live Variables

Input Value
Vin

a =b + c Vin:(vout\{a})u {b,C}

|

Output Value
VOUt

Information for a local analysis

e What direction are we going?
— Sometimes forward (available expressions)
— Sometimes backward (liveness analysis)

e How do we update information after
processing a statement?

— What are the new semantics?
— What information do we know initially?

11

Formalizing local analyses

e Define an analysis of a basic block as a
quadruple (D, V, F, 1) where
— D is a direction (forwards or backwards)
— Vis a set of values the program can have at any
point
— F is a family of transfer functions defining the
meaning of any expression as a functionf:V—V

— | is the initial information at the top (or bottom) of
a basic block

12

Available Expressions

e Direction: Forward

e Values: Sets of expressions assigned to variables

e Transfer functions: Given a set of variable
assignments V and statementa=b + c:

— Remove from V any expression containing a as a
subexpression

— Add to V the expressiona=b +c

— Formally: V_,, = (V. \ {e | e contains a}) U{a=b +c}

e Initial value: Empty set of expressions

13

Liveness Analysis

Direction: Backward
Values: Sets of variables

Transfer functions: Given a set of variable assignments V
and statementa=>b +c:

Remove a from V (any previous value of a is now dead.)
Add b and c to V (any previous value of b or c is now live.)
Formally: V. . =(V,, \{a}) U{b, c}

Initial value: Depends on semantics of language

— E.g., function arguments and return values (pushes)

— Result of local analysis of other blocks as part of a
global analysis

14

Running local analyses

Given an analysis (D, V, F, 1) for a basic block

Assume that D is “forward;” analogous for the
reverse case

Initially, set OUT[entry] to |

For each statement s, in order:

— Set IN[s] to OUT[prev], where prev is the previous
statement

— Set OUT(s] to f(IN[s]), where f, is the transfer
function for statement s

15

Global Optimizations

High-level goals

e Generalize analysis mechanism
— Reuse common ingredients for many analyses
— Reuse proofs of correctness

e Generalize from basic blocks to entire CFGs

— Go from local optimizations to global
optimizations

17

Global analysis

e A global analysis is an analysis that works
on a control-flow graph as a whole

e Substantially more powerful than a local
analysis
— (Why?)

e Substantially more complicated than a local
analysis
— (Why?)

18

Local vs. global analysis

Many of the optimizations from local analysis can still
be applied globally

— Common sub-expression elimination

— Copy propagation

— Dead code elimination

Certain optimizations are possible in global analysis that
aren't possible locally:

— e.g. code motion: Moving code from one basic block into
another to avoid computing values unnecessarily

Example global optimizations:
— Global constant propagation
— Partial redundancy elimination

19

Loop invariant code motion example

W =X -Y;

while (t < { > while (t < 120) {

zZ =z + ; Z = Z + w;

} J\ }
value of expression x —vy is
not changed by loop body

20

Why global analysis is hard

e Need to be able to handle multiple
predecessors/successors for a basic block

e Need to be able to handle multiple paths
through the control-flow graph, and may need
to iterate multiple times to compute the final
value (but the analysis still needs to
terminate!)

e Need to be able to assign each basic block a
reasonable default value for before we've
analyzed it

21

Global dead code elimination

e |Local dead code elimination needed to
know what variables were live on exit from
a basic block

e This information can only be computed as
part of a global analysis

e How do we modify our liveness analysis to
handle a CFG?

22

CFGs without loops

Entry

>

b
e

c + d;
c + d;

p X
i

o 0

/\

+
0 Q

y = a + b;

<X

o w

-
QR O

Exit

23

CFGs without loops

{a, ¢, d} : :
b=c+d; Which variables may
Entry e =c + d: be live on some
{a, b, ¢, d}4execution path?
b, ¢, d
e al (a, b, ¢, d}
a=>b + C,' y =a+b;
{a, b,w c, d}
{a, b, ¢, d}
X =a + b;
y = ¢ + d;
{x, y}
{x, y}

24

CFGs without loops

Entry

{a, c, d}
b=c¢c+ d4d;

e =c¢ + d4d;
{a, b, ¢, d}

{al bl c’
y = a + b;

{al b/ c/

d}

d}

25

CFGs without loops

Entry

b=c¢c+ d;

>

a=>,

/\

+ c;

— =

a + b;
c + d;

v

Exit

X
y

26

CFGs without loops

Entry

>

b

c + d;

a=>,

+ c;

<X

o w

-
QR O

Exit

27

Major changes — part 1

e |In a local analysis, each statement has
exactly one predecessor

* In a global analysis, each statement may
have multiple predecessors

e A global analysis must have some means of
combining information from all
predecessors of a basic block

28

CFGs without loops

{c, d}
Ent '»b = c + 4d;
n-ry e =c¢c + d4d;
{b, c, d}
b, ¢, d \
e el {a, b, ¢, d)
a=>b + ct y =2a+b;
{a, b"3L\fl\\\\\\\\\\)4/////////£fLQEL c, d}
{a, b, ¢, d}
X = a + b;
y = ¢ + d;
{x, y}
{x, y}

Exit

CFGs without loops

Entry

{c
b
e
{

i1~

d}
c + d4d;
c + d4d;

a, b, c,

d}

\

{al bl cl
y = a + b;

{al b/ c/

d}

d}

{a, b, c,

X

a + b;
c + 4d;
{x, y}

d}

{x, y}
Exit

30

CFGs without loops

Entry

{a, c, d}
b=c¢c+ d4d;
e =c¢c + d4d;
{a, b, c,

{al bl cl
y = a + b;

{al b/ c/

d}

d}

{a, b, c,
p 4 a + b;
c + d;
{x, y}

d}

{x, y}
Exit

31

Major changes — part 2

n a local analysis, there is only one possible
nath through a basic block

n a global analysis, there may be many paths
through a CFG

May need to recompute values multiple times
as more information becomes available

Need to be careful when doing this not to loop
infinitely!
— (More on that later)

32

CFGs with loops

e Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths

e When we add loops into the picture, this is no longer
true

e Not all possible loops in a CFG can be realized in the
actual program

IfZ x goto Top

v

X

2;

33

CFGs with loops

Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths

When we add loops into the picture, this is no longer
true

Not all possible loops in a CFG can be realized in the
actual program

Sound approximation: Assume that every possible
path through the CFG corresponds to a valid execution

— Includes all realizable paths, but some additional paths as
well

— May make our analysis less precise (but still sound)
— Makes the analysis feasible; we'll see how later

34

CFGs with loops

Entr >b=c+d;
Y c =c¢c + d4d;
IfZ ...
a = + c
d = + c

(O
n o

O o
Vo4 +

v

{a}
Exit

35

Major changes — part 3

e In alocal analysis, there is always a well
defined “first” statement to begin
processing

* In a global analysis with loops, every basic
olock might depend on every other basic
olock

e To fix this, we need to assign initial values
to all of the blocks in the CFG

36

CFGs with loops - initialization
{}

Entry >

b c + d4d;
o] c + d4d;

P~
o
p O
+
00

CFGs with loops - iteration

}

Entry >

{
b c + d4d;
o] c + d4d;

P~
o
p O
+
00

CFGs with loops - iteration

{}

Entry

b
c

c + d;
c + d;

/\

A P o~
o
p O
+
00

{}

A Y Ne
~
L[]

V]
+ +
a ol

oM p

~ A
(V]
[—

{a}
Exit

39

CFGs with loops - iteration
{}

b=c¢c+ d;
c =c¢c + d;

CFGs with loops - iteration

{}
b

C

Entr > ¢ + d;
4 c + d4d;

{b, c}
a=>b + c;
d=a + c;
{a, b,‘El‘*4//////////////,
{a, b, c}
a=a + b;
= Db + c;

CFGs with loops - iteration

Entry

{b, c}
a=>b + ¢c;
d =a + c;

{ar brb‘»‘/

CFGs with loops - iteration

Entry

i1~

{c
b
c
{b

4

/\

{b, c}

a=>b + c;
d=a + c;
{a, b, c}

{}
c =a + b;

43

CFGs with loops - iteration

{c, d}
Entr >b=c+d
4 c=c¢c+d
%
(b, c} \
a=>b + c;
d=a + c;
{a,b,bu/
{a, b, c}
a =a + b;
= Db + ¢c;

CFGs with loops - iteration

{c, d}
Entr >b=c+d
4 c=c¢c+d
%
(b, c} \‘
a=>b + c;
d=a + c;
{a,b,bu/
{a, b, c}
a=a + b;
= Db + c;

CFGs with loops - iteration

Entry

i1~

{c
b
c
{b

4

{b, c}
a=>,b
d = a
{a, b,

+ c;
+ c;
c}

{a,
a —
d =
{a,

b, c}
a + b;
b + c;
c, d}

{a}
Exit 46

CFGs with loops - iteration

Entry

i1~

{c
b
c
{b

4

{b, c}

a=>b + c;
d=a + c;
{a, b, ¢}

{a,
a ey
d =
{a,

b, c}
a + b;
b + c;
c, d}

{a}
Exit 47

CFGs with loops - iteration

Entry

i1~

{c
b
c
{b

4

{b, c}
a=>,b
d = a
{a, b,

+ c;
+ c;
c}

{a,
a ey
d =
{a,

b, c}
a + b;
b + c;
c, d}

{a}
Exit 48

CFGs with loops - iteration

Entry

i1~

{c
b
c
{b

4

{b, c}
a=>,b
d = a
{a, b,

+ c;
+ c;
c}

{a,
a =
d =

{a,

b, c}
a + b;
b + c;
c, d}

{a}
Exit 49

CFGs with loops - iteration

{c, d}
Entr >b = c + d;
Y c =c¢c + d;
e
c} *
b + c;

a + c;
b,‘Sl\\\\\\\‘\“-*4//////////////,
{a, b, c}

a =a + b;
d=Db + c;
{a, c, d}

{a}
Exit

CFGs with loops - iteration

c}
b + c;

a + c;
b,‘Sl\\\\\\\““-*4//////////////'
{a, b, c}

a =a + b;
d=Db + c;
{a, c, d}

{a}
Exit

51

CFGs with loops - iteration

{
b
c
{

c}
b + c;

a + c;
b,‘Sl\\\\\\\““-*4//////////////'
{a, b, c}

a =a + b;
d=Db + c;
{a, c, d}

{a}
Exit

52

Summary of differences

e Need to be able to handle multiple
predecessors/successors for a basic block

e Need to be able to handle multiple paths
through the control-flow graph, and may need
to iterate multiple times to compute the final
value

— But the analysis still needs to terminate!
e Need to be able to assign each basic block a

reasonable default value for before we've
analyzed it

53

Global liveness analysis

e |nitially, set IN[s] ={ } for each statement s

e Set IN[exit] to the set of variables known to be
live on exit (language-specific knowledge)

e Repeat until no changes occur:

— For each statement s of theforma=b + ¢, in any
order you'd like:
e Set OUT]s] to set union of IN[p] for each successor p of s
e Set IN[s] to (OUT[s] —a) U {b, c}.

e Yet another fixed-point iteration!

54

Global liveness analysis

v IN[s]=(UT[s] - {a}) U {b, c}

a=b+c

AA"UTA[SHN[SH U IN[s3]
IN[s2] IN[s3]

s2 s3

Why does this work?

e To show correctness, we need to show that
— The algorithm eventually terminates, and
— When it terminates, it has a sound answer

e Termination argument:

— Once a variable is discovered to be live during some point of the
analysis, it always stays live

— Only finitely many variables and finitely many places where a
variable can become live

e Soundness argument (sketch):

— Each individual rule, applied to some set, correctly updates
liveness in that set

— When computing the union of the set of live variables, a variable
is only live if it was live on some path leaving the statement

56

Abstract Interpretation

e Theoretical foundations of program
analysis

e Cousot and Cousot 1977

e Abstract meaning of programs
— Executed at compile time

57

Another view of local
optimization
e |In local optimization, we want to reason

about some property of the runtime
behavior of the program

e Could we run the program and just watch
what happens?

e ldea: Redefine the semantics of our
programming language to give us
information about our analysis

58

Properties of local analysis

e The only way to find out what a program will
actually doistorunit

e Problems:

— The program might not terminate

— The program might have some behavior we didn't
see when we ran it on a particular input

e However, this is not a problem inside a basic
block

— Basic blocks contain no loops
— There is only one path through the basic block

59

Assigning new semantics

Example: Available Expressions

Redefine the statement a =b + ¢ to mean
“a now holds the value of b + ¢, and any
variable holding the value a is now invalid”

Run the program assuming these new
semantics

Treat the optimizer as an interpreter for
these new semantics

60

Theory to the rescue

e Building up all of the machinery to design this
analysis was tricky

e The key ideas, however, are mostly independent of

the analysis:
— We need to be able to compute functions describing
the behavior of each statement

— We need to be able to merge several subcomputations

together
— We need an initial value for all of the basic blocks

e There is a beautiful formalism that captures many
of these properties

61

Join semilattices

A join semilattice is a ordering defined on a set of
elements

Any two elements have some join that is the smallest
element larger than both elements

There is a unique bottom element, which is smaller
than all other elements

Intuitively:

— The join of two elements represents combining information
from two elements by an overapproximation

The bottom element represents “no information yet” or
“the least conservative possible answer”

62

Join semilattice for liveness

{a, b, c}

/T\

{a, b}

{a, c}

{b, c}

{b}

{}

— Bottom I

63

What is the join of -
{a, b, c}

b} and {c}?

/T\

{a, b}

{a, c}

{b, c}

{b}

{}

What is the join of -
{a, b, c}

b} and {c}?

{a, b}

{a, c}

{b}

{}

What is the j%ci?b} and {a,c}?

/T\

{a, b} {a, c} {b, c}

{a {b} c}

{}

What is the join of {b} and {a,c}?

T

{a, b} {a, c} {b, c}

{a {b} c}

{}

What is the join of {a} and {a,b}?

/{a,bc}N
{a, b} {a, c} {b, c}

{a {b} c}

{}

What is the join of {a} and {a,b}?

{a, b, c}

{a, c} {b, c}

{a {b} c}

{}

Formal definitions

A join semilattice is a pair (V, LI), where
V is a domain of elements

|| is a join operator that is

— commutative: x LIy =y L] X

— associative: (x Lly) Llz=x Ll (y LI 2)

— idempotent: x | X = x

If x L]y =2z, we say that z is the join

or (least upper bound) of xand y

Every join semilattice has a bottom element
denoted L such that L || x = x for all x

70

Join semilattices and ordering

{a, b, c}

/T\

{a, b}

{a, c}

{b, c}

{b}

{}

Greater

Lower

71

Join semilattices and ordering

{a, b, c}

/T\

{a, b}

{a, c}

Least precise

{b, c}

{b}

{}

Most precise

72

Join semilattices and orderings

e Every join semilattice (V, LI) induces an
ordering relationship = over its elements
e DefinexCyiffxJy=y
e Need to prove
— Reflexivity: x = x
— Antisymmetry: If xCyandyCZ x, thenx =y
— Transitivity: f xCyandyC z, thenxC z

73

An example join semilattice

The set of natural numbers and the max function
ldempotent
— max{a, a}=a
Commutative
— max{a, b} = max{b, a}
Associative
— max{a, max{b, c}} = max{max{a, b}, c}
Bottom element is O:
— max{0, a} = a
What is the ordering over these elements?

74

A join semilattice for liveness

Sets of live variables and the set union operation
ldempotent:
- XxXUx=x
Commutative:
- xUy=yUx
Associative:
- (xUy)Uz=xU(yUz)
Bottom element:
— The empty set: @ U x = X
What is the ordering over these elements?

75

Semilattices and program
analysis

Semilattices naturally solve many of the
problems we encounter in global analysis

How do we combine information from
multiple basic blocks?

What value do we give to basic blocks we
haven't seen yet?

How do we know that the algorithm always
terminates?

76

Semilattices and program
analysis

Semilattices naturally solve many of the problems
we encounter in global analysis

How do we combine information from multiple
basic blocks?

— Take the join of all information from those blocks

What value do we give to basic blocks we haven't
seen yet?

— Use the bottom element

How do we know that the algorithm always
terminates?

— Actually, we still don't! More on that later

71

Semilattices and program
analysis

Semilattices naturally solve many of the problems
we encounter in global analysis

How do we combine information from multiple
basic blocks?

— Take the join of all information from those blocks

What value do we give to basic blocks we haven't
seen yet?

— Use the bottom element

How do we know that the algorithm always
terminates?

— Actually, we still don't! More on that later

78

A general framework

e Aglobal analysisis a tuple (D, V, LI, F, I), where

— D is a direction (forward or backward)

e The order to visit statements within a basic block, not the
order in which to visit the basic blocks

— Vis a set of values

— |l is a join operator over those values
— F is a set of transfer functions f: V—V
— | is an initial value

e The only difference from local analysis is the
introduction of the join operator

79

Running global analyses

Assume that (D, V, LI, F, I) is a forward analysis
Set OUT[s] = L for all statements s
Set OUT[entry] = |

Repeat until no values change:

— For each statement s with predecessors

Py, Py - s Py
e Set IN[s] = OUT[p,] LI OUT[p,] LI ... LI OUT[p,,]
e Set OUT[s] = f, (IN[s])

The order of this iteration does not matter
— This is sometimes called chaotic iteration

80

For comparison

Set OUT[s] = L for all
statements s

Set OUT[entry] =1

Repeat until no values
change:

— For each statement s
with predecessors
Py, Py s Py
e Set IN[s] = OUT[p,] L|
OUT[p,] LI ... LI OUT[p,]
e Set OUT(s] =f, (IN[s])

e Set IN[s] ={} for all
statements s

e Set OUT[exit] = the set of
variables known to be live
on exit

e Repeat until no values
change:

— For each statement s of the
form a=b+c:

e Set OUT([s] = set union of IN[x]
for each successor x of s

e Set IN[s] = (OUT[s]-{a}) U {b,c}

81

The dataflow framework

e This form of analysis is called the dataflow
framework

e Can be used to easily prove an analysis is
sound

e With certain restrictions, can be used to
prove that an analysis eventually
terminates

— Again, more on that later

82

Global constant propagation

e Constant propagation is an optimization
that replaces each variable that is known to
be a constant value with that constant

 An elegant example of the dataflow
framework

&3

Global constant propagation

entry X = 6;
A
y = X; z =y
\/

W = X;

|

z = X,

L
exit x = 4;

84

Global constant propagation

entry

> x

6

exit

.

o]

N

X

85

Global constant propagation

entry

> x =

6

exit

)

86

Constant propagation analysis

e |In order to do a constant propagation, we need to
track what values might be assigned to a variable at

each program point
e Every variable will either

Never have a value assigned to it,

Have a single constant value assigned to it,

Have two or more constant values assigned to it, or
Have a known non-constant value.

Our analysis will propagate this information
throughout a CFG to identify locations where a value is
constant

87

Properties of constant
propagation

e For now, consider just some single variable x

e At each pointin the program, we know one of three

things about the value of x:

— X is definitely not a constant, since it's been assigned two
values or assigned a value that we know isn't a constant

— X is definitely a constant and has value k
— We have never seen a value for x
e Note that the first and last of these are not the same!

— The first one means that there may be a way for x to have

multiple values
— The last one means that x never had a value at all

88

Defining a join operator

The join of any two different constants is Not-a-Constant

— (If the variable might have two different values on entry to a
statement, it cannot be a constant)

The join of Not a Constant and any other value is Not-a-
Constant

— (If on some path the value is known not to be a constant, then on
entry to a statement its value can't possibly be a constant)

The join of Undefined and any other value is that other value

— (If x has no value on some path and does have a value on some
other path, we can just pretend it always had the assigned value)

89

A semilattice for constant propagation

e One possible semilattice for this analysis is
shown here (for each variable):

Not-a-constant

-2 -1 0 2

Undefined

f

The lattice 1s infinitely wide

90

A semilattice for constant propagation

e One possible semilattice for this analysis is
shown here (for each variable):

Not-a-constant

T

Undefined

* Note:
* The join of any two different constants is Not-a-Constant
* The join of Not a Constant and any other value is Not-a-Constant
* The join of Undefined and any other value is that other value

Global constant propagation

entry

exit

»x = 6;

Z = X;
Undefined

x = 4;
Undefined

92

Global constant propagation

entry o .
Undefined X = 6f
Undef;ggg*
y = x; z =Y/
x=Undefined Undefined Undefined
y=Undefined e
z=Undefined
w=Undefined w =X,
Undefined
Z = X;
Undefined
exit < X = 4;
Undefined

93

Global constant propagation

entry o _
Undefined x = 6;
Undefiggg*
Y = X, zZ =Y,
Undefined Undefined
‘*4”//’//’//’,/,,
W = X;
Undefined
Z = X;
Undefined
exit < x = 4;
Undefined

94

Global constant propagation

Undefined

entr
Y P x = 6;

Undefined

Undefined

‘\\\\\\\\\\\\>

Y = X, zZ =Y,
Undefined Undefined

iped | 0 Undef

W = X;
Undefined

Z = X;
Undefined

exit < x = 4;
Undefined

Global constant propagation

entry

Undefined

>

Undefined
X = 6;

X = 6, y=zZ=w=l

Y = X,
Undefined

zZ =Y,
Undefined

iped | 0 Undef

exit

W = X;
Undefined

Z = X;
Undefined

x = 4;
Undefined

96

Global constant propagation

entry

Undefined

>

Undefined
X = 6;

X = 6, y=zZ=w=l

4//’/’///////’—\\\\\\\\\\\>

Y = X,
Undefined

zZ =Y,
Undefined

ped | \Undef

exit

W = X;
Undefined

Z = X;
Undefined

x = 4;
Undefined

97

Global constant propagation

Undefined
entry Mg = 6

Undefined x =
X =6

> 4//”///////,‘*

Y = X, zZ =Y,
Undefined Undefined

ped | \Undef

W = X;
Undefined

Z = X;
Undefined

exit < x = 4;
Undefined

Global constant propagation

entry Unfegfned

Undefined x =
X =6

4//”///////,‘*

y = X; zZ =Y,
X=6,vy=6 Undefined

W = X;
Undefined

Z = X;
Undefined

exit < x = 4;
Undefined

Global constant propagation

entry Undefined
. > x = 6:
Undefined ¢
/\
xX=6
Yy = Xy zZ =Y,
xX=6,y=6 Undefined
‘*4/’/////’//,,/,,
w = X\
Undefined \\\\\\\\\ET\
y=Undefined
z =%, gives what?
Undefined
exit < x = 4;
Undefined

100

Global constant propagation

entry

Undefined

P —6;

x_
X =6

Undefined

4//”///////,‘*

exit

zZ =Y,
Undefined

x=6,y=6
W = X;
Undefined

Z = X;
Undefined

x = 4;
Undefined

101

Global constant propagation

entry

Undefined

P —6;

x_
X =6

Undefined

4//”///////,‘*

exit

zZ =Y,
Undefined

x=6,y=6
W = X;
Undefined

Z = X;
Undefined

x = 4;
Undefined

102

Global constant propagation

entry

Undefined

P —6;

= 6

X
X

Undefined

4//”///////,‘*

exit

zZ =Y,
Undefined

x=6,y=6
W = X;
X=y=w=6

Z = X;
Undefined

x = 4;
Undefined

103

Global constant propagation

entry

Undefined

P —6;

= 6

X
X

Undefined

4//”///////,‘*

exit

zZ =Y,
Undefined

x=6,y=6
w = X;
X=y=w=6

v

Z = X;
Undefined

x = 4;
Undefined

104

Global constant propagation

entry

Undefined

P —6;

x_
X =6

Undefined

4//”///////,‘*

exit

zZ =Y,
Undefined

x=6,y=6
w = X;
X=y=w=6

v

X=y=w=6
Z = X;
Undefined

x = 4;
Undefined

105

Global constant propagation

entry

Undefined

P —6;

x_
X =6

Undefined

4//”///////,‘*

exit

zZ =Y,
Undefined

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=2z=6

v

x = 4;
Undefined

106

Global constant propagation

entry

Undefined

P —6;

x_
X =6

Undefined

4//”///////,‘*

exit

zZ =Y,
Undefined

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=2z=6

v

x = 4;
Undefined

107

Global constant propagation

entry

Undefined

Undefined

P —6;

X =
X =6

4//”///////,‘*

exit

xX=6,y=6
W = X;
X=y=w=6

v

X=y=w=6
zZ = X;
X=y=w=2z=6

v

X=y=w=2z=6
x = 4;
Undefined

z =Y,
Undefined

108

Global constant propagation

entry

Undefined

Undefined
=6;
= 6

>

X
X

4//”///////,‘*

xX=6,y=6
w = X;
x=y=jf6
X=y=w=6

zZ = X;
X=y=w=z=6

v

zZ =Y,
Undefined

X=y=Ww=2z=6

exit

< x = 4;

x=4, y=w=z=6

109

Global constant propagation

entry

Undefined

Undefined
=6;
= 6

>

X
X

4//”///////,‘*

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=z=6

z =Y,
Undefined

X=y=w=2z= 6

exit

x=4, y=w=z=6

110

Global constant propagation

entry

Undefined

Undefined
X = 6;
X =6

>

4//”///////,‘*

X=6 X = 6
y = x; z =Y;
X=6,v=6 Undefined

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=z=6

X=y=w=2z= 6

exit

x=4, y=w=z=6

111

Global constant propagation

entry

Undefined

Undefined
X = 6;
X =6

>

4//”///////,‘*

X=6 X = 6
y = x; z =Y;
X=6,v=6 Undefined

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=z=6

X=y=w=2z= 6

exit

x=4, y=w=z=6

112

Global constant propagation

entry
Undefined

Undefined

=6;
= 6

X
X

4//”///////,‘*

exit

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=z=6

X=y=w=2z= 6

= 4;

x=4, y=w=z=6

113

Global constant propagation

entry Undefined
. »x = 6;
Undefined
/\
X=6 X = 6
Y = X, 2 =Y
xX=6,y=6 X =6
L ——e—
x=6,y=6
W = X;
x=y=1,i=6
— X=6 | | x=4 gives
Ty <« —1what?
x:yz\',i:zzs
x:y:w=z=6
exit < x = 4;

114

Global constant propagation

entry Undefined
. > x = 6:
Undefined ’
/\
X=6 = 6
V = X; =Yy
X=6,y= = 6
‘*4/’//’//’//”/,,
x=6,y=6
W = X;
x:y:v&:G
y=w=6, X=T
Z = X;
X=y=w=2z=6
x:y:w:z:G
exit < x = 4;

x=4, y=w=z=6

115

Global constant propagation

Undefined
6;

entry
Undefined x
x

6

o)

N
nn
o) K

exit < x = 4;

x=4, y:w=z=6 116

Global constant propagation

Undefined
6;

entry
Undefined x
x

6

o)

N
nn
o) K

xX=6,y=6
w = X;
x=y=jf6
y=w=6
zZ = X;
y=w=i

X=y=Ww=2z=6
exit < x = 4;

x=4, y=w=z=6 17

Global constant propagation

Undefined
6;

entry
Undefined x
X

6

(o))}

N
nn
o) K

exit < x = 4;

x=4 ’ y=w=6 118

Global constant propagation

entry Undefined
Undefined x = 6;

X =6

o)

N
nn
o) K

xX=6,y=6

w = X;
. X=yV=w=6

Global analysis T

reached fixpoint y=w=6

Z = X;

y=w=6

y=w=6
exit < x =

x=4, y=w=6 119

Global constant propagation

Undefined

entr
Y 6

Undefined x
X 6

o)

N
nn
o) K

exit < x = 4;

Y=W= 6 120

Global constant propagation

Undefined

entr
Y 6

Undefined x
X 6

(o))}

N
nn
o) K

exit < x = 4;

Y=W= 6 121

Dataflow for constant
propagation

Direction: Forward
Semilattice: Vars— {Undefined, 0, 1, -1, 2, -2, ...,
Not-a-Constant}

— Join mapping for variables point-wise
{x—~1,y~1,z~1} || {x~1,y~2,z—~Not-a-Constant} =
{x—~1,y—~Not-a-Constant,z—~Not-a-Constant}

Transfer functions:

- f (V) =V]| ., (update V by mapping x to k)

— focainlV) = VI, Notea-constant (@SSign Not-a-Constant)

Initial value: x is Undefined

— (When might we use some other value?)

122

Proving termination

e Qur algorithm for running these analyses
continuously loops until no changes are
detected

e Given this, how do we know the analyses
will eventually terminate?

— In general, we don‘t

123

Terminates?

124

Liveness Analysis

e Avariable is live at a point in a program if
later in the program its value will be read
before it is written to again

125

Join semilattice definition

A join semilattice is a pair (V, LI), where
V is a domain of elements

|| is a join operator that is

— commutative: x LIy =y L] X

— associative: (x Lly) Llz=x Ll (y LI 2)

— idempotent: x | X = x

If x L]y =2z, we say that z is the join
or (Least Upper Bound) of x and y

Every join semilattice has a bottom element
denoted L such that L || x = x for all x

126

Partial ordering induced by join

e Every join semilattice (V, LI) induces an
ordering relationship = over its elements

 DefinexCyiffx | Jy=y

e Need to prove
— Reflexivity: x = x
— Antisymmetry: If x EyandyE x, thenx =y
— Transitivity: f xEyandy = z, then x = z

127

A join semilattice for liveness

Sets of live variables and the set union operation
ldempotent:
- XxXUx=x
Commutative:
- xUy=yUx
Associative:
- (xUy)Uz=xU(yUz)
Bottom element:
— The empty set: @ U x = X
Ordering over elements = subset relation

128

Join semilattice example for liveness

{a, b, c}

/T\

{a, b}

{a, c}

{b, c}

{b}

{}

— Bottom I

129

Dataflow framework

e Aglobal analysisis atuple (D,V, L, F, 1),
where

— D is a direction (forward or backward)

e The order to visit statements within a basic block,
NOT the order in which to visit the basic blocks

— V is a set of values (sometimes called domain)
— |l is a join operator over those values

— F is a set of transfer functions f,: V—V
(for every statement s)

— | is an initial value

130

Running global analyses

Assume that (D, V, LI, F, 1) is a forward analysis

For every statement s maintain values before - IN[s] - and after
- OUT([s]

Set OUT[s] = L for all statements s

Set OUT[entry] =1

Repeat until no values change:

— For each statement s with predecessors

PRED[S]={p1, p2; AR pn}
e SetIN[s] = OUT[p,] LI OUT[p,] LI ... LI OUT[p,]
e Set OUT[s] = f((IN[s])

The order of this iteration does not matter
— Chaotic iteration

131

Proving termination

e Qur algorithm for running these analyses
continuously loops until no changes are
detected

e Problem: how do we know the analyses will
eventually terminate?

132

A non-terminating analysis

The following analysis will loop infinitely on
any CFG containing a loop:

Direction: Forward
Domain: N
Join operator: max

Transfer function: fln)=n+1
Initial value: O

133

A non-terminating analysis

start

134

Initialization

135

Fixed-point iteration

start

136

Choose a block

137

Ilteration 1

start

>
Ol O©
!

end

138

Ilteration 1

start

— || O

end

139

Choose a block

start

— || O

end

140

Ilteration 2

start

— || O

end

141

Ilteration 2

142

Ilteration 2

start

O || —

end

143

Choose a block

start

O || —

end

144

Ilteration 3

start

O || —

end

145

Ilteration 3

start

(O

O ||

end

146

Ilteration 3

147

Why doesn’t this terminate?

Values can increase without bound

Note that “increase” refers to the lattice
ordering, not the ordering on the natural
numbers

The height of a semilattice is the length of the
longest increasing sequence in that semilattice

The dataflow framework is not guaranteed to
terminate for semilattices of infinite height

Note that a semilattice can be infinitely large
but have finite height

— e.g. constant propagation

148

Height of a lattice

An increasing chain is a sequence of elements
lCa,Ca, = .. = a,

— The length of such a chain is k

The height of a lattice is the length of the maximal
increasing chain

For liveness with n program variables:
- {tc{vicivyv b v,V)

For available expressions it is the number of
expressions of the form a=b op ¢

— For n program variables and m operator types:
m-n3

149

Another non-terminating
analysis

e This analysis works on a finite-height
semilattice, but will not terminate on
certain CFGs:

e Direction: Forward
e Domain: Boolean values true and false

e Join operator: Logical OR
e Transfer function: Logical NOT
e |nitial value: £false

150

A non-terminating analysis

start

151

Initialization

152

Fixed-point iteration

start
fal

153

Choose a block

154

Ilteration 1

155

Ilteration 1

156

Ilteration 2

start
fal

true
X =Yy

end

157

Ilteration 2

158

Ilteration 3

159

Ilteration 3

start
fal

false
X =Y

end

160

Why doesn’t it terminate?

e Values can loop indefinitely T

* Intuitively, the join operator keeps pulling [, ;]
values up e

e If the transfer function can keep pushing @}ﬁ

values back down again, then the values
might cycle forever

fqls‘

161

Why doesn’t it terminate?

Values can loop indefinitely

Intuitively, the join operator keeps pulling
values up

If the transfer function can keep pushing
values back down again, then the values
might cycle forever

How can we fix this?

fals‘
N\
@

fgls‘

162

Monotone transfer functions

A transfer function f is monotone iff
if x Zy, then f(x) = f(y)

Intuitively, if you know less information about a
program point, you can't “gain back” more
information about that program point

Many transfer functions are monotone, including
those for liveness and constant propagation

Note: Monotonicity does not mean that
X C f(x)

— (This is a different property called extensivity)

163

Liveness and monotonicity

A transfer function f is monotone iff

if x Z vy, then f(x) = f(y)
Recall our transfer function fora=b +cis
—fazp+ V) =(V—{a}) Uib, c}
Recall that our join operator is set union

and induces an ordering relationship
XCVYiff X &Y

Is this monotone?

164

Is constant propagation monotone?

e A transfer function fis monotone iff
if x =y, then f(x) = f(y)

e Recall our transfer functions
- fx:k(v) = V | x—k

- x=a+b(V) = V|Xn—>Not-a-Constant (aSSIQn Not-a-
Constant)

(update V by mapping x to k)

¢ |s this monotone?

Not—-a-constant

T

Undefined 165

The grand result

e Theorem: A dataflow analysis with a finite-

height semilattice and family of monotone
transfer functions always terminates

e Proof sketch:

— The join operator can only bring values up

— Transfer functions can never lower values back

down below where they were in the past
(monotonicity)

— Values cannot increase indefinitely (finite height)

166

An “optimality” result

e A transfer function fis distributive if

fla LI b) = fla) LI f(b)

for every domain elements a and b

e |f all transfer functions are distributive then
the fixed-point solution is the solution that
would be computed by joining results from all
(potentially infinite) control-flow paths

— Join over all paths
e Optimal if we ignore program conditions

167

An “optimality” result

A transfer function f is distributive if

fla LI b) = fla) LI f(b)

for every domain elements a and b

If all transfer functions are distributive then the
fixed-point solution is equal to the solution
computed by joining results from all (potentially
infinite) control-flow paths

— Join over all paths

Optimal if we pretend all control-flow paths can be
executed by the program

Which analyses use distributive functions?

168

Loop optimizations

Most of a program’s computations are done inside
loops

— Focus optimizations effort on loops
The optimizations we’ve seen so far are independent of
the control structure
Some optimizations are specialized to loops

— Loop-invariant code motion

— (Strength reduction via induction variables)

Require another type of analysis to find out where
expressions get their values from

— Reaching definitions

e (Also useful for improving register allocation)

169

Loop invariant computation

start [

170

Loop invariant computation

t*4 and y+z
have same value on
each iteration

t S

end

start [

Sy

= Il N
o

4™+ e h<

171

start

Code hoisting

< N =<

¥ o .

end

172

What reasoning did we use?

start

y=...
t=...

Z = ...

Both t and z are
defined only outside
of Joop

constants are trivially
loop-invariant

y is defined inside loop
but it is loop invariant

since t*4 is loop-invariant

end

173

What about now?

start

X<Yy+27

i\‘

yotra | _—

Now t is not loop-invariant
and soaret*4 andy

X=x+1 end

t=t+1

174

Loop-invariant code motion

d:t=a,0pa,
— dis a program location

a, op a, loop-invariant (for a loop L) if computes the
same value in each iteration

— Hard to know in general
Conservative approximation
— Each g, is a constant, or
— All definitions of g, that reach d are outside L, or

— Only one definition of of a, reaches d, and is loop-invariant
itself

Transformation: hoist the loop-invariant code outside
of the loop

175

Reaching definitions analysis

e Adefinition d: t=... reaches a program location if there is a
path from the definition to the program location, along which
the defined variable is never redefined

176

Reaching definitions analysis

A definition d: t = ... reaches a program location if there is a
path from the definition to the program location, along which
the defined variable is never redefined

Direction: Forward
Domain: sets of program locations that are definitions
Join operator: union

Transfer function:
f4: a=b op (RD) = (RD - defs(a)) U {d}
fd: not—a-def(RD) =RD

— Where defs(a) is the set of locations defining a (statements of the
form a=...)

Initial value: {}

177

Reaching definitions analysis

start

dl:y=...
d2:t=...

d3:z=...

dd:y=t*4

dd:x<y+z

#

end

l

do6: x=x+1

N

178

Reaching definitions analysis

start

dl:y=...
d2:t=...

d3:z=...

dd:y=t*4

dd:x<y+z

#

end

l

dS:x=x+1

N

179

Initialization

dl:y=...

start

U

—»d2:t= ...

d3:z=...
{}

dd:y=t*4

dd:x<y+z end

U

l

dS:x=x+1

¥
N

180

lteration 1

#
dl:y=...

start Ly @0it=

U

d3:z=...
{

dd:y=t*4

dd:x<y+z end

U

l

dS:x=x+1

¥
N

181

lteration 1

#
dl:y=...

dl;
start Ly @0it=

U {d1, d2}
d3:z=...
{d1, d2, d3}

dd:y=t*4

dd:x<y+z end

U

l

dS:x=x+1

¥
N

182

Ilteration 2

#
dl:y=...

dl}

start Ly @0it=

U {d1, d2}
d3:z=...
{d1, d2, d3}

dd:y=t*4

end
x<y+tz

U

l

dS:x=x+1

¥
N

183

Ilteration 2

#
dl:y=...

d1}
S s P

& {d1, d2}
d3:z=...
{d1, d2, d3}

{d1, d2, d3}
dd:y=t*4
S0
x<y+tz end
{1
ds:x=x+1

U

184

Ilteration 2

#
dl:y=...

{dl}
0 —»{ d2:t= ...
{d1, d2}

start

d3:z=...
{d1, d2, d3}

{d1, d2, d3}

dd:y=t*4

{d2, d3, d4}
X<y-+tz

U

l

ds:x=x+1

U

g0

end

185

Ilteration 2

#
dl:y=...

{dl}
0 —»{ d2:t= ...
{d1, d2}

start

d3:z=...
{d1, d2, d3}

{d1, d2, d3}
dd:y=t*4
{d2, d3, d4}
Xx<y-+z
(d2, d3, d4}

l

ds:x=x+1

U

g0

end

186

Ilteration 3

#
dl:y=...

{dl}
start 1yl qt=
& (d1, d2}

d3:z=...
{d1, d2, d3}

{d1, d2, d3}
dd:y=t*4
(d2, d3, d4} >

Xx<y+z
(d2, 3, d4}

l

{d2, d3, d4}
ds:x=x+1

U

#

end

187

start

U

—»d2:t= ...

lteration 3

#
dl:y=...
1d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

{d1, d2, d3}
d4:y=t*4

(d2, d3, d4}
Xx<y+z
(d2, d3, d4}

l

{d2, d3, d4}
ds:x=x+1
{d2, d3, d4, d5}

#

end

188

start

U

—»d2:t= ...

Ilteration 4

#
dl:y=...
1d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

{d1, d2, d3}
d4:y=t*4

(d2, d3, d4}
Xx<y-+z
(d2, d3, d4}

l

{d2, d3, d4}
ds:x=x+1
{d2, d3, d4, d5}

#

end

189

start

U

—»d2:t= ...

Ilteration 4

#
dl:y=...
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

{dl1, d2, d3, d4, d5}
dd:y=t*4

(d2, d3, d4}
Xx<y+tz
{d2, d3, d4}

l

{d2, d3, d4}
dS:x=x+1
{d2, d3, d4, d5}

#

end

190

start

U

—»d2:t= ...

Ilteration 4

#
dl:y=...
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

{dl1, d2, d3, d4, d5}
dd:y=t*4

(d2, d3, d4, d5}
Xx<y+tz
(d2, d3, d4, d5}

l

{d2, d3, d4}
dS:x=x+1
{d2, d3, d4, d5}

#

end

191

Ilteration 5

i}
dl:y=...

i
o Az
(d1, d2;

start

d3:z=...
{d1, d2, d3}

{d1, d2, d3, d4, d5}

d4d:y=t*4
{d2, d3, d4, d5} ,{d2,dihg4,d5}
Xx<y+tz

{d2, d3, d4, ds}

l

(d2, d3, d4}
dS:x=x+1
{d2, d3, d4, d5}

192

Ilteration 6

i}
dl:y=...

i
o Az
(d1, d2;

start

d3:z=...
{d1, d2, d3}

{d1, d2, d3, d4, d5}

d4d:y=t*4
{d2, d3, d4, d5} >{d2,dzhg4,d5}
Xx<y+tz

{d2, d3, d4, ds}

l

{d2, d3, d4, d5}
dS:x=x+1
{d2, d3, d4, d5}

193

Which expressions are loop invariant?

y is defined only in d4 —inside
of loop but depends on t and
4, both loop-invariant

{}
dl:y=...
{d1}
St{a}ft L d2:t=...
{d1, d2}
d3:z=...
{d1, d2, d3}

/dz— outside of loo

t is defined only in

.

X is defined only in d5 —
inside of loop so is not a
loop-invariant

(d2, d3, d4, ds}

>

end

4?2,d3,d4,d5}
dS:x=x+1

(d2, 3, d4, ds}

N

N~

z is defined only in
d3 — outside of loop

194

Inferring loop-invariant
expressions

For a statement s of the formt=a, op a,

A variable a; is immediately loop-invariant if all
reaching definitions IN[s]={d,,...,d,} for a; are
outside of the loop

LOOP-INV = immediately loop-invariant variables
and constants

LOOP-INV = LOOP-INVU {x | d:x=a;0pa,, disin
the loop, and both a, and a, are in LOOP-INV}

— lterate until fixed-point

An expression is loop-invariant if all operands are
loop-invariants

195

Computing LOOP-INV
{}

dl:y=..

{d1}

start | 4ot

{}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4, d5}
dd:y=t*4
{d2, d3, d4, d5}
X<Vy+2z
{d2, d3, d4, d5}

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}

{d2, d3, d4}
end

196

Computing LOOP-INV

start

{}

—» d2:t=..

(immediately)
LOOP-INV = {t}

{}
dl:y=..
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

(d1(d2) d3, d4, ds}
dd:y 4

{d2, d3, d4, d5}
X<Vy+2z
{d2, d3, d4, d5}

{d2, d3, d4]
end

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}

197

Computing LOOP-INV
{}

start

{}

—» d2:t=..

(immediately)
LOOP-INV = {t, z}

dl:y=..
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4, d5}
dd:yxt*4
{d2 d4,d5}
X<y
{d2, d3, d4, d5}

(d2, d3, d4]

end

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}

198

Computing LOOP-INV

start

{}

—» d2:t=..

(immediately)
LOOP-INV = {t, z}

dl:y=..
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4 d5}
d4:y=t*

{d2, d d5}
{d2, d4, d5}

(d2, d3, d4]

end

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}

199

Computing LOOP-INV

start

{}

—» d2:t=..

(immediately)
LOOP-INV = {t, z}

{}
dl:y=..
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4, d5}
dd:y=t*4
{d2, d3, d4, d5}
X<Vy+2z
{d2, d3, d4, d5}

(d2, d3, d4]

end

l

{d2, d3, d4(ds)
d5: x 1
{d2, d3, d4, d5)

200

Computing LOOP-INV

start

{}

—» d2:t=..

LOOP-INV = {t, z, 4}

di: y{=}
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4, d5}
dd:y=t*4
{d2, d3, d4, d5}
X<Vy+2z
{d2, d3, d4, d5}

{d2, d3, d4]
end

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}

201

Computing LOOP-INV
}

start

{}

—» d2:t=..

LOOP-INV = {t, z, 4, y}

{
dl:y=..
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4, d5}
dd:y=t*4
{d2, d3, d4, d5}
X<Vy+2z
{d2, d3, d4, d5}

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}

(d2, d3, d4]

end

202

Induction variables

jis alinear function of
the induction variable
with multiplier 4

whi (1 < x) {
j=a+ 4 * 3

i is incremented by a loop-
invariant expression on each
iteration — this is called an
induction variable

203

Strength-reduction

Prepare initial

alue N_

j=a+4*i

whi]_-e (J'_- <%Ir{crement by
J = 3 + 4 |multiplier

a[jl =3
i=1i4+4+1

204

Summary of optimizations

Available Expressions | Common-subexpression elimination
Copy Propagation

Constant Propagation | Constant folding

Live Variables Dead code elimination

Reaching Definitions |Loop-invariant code motion

205

Compilation

0368-3133 2014/15a
Lecture 12

nnnnnn
aaaaaaaaaaaaa

Compiling Object-Oriented Programs
Noam Rinetzky

Stages of compilation

Lexical Syntax Context Portable/
Source Analysis Analysis Analysis Retargetable
code Parsing code generation
(program)
= K
S =
)
5 7 5 3
- c << n
Y +
A
[e) —
- V)
<

IR

Assembly

Target code

(executable)

207

Compilation =» Execution

Lexical Syntax Context Portable/
SOU rce Analysis Analysis Analysis Retargetable
code Parsing code generation
(program)
=
©
Y
)
|_
5 @ 2
C
= Q
X
o
|_

| -
S
S
<<
i
©
o

&

>
)

Object File
Executable File

Executing
program

arget code

2xecutable)

image

Runtime System

208

ntax
alysis

rsing

Compilation

=» Execution

Context Portable/ Code Linking Loading .
Analysis Retargetable Generation Executi ng
code generation program
% w
g kS I o £
T] v
— i Q Sh g
2 f? 3 5 = I
S
+ 2 5 o 5
— Ko O S
wn (@) % [
< L

“Hello World”

209

ntax
alysis

rsing

OO0: Compilation =» Execution

Context Portable/ Code Linking Loading 2
Analysis Retargetable Generation EXeCUtlng
code generation program
% w
g kS I o £
T] 7
— i Q Sh g
2 f? 3 5 = I
S
+ 2 5 o B
— Ko O S
wn (@) 3 [
< L

“Hello World”

210

Runtime Environment

Mediates between the OS and the programming language
Hides details of the machine from the programmer

— Ranges from simple support functions all the way to a full-fledged
virtual machine

Handles common tasks
— Runtime stack (activation records)
— Memory management

Runtime type information
— Method invocation

— Type conversions

211

Memory Layout

stack stack grows down
(towards lower addresses)
Heap
T heap grows up
(towards higher
addresses)
static data

code

212

Memory Layout

stack stack grows down
_ (towards lower addresses)
Heap
T heap grows up
Runtime type information (towards higher
addresses)
static data
code

213

Object Oriented Programs

Simula, Smalltalk, Modula 3, C++, Java, C#, Python

Objects (usually of type called class)

— Code
— Data

Naturally supports Abstract Data Type
implementations

Information hiding
Evolution & reusability

214

A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
position = position + x ; Car ¢ = new Car();
} Vehicle v = c;
} c.move(60) ;
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }

POS = posS + X;
Y
Y

class Car extends Vehicle {
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pos - V.pos);
else
this.move (10) ;

} 215

A Simple Example

class Vehicle extends object {

void move(int x) {
position = position + x ;
}
}

class Truck extends Vehicle {
void move(int x){ }
if (x < 55) }
pos = pos + X;
Y
ki

class Car extends Vehicle {
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pos - V.pos);
else
this.move (10) ;

class main extends object {
int pos = 10; void main() {

Truck t new Truck();
Car c new Car () ;
Vehicle v C;
c.move (60) ;
v.move(70);
c.await(t);
pos =10

t —

Truck

216

A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
pos = pos + X ;
} Vehicle v = c;
} c.move(60) ;
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move(pos - Vv.pos); position=10
else c .
this.move (10) ; passengers=0

} Car 217

A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
pos = pos + X ; Car ¢ = new Car();
}
} c.move(60) ;
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move (posS - V.pos); position=10
else
this.move (10); V,C — | passengers=0

) Car

A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
pos = pos + X; Car ¢ = new Car();
} Vehicle v = c;
) c.move (60) ;
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move (posS - V.pos); position=70
else
this.move (10); V,C — | passengers=0

) Car

A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
position = position + x ; Car ¢ = new Car();
} Vehicle v = c;
) c.move(60);
v.move(/70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move (posS - V.pos); position=140
else
this.move (10); V,C — passengers=0

) Car 220

A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
position = position + x ; Car ¢ = new Car();
} Vehicle v = c;
) c.move(60);
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move (posS - V.pos); position=140
else
this.move (10); V,C — passengers=0

) Car 221

A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
position = position + x ; Car ¢ = new Car();
} Vehicle v = c;
) c.move(60);
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move (posS - V.pos); position=140
else
this.move (10); V,C — | passengers=0

) Car 222

Translation into C (Vehicle)

class Vehicle extends object { struct Vehicle {
int pos = 10; int pos,;
void move(int x) { }
pos = pos + X ;
}

}

223

Translation into C (Vehicle)

class Vehicle extends object { typedef struct Vehicle {
int pos = 10; int pos,;
void move(int x) { } Ve;
pos = pos + X ;
}

}

224

Translation into C (Vehicle)

class Vehicle extends object {

typedef struct Vehicle {
int pos = 10;

int pos;
void move(int x) { } Ve;
pos = pos + X ;
} void NewVe (Ve *this){
} this—pos = 10;

}

void moveVe (Ve *this, int Xx){
this—pos = this—pos + X;

}

225

Translation into C (Truck)

class Truck extends Vehicle { typedef struct Truck {
void move(int x){ int pos;
if (x < 55) Y Tr;
pos = pos + X;
} void NewTr(Tr *this){
} this—pos = 10;
}

void moveTr (Ve *this, int x){
if (x<55)
this—pos = this—pos + Xx;

226

Naive Translation into C (Car)

class Car extends Vehicle {
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move (pos - V.pos);
else
this.move(10) ;

typedef struct Car({
int pos;
int passengers,;

} Ca;

void NewCa (Ca *this){
this—pos = 10;
this—passengers = 0;

}

void awaitCa(Ca *this, Ve *v){
if (v—=pos < this—=pos)
moveVe (this—pos - v—=pos)
else
MoveCa(this, 10)

227

Naive Translation into C (Main)

class main extends object { void mainMa() {

void main() { Tr *t = malloc(sizeof(Tr));
Truck t = new Truck(); Ca *c = malloc(sizeof(Ca));
Car ¢ = new Car(); Ve *v = (Ve*) c;
Vehicle v = ¢; moveVe (Ve*) c, 60);
c.move(60) ; moveVe (v, 70);
v.move (70); awaitCa(c, (Ve*) t);
C.await(t); }

}

228

Naive Translation into C (Main)

class main extends object { void mainMa() {
void main() { Tr *t = malloc(sizeof(Tr));
Truck t = new Truck(); Ca *c = malloc(sizeof(Ca));
Car ¢ = new Car(); Ve *v = (Ve*) c;
Vehicle v = ¢; moveVe (Ve*) c, 60);
c.move(60) ; moveVe (v, 70);
v.move (70); awaitCa(c, (Ve*) t);
c.await(t); }
}
}

void moveCa() ?

229

Naive Translation into C (Main)

class main extends object { void mainMa() {
void main() { Tr *t = malloc(sizeof(Tr));
Truck t = new Truck(); Ca *c = malloc(sizeof(Ca));
Car ¢ = new Car(); Ve *v = (Ve*) c;
Vehicle v = ¢; moveVe (Ve*) c, 60);
c.move(60) ; moveVe (v, 70);
v.move (70); awaitCa(c, (Ve*) t);
c.await(t); }
}
}

void moveCa() ?

void moveVe (Ve *this, int x){
this—pos = this—pos + Xx;

}

230

Compiling Simple Classes

e Fields are handled as records
e Methods have unique names

class A { Runtime object Compile-Time Table
field al, al m1A
field a2; a2 m2A

method m1() {...}

method m2(int i) {...} void m2A(classA *this, int i) {

// Body of m2 with any object
// field f as this—f

231

Compiling Simple Classes

e Fields are handled as records
e Methods have unique names

class A { Runtime object Compile-Time Table
field al, al m1A
field a2; a2 m2A

method m1() {...}

method m2(int i) {...} void m2_A(classA *this, int i) {

// Body of m2 with any object

// field f as this—f
a.m2(5)

m2A(a,5)

232

Features of OO languages

Inheritance
Method overriding
Polymorphism
Dynamic binding

233

Handling Single Inheritance

e Simple type extension
e Type checking module checks consistency
e Use prefixing to assign fields in a consistent way

class A { class B extends A {
field al; field bl;
field a2; method m3() {..}
method ml() {..} }

method m2() {..}

234

Method Overriding

e Redefines functionality
— More specific
— Can access additional fields

class A {
field al;
field a2;
method ml() {..}
method m2() {..}

class B extends A {
field bl;
method m2() {
. bl ..

}
method m3() {..}

235

Method Overriding

e Redefines functionality
— More specific
— Can access additional fields

class A { class B extends A {
field al; , , field a3;
field a2; [m2is red@ method m2() {
method ml() {..} . a3 ..
method m2() {..} }

} method m3() {..}
}
[m?2 is declared and defined

236

Method Overriding

e Redefines functionality
e Affects semantic analysis

class A { class B extends A {
field al; field a3;
field a2; method m2() {
method ml() {..} . a3 ..
method m2() {..} }

} method m3() {..}

Runtime object = Compile-Time Table

Runtime object Compile-Time Table a1 mi1A A

al ml1lA A a2 m2A_B
a2 m2A_A bl m3B B

237

Method Overriding

e Redefines functionality
e Affects semantic analysis

class A {
field al;
field a2;

method ml() {..}
method m2() {..}

Runtime object Compile-Time Table

al

m1A_A

a2

m2A_A

class B extends A {

field bl;
method m2() {
. bl ..
}
method m3() {..}
}
Runtime object = Compile-Time Table

al mlA A
a2 m2A_ B

o

declared defined F?®

Method Overriding

a.m2(5) // class(a) = A b.m2(5) // class(b) = B
m2A A(a, 5) m2A B(b, 5)
class A { class B extends A {
field al; field bl;
field a2; method m2() {
method ml() {..} .. bl ..
method m2() {..} }
} method m3() {..}
}

Runtime object = Compile-Time Table

Runtime object Compile-Time Table a1 mi1A A

al ml1lA A a2 m2A_B
a2 m2A_A bl m3B_B

239

Method Overriding

class A {
field al;
field a2;
method ml() {..}
method m2() {..}

typedef struct {
field al;
field a2;

} A

void mlA_A(A* this){..
void m2A_A(A* this){..}

Runtime object Compile-Time Table

al

m1A_A

a2

m2A_A

Runtime object

class B extends A {

field bl;
method m2() {
.. bl ..
}
method m3() {..}
}
typedef struct {
field al;
field a2;
field bl;
} B;
void m2A B(B* this) {..}
void m3B B(B* this) {..}

Compile-Time Table

al mlA A
a2 m2A_B
bl m3B B

240

Method Overriding

-
a.m2(5) // class(a) = A

m2A_A(a, 5)
-

b.m2(5) // class(b) =B
m2A_B(b, 5)

AN

typedef struct {
field al;
field a2;

} A

void mlA_A(A* this){..
void m2A_A(A* this){..}

Runtime object Compile-Time Table

al ml1lA_ A
a2 m2A_A

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(B* this) {..}
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al mlA A
a2 m2A_B
bl m3B B

~

241

Abstract Methods

e Declared separately
— Defined in child classes
— E.g., Java abstract classes

e Abstract classes cannot be instantiated

e Handled similarly
e Textbook uses “virtual” for abstract

242

Handling Polymorphism

e When a class B extends a class A
— variable of type pointer to A may actually refer to

object of type B

e Upcasting from a subclass to a superclass

e Prefixing guarantees validity

class B *b = ...;

classA *a=b; classA *a = convert_ptr_to B to_ptr_A(b);

Pointer to B

Pointer to A inside B
(also)

al

a2

bl

b1

243

Dynamic Binding

An object (“pointer”) o declared to be of class A can
actually be (“refer”) to a class B

What does ‘0o.m()’” mean?

— Static binding

— Dynamic binding

Depends on the programming language rules

How to implement dynamic binding?
— The invoked function is not known at compile time
— Need to operate on data of the B and A in consistent way

244

Conceptual Impl. of Dynamic Binding

class A {
field al;
field a2;
method ml() {..}
method m2() {..}

}

typedef struct {
field al,;
field a2;

A

void mlA_A(A* this){..
void m2A_A(A* this){..}

Runtime object Compile-Time Table

al ml1lA_ A
a2 m2A_A

class B extends A {

field bl;

method m2() {

. a3 ..

}

method m3() {..}
¥

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(B* this) {..}
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al

m1A_A

a2

m2A_B

bl

m3B_B

245

Conceptual Impl. of Dynamic Binding

switch(dynamic_type(p)) {

case Dynamic_class_A: m2_A A(p, 3);
case Dynamic_class_B:m2_A B(convert_ptr_to A to ptr_B(p), 3);

}

typedef struct {
field al;
field a2;

} A

void mlA_A(A* this){..
void m2A_A(A* this){..}

Runtime object Compile-Time Table

al ml1lA_ A
a2 m2A_A

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(B* this) {..}
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al mlA A
a2 m2A_B
bl m3B B

246

Conceptual Impl. of Dynamic Binding

switch(dynamic_type(p)) !

case Dynamic_class_A: m2_A A(p, 3);
case Dynamic_class_B:m2_A B(convert_ptr_to A to ptr_B(p), 3);

}

typedef struct {
field al;
field a2;

} A

void mlA_A(A* this){..
void m2A_A(A* this){..}

Runtime object Compile-Time Table

al ml1lA_ A
a2 m2A_A

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(B* this) {..}
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al mlA A
a2 m2A_B
bl m3B B

247

More efficient implementation

e Apply pointer conversion in sublasses
— Use dispatch table to invoke functions
— Similar to table implementation of case

void m2A_B(classA *this_A) {
Class_B *this = convert_ptr to A _ptr to A B(this_A);

248

More efficient implementation

typedef struct { typedef struct {
field al; field al;
field a2; field a2;
}OA; field bl;
} B;

void mlA A(A* this){..}
void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

249

More efficient implementation

typedef struct
field al;
field a2;
A

{

void mlA A(A* this){..}
void m2A A(A* this,

l classA *p; l

Runtime object

int x){..}

>

P

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

(Runtime) Dispatch Table

vtable

al

a2

> m1A_A
m2A_A

250

More efficient implementation

typedef struct { typedef struct {
field al; field al;
field a2; field a2;
}OA; field bl;
} B;

void mlA A(A* this){..}
void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

l classA *p; l
Runtime object (Runtime) Dispatch Table Code

P > vtable > m1A > ml1A_A
al m2A > m2A_A

a2

251

More efficient implementation

typedef struct {
field al;
field a2;
A

void mlA A(A* this){..}
void m2A A(A* this, int x){..}

l classA *p; l p-m2(3);
Runtime object

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

p—dispatch_table—m2A(p, 3);
(Runtime) Dispatch Table

P > vtable
al
a2

> m1A_A
m2A_A

252

More efficient implementation

typedef struct {
field al;
field a2;
A

void mlA A(A* this){..}
void m2A A(A* this, int x){..}

l classB *p; l

Runtime object

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA,
Class_ B *this =
convert ptr_to A to ptr_to B(thisA)

int x){

} "

void m3B_B(B* this){..}

(Runtime) Dispatch Table

P > vtable > m1A_A
al m2A_B
a2 m3B_B
bl

253

More efficient implementation

typedef struct {
field al;
field a2;
A

void mlA_A(A* this){..

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA)
}
void m3B_B(B* this){..}
classB *p; p-m2(3);
Runtime object (Runtime) Dispatch Table
P > vtable > m1A_A
al m2A_B
a2 m3B_B
bl

254

More efficient implementation

typedef struct { typedef struct {
field al; field al;
field a2; field a2;
}A; field bl;
} B;

void mlA A(A* this){..}
void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

p.m2(3); p—dispatch_table—m2A(g, 3);
Runtime object (Runtime) Dispatch Table
P > vtable > mlA_A
al m2A_B
a2 m3B_B
bl 255

More efficient implementation

typedef struct {
field al;
field a2;
A

void mlA A(A* this){..}
void m2A A(A* this, int x){..}

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA, int x){

Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}
.conve rt_ptr_to_B_to_ptr_to_A(p)'

p.m2(3); p%dispatch_table%mZA(', 3);
Runtime object (Runtime) Dispatch Table
P > vtable > m1A_A
al m2A_B
a2 m3B_B
bl 256

Multiple Inheritance

class C { class D {
field c1; field di;
field c2;
method ml() {..} method m3() {..}
method m2() {..} method md () {..}
} }

class E extends C, D {
field el;

method m2() {..}

method m4() {..}
method m5() {...}

257

Multiple Inheritance

Allows unifying behaviors
But raises semantic difficulties

— Ambiguity of classes
— Repeated inheritance

Hard to implement
— Semantic analysis
— Code generation

e Prefixing no longer work

e Need to generate code for downcasts

Hard to use

258

A simple implementation

e Merge dispatch tables of superclases
e Generate code for upcasts and downcasts

259

A simple implementation

class C { class D { class E extends C, D {
field cl; field dil; field el;
field c2;
method ml() {..} method m3() {..} method m2() {..}
method m2() {...} method m4() {...} method m4() {..}
} } method m5() {..}
Y
Pointer to Runtime object (Runtime) Dispatch Table
-k . > vtable
- Cinside E B T
al —
m2C_E
. a2
Pointer to —>» m3D_D
- Dinside E > vtable —
m4D _E
al
> m5E_E 260

class C {

field cl;
field c2;
method ml() {..}
method m2() {..}

Pointer to
-E
-Cinside E

Pointer to
-Dinside E

Downcasting (E>C,D)

Runtime object

class D {

field di;

method m3() {..}
method m4(){..}

convert_ptr to E to ptr to C(e) =e;

convert_ptr_to E to ptr_to D(e) = e + sizeof(C);

(Runtime) Dispatch Table

class E extends C,
field el;

method m2() {..}
method m4() {..}
method m5() {..}

a2

> vtable
1 T m1C_C
a
m2C_E
a2
—>» m3D D
> vtable —
m4D _E
al
m5E_E

261

class C {

field cl;
field c2;
method ml() {..}
method m2() {..}

Pointer to
-E
-Cinside E

Pointer to
-Dinside E

Runtime object

Upcasting (C,D~>E)

class D {

field di;

method m3() {..}
method m4(){..}

convert_ptr to C to ptr to E(c) =c;

convert_ptr_to D _to_ptr_to_E(d) =d - sizeof(C);

(Runtime) Dispatch Table

class E extends C,
field el;

method m2() {..}
method m4() {..}
method m5() {..}

a2

> vtable
1 T m1C_C
a
m2C_E
a2
—>» m3D D
> vtable —
m4D _E
al
m5E_E

262

Multiple Inheritance

class A{
field al;
field a2;
method ml() {..}
method m3() {..}

}

class C extends A { class D extends A {

field cl; field dl;

field c2;

method ml() {..} method m3() {..}

method m2() {..} method m4 () {...}
} }

class E extends C, D {

field el;

method m2() {..}
method md() {..}
method m5() {..}

263

Multiple Inheritance

class A{
field al;
field a2;
method ml() {..}
method m3() {..}

}
class C extends A { class D extends A {
field cl; field dl;
field c2;
method ml() {..} method m3() {..}
method m2() {..}
} ¥

class E extends C, D {
field el;

method m2() {..}

method m5() {..}

264

Dependent Multiple Inheritance

class A{
field al;
field a2;
method ml() {..}
method m3() {..}

}
class C extends A { class D extends A {
field cl; field dl;
field c2;
method ml() {..} method m3() {..}
method m2() {..}
} }

class E extends C, D {
field el;

method m2() {..}

method m5() {..}

265

Dependent Inheritance

e The simple solution does not work
e The positions of nested fields do not agree

266

Independent Inheritance

class A{ class C class D class E
field al; extends A{ extends A{ extends C,D{
field a2; field cl; field dil; field el;
method ml() {..} field c2;
method m3(){..} method ml() {..} method m3(){..} method m2() {..}
} method m2(){..}
} } method m5() {..}
Y

Runtime E object

Pointer to RUNt Dicpatch Tabl
_E 3] vtable (Runtime) Dispatch Table
-Cinside E 1
d m1A C
a2 m3A_A
cl m2C_E
c2
Pointer to —> m1A_A
-Dinside E > vtable m3A_D
Al m4D_E
a2 mSE_E
dl
el 267

Implementation

e Use an index table to access fields
e Access offsets indirectly

268

Implementation

class A{ class C class D class E
field al; extends A{ extends A{ extends C,D{
field a2; field cl; field dl; field el;
method ml(){..} field c2;
method m3(){..} method ml(){..} method m3() {..} method m2() {..}
} method m2(){..} method m4(){..} method md4 () {..}
} } method m5(){..}
Y

Runtime E object (Runtime) Dispatch Table

vtable

al

Pointer to a2
-E
‘>
-Cinside E cl
c2
vtable

Pointer to
-Dinside E > -
J1 & Index
GlaTalslelo] [ala]z] =

el

Class Descriptors

e Runtime information associated with
iInstances

e Dispatch tables

— Invoked methods
e Index tables
e Shared between instances of the same class

e Can have more (reflection)

270

Interface Types

Java supports limited form of multiple inheritance
Interface consists of several methods but no fields

public interface Comparable {
public int compare(Comparable o);

}

A class can implement multiple interfaces
Simpler to implement/understand/use

Implementation: record with 2 pointers:
— A separate dispatch table per interface
— A pointer to the object

271

Dynamic Class Loading

Supported by some OO languages (Java)

At compile time

— the actual class of a given object at a given program point
may not be known

Some addresses have to be resolved at runtime

Compiling c.f() when f is dynamically loaded:
— Fetch the class descriptor d at offset 0 from ¢

— Fetch the address of the method-instance f from
() offset at d into p

— Jump to the routine at address p (saving return address)

272

Other OO Features

e Information hiding
— private/public/protected fields
— Semantic analysis (context handling)

e Testing class membership

273

Optimizing OO languages

e Hide additional costs
— Replace dynamic by static binding when possible
— Eliminate runtime checks

— Eliminate dead fields

e Simultaneously generate code for multiple
classesa

e Code space is an issue

274

Summary

e OO is a programming/design paradigm
e OO features complicates compilation
— Semantic analysis
— Code generation
— Runtime
— Memory management

e Understanding compilation of OO can be
useful for programmers

275

The End

