


Grades

e Final grade = min(100, Weighted average)
e Exam: 50%

Must pass: Exam grade < 60 = Final grade = Exam grade
Max grade: 100
Format: Same as last year (but no bonus questions)

e Exercises: 60% - Bonuses accumulate up to 10%

Ex0: 2.5%
Ex1l: 5%
Ex2: 7.5%
Ex3: 12.5%
Ex4: 12.5%
Theoretical Ex: 10%
Ex5*%: 10%

*Inform Orr if you want to do it. If you do, then you will get your final grade after Moed B
(even if you decide not to submit.)
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Program Analysis

e Reasons about the behavior of a program

e An analysis is sound if it only asserts an
correct facts about a program

 An analysis is precise if it asserts all correct
facts (of interests)

e Sound analysis allows for semantic-
preserving optimizations

— “More precise” analyses are “more useful”:
may enable more optimizations



Examples

e Available expressions, allows:
»Common sub-expressions elimination
» Copy propagation

e Constant propagation, allows:
» Constant folding

e Liveness analysis
» Dead-code elimination
» Register allocation



Local vs. global optimizations

e An optimization is local if it works on just a
single basic block

e An optimization is global if it works on an
entire control-flow graph of a procedure

e An optimization is interprocedural if it
works across the control-flow graphs of
multiple procedure

— We won't talk about this in this course



Formalizing local analyses

Input Value
Vin
Transfer Function

a=btec Vout — 1:a=b-l-c(\/in)

|

Output Value
VOUt




Available Expressions

Input Value
Vin

a=>b + c V .= (Vi,\ {e | e contains a}) U {a=b+c}

|

Output Value Expressions of the forms
\V/ a=... and X=...a...

out




Live Variables

Input Value
Vin

a =b + c Vin:(vout\{a})u {b,C}

|

Output Value
VOUt




Information for a local analysis

e What direction are we going?
— Sometimes forward (available expressions)
— Sometimes backward (liveness analysis)

e How do we update information after
processing a statement?

— What are the new semantics?
— What information do we know initially?

11



Formalizing local analyses

e Define an analysis of a basic block as a
quadruple (D, V, F, 1) where
— D is a direction (forwards or backwards)
— Vis a set of values the program can have at any
point
— F is a family of transfer functions defining the
meaning of any expression as a functionf:V—V

— | is the initial information at the top (or bottom) of
a basic block

12



Available Expressions

e Direction: Forward

e Values: Sets of expressions assigned to variables

e Transfer functions: Given a set of variable
assignments V and statementa=b + c:

— Remove from V any expression containing a as a
subexpression

— Add to V the expressiona=b +c

— Formally: V_,, = (V. \ {e | e contains a}) U{a=b +c}

e Initial value: Empty set of expressions

13



Liveness Analysis

Direction: Backward
Values: Sets of variables

Transfer functions: Given a set of variable assignments V
and statementa=>b +c:

Remove a from V (any previous value of a is now dead.)
Add b and c to V (any previous value of b or c is now live.)
Formally: V. . =(V,, \{a}) U{b, c}

Initial value: Depends on semantics of language

— E.g., function arguments and return values (pushes)

— Result of local analysis of other blocks as part of a
global analysis

14



Running local analyses

Given an analysis (D, V, F, 1) for a basic block

Assume that D is “forward;” analogous for the
reverse case

Initially, set OUT[entry] to |

For each statement s, in order:

— Set IN[s] to OUT[prev], where prev is the previous
statement

— Set OUT(s] to f(IN[s]), where f, is the transfer
function for statement s

15



Global Optimizations



High-level goals

e Generalize analysis mechanism
— Reuse common ingredients for many analyses
— Reuse proofs of correctness

e Generalize from basic blocks to entire CFGs

— Go from local optimizations to global
optimizations

17



Global analysis

e A global analysis is an analysis that works
on a control-flow graph as a whole

e Substantially more powerful than a local
analysis
— (Why?)

e Substantially more complicated than a local
analysis
— (Why?)

18



Local vs. global analysis

Many of the optimizations from local analysis can still
be applied globally

— Common sub-expression elimination

— Copy propagation

— Dead code elimination

Certain optimizations are possible in global analysis that
aren't possible locally:

— e.g. code motion: Moving code from one basic block into
another to avoid computing values unnecessarily

Example global optimizations:
— Global constant propagation
— Partial redundancy elimination

19



Loop invariant code motion example

W =X -Y;

while (t < { > while (t < 120) {

zZ =z + ; Z = Z + w;

} J\ }
value of expression x —vy is
not changed by loop body

20



Why global analysis is hard

e Need to be able to handle multiple
predecessors/successors for a basic block

e Need to be able to handle multiple paths
through the control-flow graph, and may need
to iterate multiple times to compute the final
value (but the analysis still needs to
terminate!)

e Need to be able to assign each basic block a
reasonable default value for before we've
analyzed it

21



Global dead code elimination

e |Local dead code elimination needed to
know what variables were live on exit from
a basic block

e This information can only be computed as
part of a global analysis

e How do we modify our liveness analysis to
handle a CFG?

22



CFGs without loops

Entry

>

b
e

c + d;
c + d;

p X
i

o 0

/\

+
0 Q

y = a + b;

<X

o w

-
QR O

Exit
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CFGs without loops

{a, ¢, d} : :
b=c+d; Which variables may
Entry e =c + d: be live on some
{a, b, ¢, d}4execution path?
b, ¢, d
e al (a, b, ¢, d}
a=>b + C,' y =a+b;
{a, b,w c, d}
{a, b, ¢, d}
X =a + b;
y = ¢ + d;
{x, y}
{x, y}
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CFGs without loops

Entry

{a, c, d}
b=c¢c+ d4d;

e =c¢ + d4d;
{a, b, ¢, d}

{al bl c’
y = a + b;

{al b/ c/

d}

d}
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CFGs without loops

Entry

b=c¢c+ d;

>

a=>,

/\

+ c;

— =

a + b;
c + d;

v

Exit

X
y
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CFGs without loops

Entry

>

b

c + d;

a=>,

+ c;

<X

o w

-
QR O

Exit
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Major changes — part 1

e |In a local analysis, each statement has
exactly one predecessor

* In a global analysis, each statement may
have multiple predecessors

e A global analysis must have some means of
combining information from all
predecessors of a basic block

28



CFGs without loops

{c, d}
Ent '»b = c + 4d;
n-ry e =c¢c + d4d;
{b, c, d}
b, ¢, d \
e el {a, b, ¢, d)
a=>b + ct y =2a+b;
{a, b"3L\fl\\\\\\\\\\)4/////////£fLQEL c, d}
{a, b, ¢, d}
X = a + b;
y = ¢ + d;
{x, y}
{x, y}

Exit




CFGs without loops

Entry

{c
b
e
{

i1~

d}
c + d4d;
c + d4d;

a, b, c,

d}

\

{al bl cl
y = a + b;

{al b/ c/

d}

d}

{a, b, c,

X

a + b;
c + 4d;
{x, y}

d}

{x, y}
Exit
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CFGs without loops

Entry

{a, c, d}
b=c¢c+ d4d;
e =c¢c + d4d;
{a, b, c,

{al bl cl
y = a + b;

{al b/ c/

d}

d}

{a, b, c,
p 4 a + b;
c + d;
{x, y}

d}

{x, y}
Exit
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Major changes — part 2

n a local analysis, there is only one possible
nath through a basic block

n a global analysis, there may be many paths
through a CFG

May need to recompute values multiple times
as more information becomes available

Need to be careful when doing this not to loop
infinitely!
— (More on that later)

32



CFGs with loops

e Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths

e When we add loops into the picture, this is no longer
true

e Not all possible loops in a CFG can be realized in the
actual program

IfZ x goto Top

v

X

2;
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CFGs with loops

Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths

When we add loops into the picture, this is no longer
true

Not all possible loops in a CFG can be realized in the
actual program

Sound approximation: Assume that every possible
path through the CFG corresponds to a valid execution

— Includes all realizable paths, but some additional paths as
well

— May make our analysis less precise (but still sound)
— Makes the analysis feasible; we'll see how later

34



CFGs with loops

Entr >b=c+d;
Y c =c¢c + d4d;
IfZ ...
a = + c
d = + c

(O
n o

O o
Vo4 +

v

{a}
Exit
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Major changes — part 3

e In alocal analysis, there is always a well
defined “first” statement to begin
processing

* In a global analysis with loops, every basic
olock might depend on every other basic
olock

e To fix this, we need to assign initial values
to all of the blocks in the CFG

36



CFGs with loops - initialization
{}

Entry >

b c + d4d;
o] c + d4d;

P~
o
p O
+
00




CFGs with loops - iteration

}

Entry >

{
b c + d4d;
o] c + d4d;

P~
o
p O
+
00




CFGs with loops - iteration

{}

Entry

b
c

c + d;
c + d;

/\

A P o~
o
p O
+
00

{}

A Y Ne
~
L[]

V]
+ +
a ol

oM p

~ A
(V]
[ —

{a}
Exit
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CFGs with loops - iteration
{}

b=c¢c+ d;
c =c¢c + d;




CFGs with loops - iteration

{}
b

C

Entr > ¢ + d;
4 c + d4d;

{b, c}
a=>b + c;
d=a + c;
{a, b,‘El‘\\\\\\\\\\\\*4//////////////,
{a, b, c}
a=a + b;
= Db + c;




CFGs with loops - iteration

Entry

{b, c}
a=>b + ¢c;
d =a + c;

{ar brb‘»‘/




CFGs with loops - iteration

Entry

i1~

{c
b
c
{b

4

/\

{b, c}

a=>b + c;
d=a + c;
{a, b, c}

{}
c =a + b;
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CFGs with loops - iteration

{c, d}
Entr >b=c+d
4 c=c¢c+d
%
(b, c} \
a=>b + c;
d=a + c;
{a,b,bu/
{a, b, c}
a =a + b;
= Db + ¢c;




CFGs with loops - iteration

{c, d}
Entr >b=c+d
4 c=c¢c+d
%
(b, c} \‘
a=>b + c;
d=a + c;
{a,b,bu/
{a, b, c}
a=a + b;
= Db + c;




CFGs with loops - iteration

Entry

i1~

{c
b
c
{b

4

{b, c}
a=>,b
d = a
{a, b,

+ c;
+ c;
c}

{a,
a —
d =
{a,

b, c}
a + b;
b + c;
c, d}

{a}
Exit 46




CFGs with loops - iteration

Entry

i1~

{c
b
c
{b

4

{b, c}

a=>b + c;
d=a + c;
{a, b, ¢}

{a,
a ey
d =
{a,

b, c}
a + b;
b + c;
c, d}

{a}
Exit 47




CFGs with loops - iteration

Entry

i1~

{c
b
c
{b

4

{b, c}
a=>,b
d = a
{a, b,

+ c;
+ c;
c}

{a,
a ey
d =
{a,

b, c}
a + b;
b + c;
c, d}

{a}
Exit 48




CFGs with loops - iteration

Entry

i1~

{c
b
c
{b

4

{b, c}
a=>,b
d = a
{a, b,

+ c;
+ c;
c}

{a,
a =
d =

{a,

b, c}
a + b;
b + c;
c, d}

{a}
Exit 49




CFGs with loops - iteration

{c, d}
Entr >b = c + d;
Y c =c¢c + d;
e
c} \\\\\\\\\\\\\\\*
b + c;

a + c;
b,‘Sl\\\\\\\‘\“-*4//////////////,
{a, b, c}

a =a + b;
d=Db + c;
{a, c, d}

{a}
Exit




CFGs with loops - iteration

c}
b + c;

a + c;
b,‘Sl\\\\\\\““-*4//////////////'
{a, b, c}

a =a + b;
d=Db + c;
{a, c, d}

{a}
Exit
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CFGs with loops - iteration

{
b
c
{

c}
b + c;

a + c;
b,‘Sl\\\\\\\““-*4//////////////'
{a, b, c}

a =a + b;
d=Db + c;
{a, c, d}

{a}
Exit
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Summary of differences

e Need to be able to handle multiple
predecessors/successors for a basic block

e Need to be able to handle multiple paths
through the control-flow graph, and may need
to iterate multiple times to compute the final
value

— But the analysis still needs to terminate!
e Need to be able to assign each basic block a

reasonable default value for before we've
analyzed it
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Global liveness analysis

e |nitially, set IN[s] ={ } for each statement s

e Set IN[exit] to the set of variables known to be
live on exit (language-specific knowledge)

e Repeat until no changes occur:

— For each statement s of theforma=b + ¢, in any
order you'd like:
e Set OUT]s] to set union of IN[p] for each successor p of s
e Set IN[s] to (OUT[s] —a) U {b, c}.

e Yet another fixed-point iteration!
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Global liveness analysis

v IN[s]=(UT[s] - {a}) U {b, c}

a=b+c

AA"UTA[SHN[SH U IN[s3]
IN[s2] IN[s3]

s2 s3




Why does this work?

e To show correctness, we need to show that
— The algorithm eventually terminates, and
— When it terminates, it has a sound answer

e Termination argument:

— Once a variable is discovered to be live during some point of the
analysis, it always stays live

— Only finitely many variables and finitely many places where a
variable can become live

e Soundness argument (sketch):

— Each individual rule, applied to some set, correctly updates
liveness in that set

— When computing the union of the set of live variables, a variable
is only live if it was live on some path leaving the statement
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Abstract Interpretation

e Theoretical foundations of program
analysis

e Cousot and Cousot 1977

e Abstract meaning of programs
— Executed at compile time

57



Another view of local
optimization
e |In local optimization, we want to reason

about some property of the runtime
behavior of the program

e Could we run the program and just watch
what happens?

e ldea: Redefine the semantics of our
programming language to give us
information about our analysis

58



Properties of local analysis

e The only way to find out what a program will
actually doistorunit

e Problems:

— The program might not terminate

— The program might have some behavior we didn't
see when we ran it on a particular input

e However, this is not a problem inside a basic
block

— Basic blocks contain no loops
— There is only one path through the basic block

59



Assigning new semantics

Example: Available Expressions

Redefine the statement a =b + ¢ to mean
“a now holds the value of b + ¢, and any
variable holding the value a is now invalid”

Run the program assuming these new
semantics

Treat the optimizer as an interpreter for
these new semantics

60



Theory to the rescue

e Building up all of the machinery to design this
analysis was tricky

e The key ideas, however, are mostly independent of

the analysis:
— We need to be able to compute functions describing
the behavior of each statement

— We need to be able to merge several subcomputations

together
— We need an initial value for all of the basic blocks

e There is a beautiful formalism that captures many
of these properties

61



Join semilattices

A join semilattice is a ordering defined on a set of
elements

Any two elements have some join that is the smallest
element larger than both elements

There is a unique bottom element, which is smaller
than all other elements

Intuitively:

— The join of two elements represents combining information
from two elements by an overapproximation

The bottom element represents “no information yet” or
“the least conservative possible answer”
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Join semilattice for liveness

{a, b, c}

/T\

{a, b}

{a, c}

{b, c}

{b}

{}

— Bottom I
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What is the join of -
{a, b, c}

b} and {c}?

/T\

{a, b}

{a, c}

{b, c}

{b}

{}




What is the join of -
{a, b, c}

b} and {c}?

{a, b}

{a, c}

{b}

{}




What is the j%ci?b} and {a,c}?

/T\

{a, b} {a, c} {b, c}

{a {b} c}

{}




What is the join of {b} and {a,c}?

T

{a, b} {a, c} {b, c}

{a {b} c}

{}




What is the join of {a} and {a,b}?

/{a,bc}N
{a, b} {a, c} {b, c}

{a {b} c}

{}




What is the join of {a} and {a,b}?

{a, b, c}

{a, c} {b, c}

{a {b} c}

{}




Formal definitions

A join semilattice is a pair (V, LI), where
V is a domain of elements

|| is a join operator that is

— commutative: x LIy =y L] X

— associative: (x Lly) Llz=x Ll (y LI 2)

— idempotent: x | X = x

If x L]y =2z, we say that z is the join

or (least upper bound) of xand y

Every join semilattice has a bottom element
denoted L such that L || x = x for all x
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Join semilattices and ordering

{a, b, c}

/T\

{a, b}

{a, c}

{b, c}

{b}

{}

Greater

Lower
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Join semilattices and ordering

{a, b, c}

/T\

{a, b}

{a, c}

Least precise

{b, c}

{b}

{}

Most precise
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Join semilattices and orderings

e Every join semilattice (V, LI) induces an
ordering relationship = over its elements
e DefinexCyiffxJy=y
e Need to prove
— Reflexivity: x = x
— Antisymmetry: If xCyandyCZ x, thenx =y
— Transitivity: f xCyandyC z, thenxC z
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An example join semilattice

The set of natural numbers and the max function
ldempotent
— max{a, a}=a
Commutative
— max{a, b} = max{b, a}
Associative
— max{a, max{b, c}} = max{max{a, b}, c}
Bottom element is O:
— max{0, a} = a
What is the ordering over these elements?
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A join semilattice for liveness

Sets of live variables and the set union operation
ldempotent:
- XxXUx=x
Commutative:
- xUy=yUx
Associative:
- (xUy)Uz=xU(yUz)
Bottom element:
— The empty set: @ U x = X
What is the ordering over these elements?
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Semilattices and program
analysis

Semilattices naturally solve many of the
problems we encounter in global analysis

How do we combine information from
multiple basic blocks?

What value do we give to basic blocks we
haven't seen yet?

How do we know that the algorithm always
terminates?
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Semilattices and program
analysis

Semilattices naturally solve many of the problems
we encounter in global analysis

How do we combine information from multiple
basic blocks?

— Take the join of all information from those blocks

What value do we give to basic blocks we haven't
seen yet?

— Use the bottom element

How do we know that the algorithm always
terminates?

— Actually, we still don't! More on that later
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Semilattices and program
analysis

Semilattices naturally solve many of the problems
we encounter in global analysis

How do we combine information from multiple
basic blocks?

— Take the join of all information from those blocks

What value do we give to basic blocks we haven't
seen yet?

— Use the bottom element

How do we know that the algorithm always
terminates?

— Actually, we still don't! More on that later
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A general framework

e Aglobal analysisis a tuple (D, V, LI, F, I), where

— D is a direction (forward or backward)

e The order to visit statements within a basic block, not the
order in which to visit the basic blocks

— Vis a set of values

— |l is a join operator over those values
— F is a set of transfer functions f: V—V
— | is an initial value

e The only difference from local analysis is the
introduction of the join operator
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Running global analyses

Assume that (D, V, LI, F, I) is a forward analysis
Set OUT[s] = L for all statements s
Set OUT[entry] = |

Repeat until no values change:

— For each statement s with predecessors

Py, Py - s Py
e Set IN[s] = OUT[p,] LI OUT[p,] LI ... LI OUT[p,,]
e Set OUT[s] = f, (IN[s])

The order of this iteration does not matter
— This is sometimes called chaotic iteration
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For comparison

Set OUT[s] = L for all
statements s

Set OUT[entry] =1

Repeat until no values
change:

— For each statement s
with predecessors
Py, Py s Py
e Set IN[s] = OUT[p,] L|
OUT[p,] LI ... LI OUT[p,]
e Set OUT(s] =f, (IN[s])

e Set IN[s] ={} for all
statements s

e Set OUT[exit] = the set of
variables known to be live
on exit

e Repeat until no values
change:

— For each statement s of the
form a=b+c:

e Set OUT([s] = set union of IN[x]
for each successor x of s

e Set IN[s] = (OUT[s]-{a}) U {b,c}
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The dataflow framework

e This form of analysis is called the dataflow
framework

e Can be used to easily prove an analysis is
sound

e With certain restrictions, can be used to
prove that an analysis eventually
terminates

— Again, more on that later
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Global constant propagation

e Constant propagation is an optimization
that replaces each variable that is known to
be a constant value with that constant

 An elegant example of the dataflow
framework

&3



Global constant propagation

entry X = 6;
A
y = X; z =y
\/

W = X;

|

z = X,

L
exit x = 4;
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Global constant propagation

entry

> x

6

exit

.

o]

N

X
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Global constant propagation

entry

> x =

6

exit

)
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Constant propagation analysis

e |In order to do a constant propagation, we need to
track what values might be assigned to a variable at

each program point
e Every variable will either

Never have a value assigned to it,

Have a single constant value assigned to it,

Have two or more constant values assigned to it, or
Have a known non-constant value.

Our analysis will propagate this information
throughout a CFG to identify locations where a value is
constant
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Properties of constant
propagation

e For now, consider just some single variable x

e At each pointin the program, we know one of three

things about the value of x:

— X is definitely not a constant, since it's been assigned two
values or assigned a value that we know isn't a constant

— X is definitely a constant and has value k
— We have never seen a value for x
e Note that the first and last of these are not the same!

— The first one means that there may be a way for x to have

multiple values
— The last one means that x never had a value at all
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Defining a join operator

The join of any two different constants is Not-a-Constant

— (If the variable might have two different values on entry to a
statement, it cannot be a constant)

The join of Not a Constant and any other value is Not-a-
Constant

— (If on some path the value is known not to be a constant, then on
entry to a statement its value can't possibly be a constant)

The join of Undefined and any other value is that other value

— (If x has no value on some path and does have a value on some
other path, we can just pretend it always had the assigned value)
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A semilattice for constant propagation

e One possible semilattice for this analysis is
shown here (for each variable):

Not-a-constant

-2 -1 0 2

Undefined

f

The lattice 1s infinitely wide
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A semilattice for constant propagation

e One possible semilattice for this analysis is
shown here (for each variable):

Not-a-constant

T

Undefined

* Note:
* The join of any two different constants is Not-a-Constant
* The join of Not a Constant and any other value is Not-a-Constant
* The join of Undefined and any other value is that other value



Global constant propagation

entry

exit

»x = 6;

Z = X;
Undefined

x = 4;
Undefined
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Global constant propagation

entry o .
Undefined X = 6f
Undef;ggg\\\\\\\\*
y = x; z =Y/
x=Undefined Undefined Undefined
y=Undefined e
z=Undefined
w=Undefined w =X,
Undefined
Z = X;
Undefined
exit < X = 4;
Undefined
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Global constant propagation

entry o _
Undefined x = 6;
Undefiggg\\\\\\\\*
Y = X, zZ =Y,
Undefined Undefined
‘\\\\\\\\\\*4”//’//’//’,/,,
W = X;
Undefined
Z = X;
Undefined
exit < x = 4;
Undefined
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Global constant propagation

Undefined

entr
Y P x = 6;

Undefined

Undefined

‘\\\\\\\\\\\\>

Y = X, zZ =Y,
Undefined Undefined

iped | 0 Undef

W = X;
Undefined

Z = X;
Undefined

exit < x = 4;
Undefined




Global constant propagation

entry

Undefined

>

Undefined
X = 6;

X = 6, y=zZ=w=l

Y = X,
Undefined

zZ =Y,
Undefined

iped | 0 Undef

exit

W = X;
Undefined

Z = X;
Undefined

x = 4;
Undefined
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Global constant propagation

entry

Undefined

>

Undefined
X = 6;

X = 6, y=zZ=w=l

4//’/’///////’—\\\\\\\\\\\>

Y = X,
Undefined

zZ =Y,
Undefined

ped | \Undef

exit

W = X;
Undefined

Z = X;
Undefined

x = 4;
Undefined
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Global constant propagation

Undefined
entry Mg = 6

Undefined x =
X =6

> 4//”///////,‘\\\\\\\\\\\*

Y = X, zZ =Y,
Undefined Undefined

ped | \Undef

W = X;
Undefined

Z = X;
Undefined

exit < x = 4;
Undefined




Global constant propagation

entry Unfegfned

Undefined x =
X =6

4//”///////,‘\\\\\\\\\\\*

y = X; zZ =Y,
X=6,vy=6 Undefined

W = X;
Undefined

Z = X;
Undefined

exit < x = 4;
Undefined




Global constant propagation

entry Undefined
. > x = 6:
Undefined ¢
/\
xX=6
Yy = Xy zZ =Y,
xX=6,y=6 Undefined
‘\\\\\\\\\\*4/’/////’//,,/,,
w = X\
Undefined \\\\\\\\\ET\
y=Undefined
z =%, gives what?
Undefined
exit < x = 4;
Undefined
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Global constant propagation

entry

Undefined

P —6;

x_
X =6

Undefined

4//”///////,‘\\\\\\\\\\\*

exit

zZ =Y,
Undefined

x=6,y=6
W = X;
Undefined

Z = X;
Undefined

x = 4;
Undefined
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Global constant propagation

entry

Undefined

P —6;

x_
X =6

Undefined

4//”///////,‘\\\\\\\\\\\*

exit

zZ =Y,
Undefined

x=6,y=6
W = X;
Undefined

Z = X;
Undefined

x = 4;
Undefined
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Global constant propagation

entry

Undefined

P —6;

= 6

X
X

Undefined

4//”///////,‘\\\\\\\\\\\*

exit

zZ =Y,
Undefined

x=6,y=6
W = X;
X=y=w=6

Z = X;
Undefined

x = 4;
Undefined
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Global constant propagation

entry

Undefined

P —6;

= 6

X
X

Undefined

4//”///////,‘\\\\\\\\\\\*

exit

zZ =Y,
Undefined

x=6,y=6
w = X;
X=y=w=6

v

Z = X;
Undefined

x = 4;
Undefined
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Global constant propagation

entry

Undefined

P —6;

x_
X =6

Undefined

4//”///////,‘\\\\\\\\\\\*

exit

zZ =Y,
Undefined

x=6,y=6
w = X;
X=y=w=6

v

X=y=w=6
Z = X;
Undefined

x = 4;
Undefined
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Global constant propagation

entry

Undefined

P —6;

x_
X =6

Undefined

4//”///////,‘\\\\\\\\\\\*

exit

zZ =Y,
Undefined

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=2z=6

v

x = 4;
Undefined

106



Global constant propagation

entry

Undefined

P —6;

x_
X =6

Undefined

4//”///////,‘\\\\\\\\\\\*

exit

zZ =Y,
Undefined

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=2z=6

v

x = 4;
Undefined
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Global constant propagation

entry

Undefined

Undefined

P —6;

X =
X =6

4//”///////,‘\\\\\\\\\\\*

exit

xX=6,y=6
W = X;
X=y=w=6

v

X=y=w=6
zZ = X;
X=y=w=2z=6

v

X=y=w=2z=6
x = 4;
Undefined

z =Y,
Undefined
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Global constant propagation

entry

Undefined

Undefined
=6;
= 6

>

X
X

4//”///////,‘\\\\\\\\\\\*

xX=6,y=6
w = X;
x=y=jf6
X=y=w=6

zZ = X;
X=y=w=z=6

v

zZ =Y,
Undefined

X=y=Ww=2z=6

exit

< x = 4;

x=4, y=w=z=6
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Global constant propagation

entry

Undefined

Undefined
=6;
= 6

>

X
X

4//”///////,‘\\\\\\\\\\\*

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=z=6

z =Y,
Undefined

X=y=w=2z= 6

exit

x=4, y=w=z=6
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Global constant propagation

entry

Undefined

Undefined
X = 6;
X =6

>

4//”///////,‘\\\\\\\\\\\*

X=6 X = 6
y = x; z =Y;
X=6,v=6 Undefined

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=z=6

X=y=w=2z= 6

exit

x=4, y=w=z=6
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Global constant propagation

entry

Undefined

Undefined
X = 6;
X =6

>

4//”///////,‘\\\\\\\\\\\*

X=6 X = 6
y = x; z =Y;
X=6,v=6 Undefined

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=z=6

X=y=w=2z= 6

exit

x=4, y=w=z=6
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Global constant propagation

entry
Undefined

Undefined

=6;
= 6

X
X

4//”///////,‘\\\\\\\\\\\*

exit

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;
X=y=w=z=6

X=y=w=2z= 6

= 4;

x=4, y=w=z=6
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Global constant propagation

entry Undefined
. »x = 6;
Undefined
/\
X=6 X = 6
Y = X, 2 =Y
xX=6,y=6 X =6
L ——e—
x=6,y=6
W = X;
x=y=1,i=6
— X=6 | | x=4 gives
Ty <« —1what?
x:yz\',i:zzs
x:y:w=z=6
exit < x = 4;
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Global constant propagation

entry Undefined
. > x = 6:
Undefined ’
/\
X=6 = 6
V = X; =Yy
X=6,y= = 6
‘\\\\\\\\\\*4/’//’//’//”/,,
x=6,y=6
W = X;
x:y:v&:G
y=w=6, X=T
Z = X;
X=y=w=2z=6
x:y:w:z:G
exit < x = 4;

x=4, y=w=z=6
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Global constant propagation

Undefined
6;

entry
Undefined x
x

6

o)

N
nn
o) K

exit < x = 4;

x=4, y:w=z=6 116




Global constant propagation

Undefined
6;

entry
Undefined x
x

6

o)

N
nn
o) K

xX=6,y=6
w = X;
x=y=jf6
y=w=6
zZ = X;
y=w=i

X=y=Ww=2z=6
exit < x = 4;

x=4, y=w=z=6 17




Global constant propagation

Undefined
6;

entry
Undefined x
X

6

(o))}

N
nn
o) K

exit < x = 4;

x=4 ’ y=w=6 118




Global constant propagation

entry Undefined
Undefined x = 6;

X =6

o)

N
nn
o) K

xX=6,y=6

w = X;
. X=yV=w=6

Global analysis T

reached fixpoint y=w=6

Z = X;

y=w=6

y=w=6
exit < x =

x=4, y=w=6 119




Global constant propagation

Undefined

entr
Y 6

Undefined x
X 6

o)

N
nn
o) K

exit < x = 4;

Y=W= 6 120




Global constant propagation

Undefined

entr
Y 6

Undefined x
X 6

(o))}

N
nn
o) K

exit < x = 4;

Y=W= 6 121




Dataflow for constant
propagation

Direction: Forward
Semilattice: Vars— {Undefined, 0, 1, -1, 2, -2, ...,
Not-a-Constant}

— Join mapping for variables point-wise
{x—~1,y~1,z~1} || {x~1,y~2,z—~Not-a-Constant} =
{x—~1,y—~Not-a-Constant,z—~Not-a-Constant}

Transfer functions:

- f (V) =V]| ., (update V by mapping x to k)

— focainlV) = VI, Notea-constant (@SSign Not-a-Constant)

Initial value: x is Undefined

— (When might we use some other value?)
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Proving termination

e Qur algorithm for running these analyses
continuously loops until no changes are
detected

e Given this, how do we know the analyses
will eventually terminate?

— In general, we don‘t

123



Terminates?
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Liveness Analysis

e Avariable is live at a point in a program if
later in the program its value will be read
before it is written to again
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Join semilattice definition

A join semilattice is a pair (V, LI), where
V is a domain of elements

|| is a join operator that is

— commutative: x LIy =y L] X

— associative: (x Lly) Llz=x Ll (y LI 2)

— idempotent: x | X = x

If x L]y =2z, we say that z is the join
or (Least Upper Bound) of x and y

Every join semilattice has a bottom element
denoted L such that L || x = x for all x

126



Partial ordering induced by join

e Every join semilattice (V, LI) induces an
ordering relationship = over its elements

 DefinexCyiffx | Jy=y

e Need to prove
— Reflexivity: x = x
— Antisymmetry: If x EyandyE x, thenx =y
— Transitivity: f xEyandy = z, then x = z
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A join semilattice for liveness

Sets of live variables and the set union operation
ldempotent:
- XxXUx=x
Commutative:
- xUy=yUx
Associative:
- (xUy)Uz=xU(yUz)
Bottom element:
— The empty set: @ U x = X
Ordering over elements = subset relation

128



Join semilattice example for liveness

{a, b, c}

/T\

{a, b}

{a, c}

{b, c}

{b}

{}

— Bottom I
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Dataflow framework

e Aglobal analysisis atuple (D,V, L, F, 1),
where

— D is a direction (forward or backward)

e The order to visit statements within a basic block,
NOT the order in which to visit the basic blocks

— V is a set of values (sometimes called domain)
— |l is a join operator over those values

— F is a set of transfer functions f,: V—V
(for every statement s)

— | is an initial value

130



Running global analyses

Assume that (D, V, LI, F, 1) is a forward analysis

For every statement s maintain values before - IN[s] - and after
- OUT([s]

Set OUT[s] = L for all statements s

Set OUT[entry] =1

Repeat until no values change:

— For each statement s with predecessors

PRED[S]={p1, p2; AR pn}
e SetIN[s] = OUT[p,] LI OUT[p,] LI ... LI OUT[p,]
e Set OUT[s] = f((IN[s])

The order of this iteration does not matter
— Chaotic iteration

131



Proving termination

e Qur algorithm for running these analyses
continuously loops until no changes are
detected

e Problem: how do we know the analyses will
eventually terminate?

132



A non-terminating analysis

The following analysis will loop infinitely on
any CFG containing a loop:

Direction: Forward
Domain: N
Join operator: max

Transfer function: fln)=n+1
Initial value: O

133



A non-terminating analysis

start

134



Initialization

135



Fixed-point iteration

start

136



Choose a block

137



Ilteration 1

start

>
Ol O©
!

end
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Ilteration 1

start

— || O

end
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Choose a block

start

— || O

end

140



Ilteration 2

start

— || O

end
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Ilteration 2
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Ilteration 2

start

O || —

end
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Choose a block

start

O || —

end

144



Ilteration 3

start

O || —

end
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Ilteration 3

start

(O

O ||

end
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Ilteration 3
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Why doesn’t this terminate?

Values can increase without bound

Note that “increase” refers to the lattice
ordering, not the ordering on the natural
numbers

The height of a semilattice is the length of the
longest increasing sequence in that semilattice

The dataflow framework is not guaranteed to
terminate for semilattices of infinite height

Note that a semilattice can be infinitely large
but have finite height

— e.g. constant propagation

148



Height of a lattice

An increasing chain is a sequence of elements
lCa,Ca, = .. = a,

— The length of such a chain is k

The height of a lattice is the length of the maximal
increasing chain

For liveness with n program variables:
- {tc{vicivyv b v,V )

For available expressions it is the number of
expressions of the form a=b op ¢

— For n program variables and m operator types:
m-n3
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Another non-terminating
analysis

e This analysis works on a finite-height
semilattice, but will not terminate on
certain CFGs:

e Direction: Forward
e Domain: Boolean values true and false

e Join operator: Logical OR
e Transfer function: Logical NOT
e |nitial value: £false
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A non-terminating analysis

start

151



Initialization

152



Fixed-point iteration

start
fal

153



Choose a block
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Ilteration 1

155



Ilteration 1
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Ilteration 2

start
fal

true
X =Yy

end
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Ilteration 2
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Ilteration 3

159



Ilteration 3

start
fal

false
X =Y

end

160



Why doesn’t it terminate?

e Values can loop indefinitely T

* Intuitively, the join operator keeps pulling [, ;]
values up e

e If the transfer function can keep pushing @}ﬁ

values back down again, then the values
might cycle forever

fqls‘
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Why doesn’t it terminate?

Values can loop indefinitely

Intuitively, the join operator keeps pulling
values up

If the transfer function can keep pushing
values back down again, then the values
might cycle forever

How can we fix this?

fals‘
N\
@

fgls‘
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Monotone transfer functions

A transfer function f is monotone iff
if x Zy, then f(x) = f(y)

Intuitively, if you know less information about a
program point, you can't “gain back” more
information about that program point

Many transfer functions are monotone, including
those for liveness and constant propagation

Note: Monotonicity does not mean that
X C f(x)

— (This is a different property called extensivity)
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Liveness and monotonicity

A transfer function f is monotone iff

if x Z vy, then f(x) = f(y)
Recall our transfer function fora=b +cis
—fazp+ V) =(V—{a}) Uib, c}
Recall that our join operator is set union

and induces an ordering relationship
XCVYiff X &Y

Is this monotone?
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Is constant propagation monotone?

e A transfer function fis monotone iff
if x =y, then f(x) = f(y)

e Recall our transfer functions
- fx:k(v) = V | x—k

- x=a+b(V) = V|Xn—>Not-a-Constant (aSSIQn Not-a-
Constant)

(update V by mapping x to k)

¢ |s this monotone?

Not—-a-constant

T

Undefined 165




The grand result

e Theorem: A dataflow analysis with a finite-

height semilattice and family of monotone
transfer functions always terminates

e Proof sketch:

— The join operator can only bring values up

— Transfer functions can never lower values back

down below where they were in the past
(monotonicity)

— Values cannot increase indefinitely (finite height)
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An “optimality” result

e A transfer function fis distributive if

fla LI b) = fla) LI f(b)

for every domain elements a and b

e |f all transfer functions are distributive then
the fixed-point solution is the solution that
would be computed by joining results from all
(potentially infinite) control-flow paths

— Join over all paths
e Optimal if we ignore program conditions
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An “optimality” result

A transfer function f is distributive if

fla LI b) = fla) LI f(b)

for every domain elements a and b

If all transfer functions are distributive then the
fixed-point solution is equal to the solution
computed by joining results from all (potentially
infinite) control-flow paths

— Join over all paths

Optimal if we pretend all control-flow paths can be
executed by the program

Which analyses use distributive functions?
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Loop optimizations

Most of a program’s computations are done inside
loops

— Focus optimizations effort on loops
The optimizations we’ve seen so far are independent of
the control structure
Some optimizations are specialized to loops

— Loop-invariant code motion

— (Strength reduction via induction variables)

Require another type of analysis to find out where
expressions get their values from

— Reaching definitions

e (Also useful for improving register allocation)

169



Loop invariant computation

start [

170



Loop invariant computation

t*4 and y+z
have same value on
each iteration

t S

end

start [

Sy

= Il N
o

4™+ e h<
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start

Code hoisting

< N =<

¥ o .

end
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What reasoning did we use?

start

y=...
t=...

Z = ...

Both t and z are
defined only outside
of Joop

constants are trivially
loop-invariant

y is defined inside loop
but it is loop invariant

since t*4 is loop-invariant

end

173



What about now?

start

X<Yy+27

i\‘

yotra | _—

Now t is not loop-invariant
and soaret*4 andy

X=x+1 end

t=t+1
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Loop-invariant code motion

d:t=a,0pa,
— dis a program location

a, op a, loop-invariant (for a loop L) if computes the
same value in each iteration

— Hard to know in general
Conservative approximation
— Each g, is a constant, or
— All definitions of g, that reach d are outside L, or

— Only one definition of of a, reaches d, and is loop-invariant
itself

Transformation: hoist the loop-invariant code outside
of the loop
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Reaching definitions analysis

e Adefinition d: t=... reaches a program location if there is a
path from the definition to the program location, along which
the defined variable is never redefined
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Reaching definitions analysis

A definition d: t = ... reaches a program location if there is a
path from the definition to the program location, along which
the defined variable is never redefined

Direction: Forward
Domain: sets of program locations that are definitions
Join operator: union

Transfer function:
f4: a=b op (RD) = (RD - defs(a)) U {d}
fd: not—a-def(RD) =RD

— Where defs(a) is the set of locations defining a (statements of the
form a=...)

Initial value: {}
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Reaching definitions analysis

start

dl:y=...
d2:t=...

d3:z=...

dd:y=t*4

dd:x<y+z

#

end

l

do6: x=x+1

N
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Reaching definitions analysis

start

dl:y=...
d2:t=...

d3:z=...

dd:y=t*4

dd:x<y+z

#

end

l

dS:x=x+1

N
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Initialization

dl:y=...

start

U

—»d2:t= ...

d3:z=...
{}

dd:y=t*4

dd:x<y+z end

U

l

dS:x=x+1

¥
N
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lteration 1

#
dl:y=...

start Ly @0it=

U

d3:z=...
{

dd:y=t*4

dd:x<y+z end

U

l

dS:x=x+1

¥
N
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lteration 1

#
dl:y=...

dl;
start Ly @0it=

U {d1, d2}
d3:z=...
{d1, d2, d3}

dd:y=t*4

dd:x<y+z end

U

l

dS:x=x+1

¥
N
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Ilteration 2

#
dl:y=...

dl}

start Ly @0it=

U {d1, d2}
d3:z=...
{d1, d2, d3}

dd:y=t*4

end
x<y+tz

U

l

dS:x=x+1

¥
N
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Ilteration 2

#
dl:y=...

d1}
S s P

& {d1, d2}
d3:z=...
{d1, d2, d3}

{d1, d2, d3}
dd:y=t*4
S0
x<y+tz end
{1
ds:x=x+1

U
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Ilteration 2

#
dl:y=...

{dl}
0 —»{ d2:t= ...
{d1, d2}

start

d3:z=...
{d1, d2, d3}

{d1, d2, d3}

dd:y=t*4

{d2, d3, d4}
X<y-+tz

U

l

ds:x=x+1

U

g0

end
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Ilteration 2

#
dl:y=...

{dl}
0 —»{ d2:t= ...
{d1, d2}

start

d3:z=...
{d1, d2, d3}

{d1, d2, d3}
dd:y=t*4
{d2, d3, d4}
Xx<y-+z
(d2, d3, d4}

l

ds:x=x+1

U

g0

end
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Ilteration 3

#
dl:y=...

{dl}
start 1yl qt=
& (d1, d2}

d3:z=...
{d1, d2, d3}

{d1, d2, d3}
dd:y=t*4
(d2, d3, d4} >

Xx<y+z
(d2, 3, d4}

l

{d2, d3, d4}
ds:x=x+1

U

#

end
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start

U

—»d2:t= ...

lteration 3

#
dl:y=...
1d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

{d1, d2, d3}
d4:y=t*4

(d2, d3, d4}
Xx<y+z
(d2, d3, d4}

l

{d2, d3, d4}
ds:x=x+1
{d2, d3, d4, d5}

#

end
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start

U

—»d2:t= ...

Ilteration 4

#
dl:y=...
1d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

{d1, d2, d3}
d4:y=t*4

(d2, d3, d4}
Xx<y-+z
(d2, d3, d4}

l

{d2, d3, d4}
ds:x=x+1
{d2, d3, d4, d5}

#

end
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start

U

—»d2:t= ...

Ilteration 4

#
dl:y=...
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

{dl1, d2, d3, d4, d5}
dd:y=t*4

(d2, d3, d4}
Xx<y+tz
{d2, d3, d4}

l

{d2, d3, d4}
dS:x=x+1
{d2, d3, d4, d5}

#

end
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start

U

—»d2:t= ...

Ilteration 4

#
dl:y=...
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

{dl1, d2, d3, d4, d5}
dd:y=t*4

(d2, d3, d4, d5}
Xx<y+tz
(d2, d3, d4, d5}

l

{d2, d3, d4}
dS:x=x+1
{d2, d3, d4, d5}

#

end
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Ilteration 5

i}
dl:y=...

i
o Az
(d1, d2;

start

d3:z=...
{d1, d2, d3}

{d1, d2, d3, d4, d5}

d4d:y=t*4
{d2, d3, d4, d5} ,{d2,dihg4,d5}
Xx<y+tz

{d2, d3, d4, ds}

l

(d2, d3, d4}
dS:x=x+1
{d2, d3, d4, d5}
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Ilteration 6

i}
dl:y=...

i
o Az
(d1, d2;

start

d3:z=...
{d1, d2, d3}

{d1, d2, d3, d4, d5}

d4d:y=t*4
{d2, d3, d4, d5} >{d2,dzhg4,d5}
Xx<y+tz

{d2, d3, d4, ds}

l

{d2, d3, d4, d5}
dS:x=x+1
{d2, d3, d4, d5}
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Which expressions are loop invariant?

y is defined only in d4 —inside
of loop but depends on t and
4, both loop-invariant

{}
dl:y=...
{d1}
St{a}ft L d2:t=...
{d1, d2}
d3:z=...
{d1, d2, d3}

/dz— outside of loo

t is defined only in

.

X is defined only in d5 —
inside of loop so is not a
loop-invariant

(d2, d3, d4, ds}

>

end

4?2,d3,d4,d5}
dS:x=x+1

(d2, 3, d4, ds}

N

N~

z is defined only in
d3 — outside of loop
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Inferring loop-invariant
expressions

For a statement s of the formt=a, op a,

A variable a; is immediately loop-invariant if all
reaching definitions IN[s]={d,,...,d,} for a; are
outside of the loop

LOOP-INV = immediately loop-invariant variables
and constants

LOOP-INV = LOOP-INVU {x | d:x=a;0pa,, disin
the loop, and both a, and a, are in LOOP-INV}

— lterate until fixed-point

An expression is loop-invariant if all operands are
loop-invariants
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Computing LOOP-INV
{}

dl:y=..

{d1}

start | 4ot

{}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4, d5}
dd:y=t*4
{d2, d3, d4, d5}
X<Vy+2z
{d2, d3, d4, d5}

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}

{d2, d3, d4}
end
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Computing LOOP-INV

start

{}

—» d2:t=..

(immediately)
LOOP-INV = {t}

{}
dl:y=..
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

(d1(d2) d3, d4, ds}
dd:y 4

{d2, d3, d4, d5}
X<Vy+2z
{d2, d3, d4, d5}

{d2, d3, d4]
end

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}
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Computing LOOP-INV
{}

start

{}

—» d2:t=..

(immediately)
LOOP-INV = {t, z}

dl:y=..
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4, d5}
dd:yxt*4
{d2 d4,d5}
X<y
{d2, d3, d4, d5}

(d2, d3, d4]

end

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}
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Computing LOOP-INV

start

{}

—» d2:t=..

(immediately)
LOOP-INV = {t, z}

dl:y=..
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4 d5}
d4:y=t*

{d2, d d5}
{d2, d4, d5}

(d2, d3, d4]

end

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}
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Computing LOOP-INV

start

{}

—» d2:t=..

(immediately)
LOOP-INV = {t, z}

{}
dl:y=..
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4, d5}
dd:y=t*4
{d2, d3, d4, d5}
X<Vy+2z
{d2, d3, d4, d5}

(d2, d3, d4]

end

l

{d2, d3, d4(ds)
d5: x 1
{d2, d3, d4, d5)
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Computing LOOP-INV

start

{}

—» d2:t=..

LOOP-INV = {t, z, 4}

di: y{=}
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4, d5}
dd:y=t*4
{d2, d3, d4, d5}
X<Vy+2z
{d2, d3, d4, d5}

{d2, d3, d4]
end

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}
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Computing LOOP-INV
}

start

{}

—» d2:t=..

LOOP-INV = {t, z, 4, y}

{
dl:y=..
{d1}

{d1, d2}
d3:z=...
{d1, d2, d3}

=

{d1, d2, d3, d4, d5}
dd:y=t*4
{d2, d3, d4, d5}
X<Vy+2z
{d2, d3, d4, d5}

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}

(d2, d3, d4]

end
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Induction variables

jis alinear function of
the induction variable
with multiplier 4

whi (1 < x) {
j=a+ 4 * 3

i is incremented by a loop-
invariant expression on each
iteration — this is called an
induction variable
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Strength-reduction

Prepare initial

alue N_

j=a+4*i

whi]_-e (J'_- <%Ir{crement by
J = 3 + 4 |multiplier

a[jl =3
i=1i4+4+1
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Summary of optimizations

Available Expressions | Common-subexpression elimination
Copy Propagation

Constant Propagation | Constant folding

Live Variables Dead code elimination

Reaching Definitions |Loop-invariant code motion
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Compilation

0368-3133 2014/15a
Lecture 12
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aaaaaaaaaaaaa

Compiling Object-Oriented Programs
Noam Rinetzky



Stages of compilation

Lexical Syntax Context Portable/
Source Analysis Analysis Analysis Retargetable
code Parsing code generation
(program)
= K
S =
)
5 7 5 3
- c << n
Y +
A
[e) —
- V)
<

IR

Assembly

Target code

(executable)
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Compilation =» Execution

Lexical Syntax Context Portable/
SOU rce Analysis Analysis Analysis Retargetable
code Parsing code generation
(program)
=
©
Y
)
|_
5 @ 2
C
= Q
X
o
|_

| -
S
S
<<
i
©
o

&

>
)

Object File
Executable File

Executing
program

arget code

2xecutable)

image

Runtime System
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ntax
alysis

rsing

Compilation

=» Execution

Context Portable/ Code Linking Loading .
Analysis Retargetable Generation Executi ng
code generation program
% w
g kS I o £
T ] v
— i Q Sh g
2 f? 3 5 = I
S
+ 2 5 o 5
— Ko O S
wn (@) % [
< L

“Hello World”
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ntax
alysis

rsing

OO0: Compilation =» Execution

Context Portable/ Code Linking Loading 2
Analysis Retargetable Generation EXeCUtlng
code generation program
% w
g kS I o £
T ] 7
— i Q Sh g
2 f? 3 5 = I
S
+ 2 5 o B
— Ko O S
wn (@) 3 [
< L

“Hello World”
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Runtime Environment

Mediates between the OS and the programming language
Hides details of the machine from the programmer

— Ranges from simple support functions all the way to a full-fledged
virtual machine

Handles common tasks
— Runtime stack (activation records)
— Memory management

Runtime type information
— Method invocation

— Type conversions
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Memory Layout

stack stack grows down
(towards lower addresses)
Heap
T heap grows up
(towards higher
addresses)
static data

code
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Memory Layout

stack stack grows down
_ (towards lower addresses)
Heap
T heap grows up
Runtime type information (towards higher
addresses)
static data
code
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Object Oriented Programs

Simula, Smalltalk, Modula 3, C++, Java, C#, Python

Objects (usually of type called class)

— Code
— Data

Naturally supports Abstract Data Type
implementations

Information hiding
Evolution & reusability
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A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
position = position + x ; Car ¢ = new Car();
} Vehicle v = c;
} c.move(60) ;
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }

POS = posS + X;
Y
Y

class Car extends Vehicle {
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pos - V.pos);
else
this.move (10) ;

} 215



A Simple Example

class Vehicle extends object {

void move(int x) {
position = position + x ;
}
}

class Truck extends Vehicle {
void move(int x){ }
if (x < 55) }
pos = pos + X;
Y
ki

class Car extends Vehicle {
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pos - V.pos);
else
this.move (10) ;

class main extends object {
int pos = 10; void main() {

Truck t new Truck();
Car c new Car () ;
Vehicle v C;
c.move (60) ;
v.move(70);
c.await(t);
pos =10

t —

Truck
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A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
pos = pos + X ;
} Vehicle v = c;
} c.move(60) ;
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move(pos - Vv.pos); position=10
else c .
this.move (10) ; passengers=0

} Car 217




A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
pos = pos + X ; Car ¢ = new Car();
}
} c.move(60) ;
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move (posS - V.pos); position=10
else
this.move (10); V,C — | passengers=0

) Car




A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
pos = pos + X; Car ¢ = new Car();
} Vehicle v = c;
) c.move (60) ;
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move (posS - V.pos); position=70
else
this.move (10); V,C — | passengers=0

) Car




A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
position = position + x ; Car ¢ = new Car();
} Vehicle v = c;
) c.move(60);
v.move(/70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move (posS - V.pos); position=140
else
this.move (10); V,C — passengers=0

) Car 220




A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
position = position + x ; Car ¢ = new Car();
} Vehicle v = c;
) c.move(60);
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move (posS - V.pos); position=140
else
this.move (10); V,C — passengers=0

) Car 221




A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
position = position + x ; Car ¢ = new Car();
} Vehicle v = c;
) c.move(60);
v.move(70);
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }
pos = pos + X;
}
ki pos=10

class Car extends Vehicle {

int passengers = 0; Truck

void await(vehicle v){
if (v.pos < pos)

v.move (posS - V.pos); position=140
else
this.move (10); V,C — | passengers=0

) Car 222




Translation into C (Vehicle)

class Vehicle extends object { struct Vehicle {
int pos = 10; int pos,;
void move(int x) { }
pos = pos + X ;
}

}
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Translation into C (Vehicle)

class Vehicle extends object { typedef struct Vehicle {
int pos = 10; int pos,;
void move(int x) { } Ve;
pos = pos + X ;
}

}
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Translation into C (Vehicle)

class Vehicle extends object {

typedef struct Vehicle {
int pos = 10;

int pos;
void move(int x) { } Ve;
pos = pos + X ;
} void NewVe (Ve *this){
} this—pos = 10;

}

void moveVe (Ve *this, int Xx){
this—pos = this—pos + X;

}
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Translation into C (Truck)

class Truck extends Vehicle { typedef struct Truck {
void move(int x){ int pos;
if (x < 55) Y Tr;
pos = pos + X;
} void NewTr(Tr *this){
} this—pos = 10;
}

void moveTr (Ve *this, int x){
if (x<55)
this—pos = this—pos + Xx;
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Naive Translation into C (Car)

class Car extends Vehicle {
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move (pos - V.pos);
else
this.move(10) ;

typedef struct Car({
int pos;
int passengers,;

} Ca;

void NewCa (Ca *this){
this—pos = 10;
this—passengers = 0;

}

void awaitCa(Ca *this, Ve *v){
if (v—=pos < this—=pos)
moveVe (this—pos - v—=pos)
else
MoveCa(this, 10)
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Naive Translation into C (Main)

class main extends object { void mainMa() {

void main() { Tr *t = malloc(sizeof(Tr));
Truck t = new Truck(); Ca *c = malloc(sizeof(Ca));
Car ¢ = new Car(); Ve *v = (Ve*) c;
Vehicle v = ¢; moveVe (Ve*) c, 60);
c.move(60) ; moveVe (v, 70);
v.move (70); awaitCa(c, (Ve*) t);
C.await(t); }

}
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Naive Translation into C (Main)

class main extends object { void mainMa() {
void main() { Tr *t = malloc(sizeof(Tr));
Truck t = new Truck(); Ca *c = malloc(sizeof(Ca));
Car ¢ = new Car(); Ve *v = (Ve*) c;
Vehicle v = ¢; moveVe (Ve*) c, 60);
c.move(60) ; moveVe (v, 70);
v.move (70); awaitCa(c, (Ve*) t);
c.await(t); }
}
}

void moveCa() ?
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Naive Translation into C (Main)

class main extends object { void mainMa() {
void main() { Tr *t = malloc(sizeof(Tr));
Truck t = new Truck(); Ca *c = malloc(sizeof(Ca));
Car ¢ = new Car(); Ve *v = (Ve*) c;
Vehicle v = ¢; moveVe (Ve*) c, 60);
c.move(60) ; moveVe (v, 70);
v.move (70); awaitCa(c, (Ve*) t);
c.await(t); }
}
}

void moveCa() ?

void moveVe (Ve *this, int x){
this—pos = this—pos + Xx;

}
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Compiling Simple Classes

e Fields are handled as records
e Methods have unique names

class A { Runtime object Compile-Time Table
field al, al m1A
field a2; a2 m2A

method m1() {...}

method m2(int i) {...} void m2A(classA *this, int i) {

// Body of m2 with any object
// field f as this—f
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Compiling Simple Classes

e Fields are handled as records
e Methods have unique names

class A { Runtime object Compile-Time Table
field al, al m1A
field a2; a2 m2A

method m1() {...}

method m2(int i) {...} void m2_A(classA *this, int i) {

// Body of m2 with any object

// field f as this—f
a.m2(5)

m2A(a,5)
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Features of OO languages

Inheritance
Method overriding
Polymorphism
Dynamic binding
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Handling Single Inheritance

e Simple type extension
e Type checking module checks consistency
e Use prefixing to assign fields in a consistent way

class A { class B extends A {
field al; field bl;
field a2; method m3() {..}
method ml() {..} }

method m2() {..}
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Method Overriding

e Redefines functionality
— More specific
— Can access additional fields

class A {
field al;
field a2;
method ml() {..}
method m2() {..}

class B extends A {
field bl;
method m2() {
. bl ..

}
method m3() {..}
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Method Overriding

e Redefines functionality
— More specific
— Can access additional fields

class A { class B extends A {
field al; , , field a3;
field a2; [m2is red@ method m2() {
method ml() {..} . a3 ..
method m2() {..} }

} method m3() {..}
}
[ m?2 is declared and defined
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Method Overriding

e Redefines functionality
e Affects semantic analysis

class A { class B extends A {
field al; field a3;
field a2; method m2() {
method ml() {..} . a3 ..
method m2() {..} }

} method m3() {..}

Runtime object = Compile-Time Table

Runtime object Compile-Time Table a1 mi1A A

al ml1lA A a2 m2A_B
a2 m2A_A bl m3B B
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Method Overriding

e Redefines functionality
e Affects semantic analysis

class A {
field al;
field a2;

method ml() {..}
method m2() {..}

Runtime object Compile-Time Table

al

m1A_A

a2

m2A_A

class B extends A {

field bl;
method m2() {
. bl ..
}
method m3() {..}
}
Runtime object = Compile-Time Table

al mlA A
a2 m2A_ B

o

declared defined F?®




Method Overriding

a.m2(5) // class(a) = A b.m2(5) // class(b) = B
m2A A(a, 5) m2A B(b, 5)
class A { class B extends A {
field al; field bl;
field a2; method m2() {
method ml() {..} .. bl ..
method m2() {..} }
} method m3() {..}
}

Runtime object = Compile-Time Table

Runtime object Compile-Time Table a1 mi1A A

al ml1lA A a2 m2A_B
a2 m2A_A bl m3B_B
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Method Overriding

class A {
field al;
field a2;
method ml() {..}
method m2() {..}

typedef struct {
field al;
field a2;

} A

void mlA_A(A* this){..
void m2A_A(A* this){..}

Runtime object Compile-Time Table

al

m1A_A

a2

m2A_A

Runtime object

class B extends A {

field bl;
method m2() {
.. bl ..
}
method m3() {..}
}
typedef struct {
field al;
field a2;
field bl;
} B;
void m2A B(B* this) {..}
void m3B B(B* this) {..}

Compile-Time Table

al mlA A
a2 m2A_B
bl m3B B
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Method Overriding

-
a.m2(5) // class(a) = A

m2A_A(a, 5)
-

b.m2(5) // class(b) =B
m2A_B(b, 5)

AN

typedef struct {
field al;
field a2;

} A

void mlA_A(A* this){..
void m2A_A(A* this){..}

Runtime object Compile-Time Table

al ml1lA_ A
a2 m2A_A

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(B* this) {..}
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al mlA A
a2 m2A_B
bl m3B B

~
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Abstract Methods

e Declared separately
— Defined in child classes
— E.g., Java abstract classes

e Abstract classes cannot be instantiated

e Handled similarly
e Textbook uses “virtual” for abstract
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Handling Polymorphism

e When a class B extends a class A
— variable of type pointer to A may actually refer to

object of type B

e Upcasting from a subclass to a superclass

e Prefixing guarantees validity

class B *b = ...;

classA *a=b; classA *a = convert_ptr_to B to_ptr_A(b);

Pointer to B

Pointer to A inside B
(also)

al

a2

bl

b1

243



Dynamic Binding

An object (“pointer”) o declared to be of class A can
actually be (“refer”) to a class B

What does ‘0o.m()’” mean?

— Static binding

— Dynamic binding

Depends on the programming language rules

How to implement dynamic binding?
— The invoked function is not known at compile time
— Need to operate on data of the B and A in consistent way
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Conceptual Impl. of Dynamic Binding

class A {
field al;
field a2;
method ml() {..}
method m2() {..}

}

typedef struct {
field al,;
field a2;

A

void mlA_A(A* this){..
void m2A_A(A* this){..}

Runtime object Compile-Time Table

al ml1lA_ A
a2 m2A_A

class B extends A {

field bl;

method m2() {

. a3 ..

}

method m3() {..}
¥

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(B* this) {..}
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al

m1A_A

a2

m2A_B

bl

m3B_B
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Conceptual Impl. of Dynamic Binding

switch(dynamic_type(p)) {

case Dynamic_class_A: m2_A A(p, 3);
case Dynamic_class_B:m2_A B(convert_ptr_to A to ptr_B(p), 3);

}

typedef struct {
field al;
field a2;

} A

void mlA_A(A* this){..
void m2A_A(A* this){..}

Runtime object Compile-Time Table

al ml1lA_ A
a2 m2A_A

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(B* this) {..}
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al mlA A
a2 m2A_B
bl m3B B
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Conceptual Impl. of Dynamic Binding

switch(dynamic_type(p)) !

case Dynamic_class_A: m2_A A(p, 3);
case Dynamic_class_B:m2_A B(convert_ptr_to A to ptr_B(p), 3);

}

typedef struct {
field al;
field a2;

} A

void mlA_A(A* this){..
void m2A_A(A* this){..}

Runtime object Compile-Time Table

al ml1lA_ A
a2 m2A_A

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(B* this) {..}
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al mlA A
a2 m2A_B
bl m3B B
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More efficient implementation

e Apply pointer conversion in sublasses
— Use dispatch table to invoke functions
— Similar to table implementation of case

void m2A_B(classA *this_A) {
Class_B *this = convert_ptr to A _ptr to A B(this_A);
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More efficient implementation

typedef struct { typedef struct {
field al; field al;
field a2; field a2;
}OA; field bl;
} B;

void mlA A(A* this){..}
void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}
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More efficient implementation

typedef struct
field al;
field a2;
A

{

void mlA A(A* this){..}
void m2A A(A* this,

l classA *p; l

Runtime object

int x){..}

>

P

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

(Runtime) Dispatch Table

vtable

al

a2

> m1A_A
m2A_A
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More efficient implementation

typedef struct { typedef struct {
field al; field al;
field a2; field a2;
}OA; field bl;
} B;

void mlA A(A* this){..}
void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

l classA *p; l
Runtime object (Runtime) Dispatch Table Code

P > vtable > m1A > ml1A_A
al m2A > m2A_A

a2
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More efficient implementation

typedef struct {
field al;
field a2;
A

void mlA A(A* this){..}
void m2A A(A* this, int x){..}

l classA *p; l p-m2(3);
Runtime object

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

p—dispatch_table—m2A(p, 3);
(Runtime) Dispatch Table

P > vtable
al
a2

> m1A_A
m2A_A
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More efficient implementation

typedef struct {
field al;
field a2;
A

void mlA A(A* this){..}
void m2A A(A* this, int x){..}

l classB *p; l

Runtime object

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA,
Class_ B *this =
convert ptr_to A to ptr_to B(thisA)

int x){

} "

void m3B_B(B* this){..}

(Runtime) Dispatch Table

P > vtable > m1A_A
al m2A_B
a2 m3B_B
bl
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More efficient implementation

typedef struct {
field al;
field a2;
A

void mlA_A(A* this){..

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA)
}
void m3B_B(B* this){..}
classB *p; p-m2(3);
Runtime object (Runtime) Dispatch Table
P > vtable > m1A_A
al m2A_B
a2 m3B_B
bl
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More efficient implementation

typedef struct { typedef struct {
field al; field al;
field a2; field a2;
}A; field bl;
} B;

void mlA A(A* this){..}
void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

p.m2(3); p—dispatch_table—m2A(g, 3);
Runtime object (Runtime) Dispatch Table
P > vtable > mlA_A
al m2A_B
a2 m3B_B
bl 255




More efficient implementation

typedef struct {
field al;
field a2;
A

void mlA A(A* this){..}
void m2A A(A* this, int x){..}

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA, int x){

Class_ B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}
.conve rt_ptr_to_B_to_ptr_to_A(p)'

p.m2(3); p%dispatch_table%mZA(', 3);
Runtime object (Runtime) Dispatch Table
P > vtable > m1A_A
al m2A_B
a2 m3B_B
bl 256




Multiple Inheritance

class C { class D {
field c1; field di;
field c2;
method ml() {..} method m3() {..}
method m2() {..} method md () {..}
} }

class E extends C, D {
field el;

method m2() {..}

method m4() {..}
method m5() {...}
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Multiple Inheritance

Allows unifying behaviors
But raises semantic difficulties

— Ambiguity of classes
— Repeated inheritance

Hard to implement
— Semantic analysis
— Code generation

e Prefixing no longer work

e Need to generate code for downcasts

Hard to use
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A simple implementation

e Merge dispatch tables of superclases
e Generate code for upcasts and downcasts
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A simple implementation

class C { class D { class E extends C, D {
field cl; field dil; field el;
field c2;
method ml() {..} method m3() {..} method m2() {..}
method m2() {...} method m4() {...} method m4() {..}
} } method m5() {..}
Y
Pointer to Runtime object (Runtime) Dispatch Table
-k . > vtable
- Cinside E B T
al —
m2C_E
. a2
Pointer to —>» m3D_D
- Dinside E > vtable —
m4D _E
al
> m5E_E 260




class C {

field cl;
field c2;
method ml() {..}
method m2() {..}

Pointer to
-E
-Cinside E

Pointer to
-Dinside E

Downcasting (E>C,D)

Runtime object

class D {

field di;

method m3() {..}
method m4(){..}

convert_ptr to E to ptr to C(e) =e;

convert_ptr_to E to ptr_to D(e) = e + sizeof(C);

(Runtime) Dispatch Table

class E extends C,
field el;

method m2() {..}
method m4() {..}
method m5() {..}

a2

> vtable
1 T m1C_C
a
m2C_E
a2
—>» m3D D
> vtable —
m4D _E
al
m5E_E
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class C {

field cl;
field c2;
method ml() {..}
method m2() {..}

Pointer to
-E
-Cinside E

Pointer to
-Dinside E

Runtime object

Upcasting (C,D~>E)

class D {

field di;

method m3() {..}
method m4(){..}

convert_ptr to C to ptr to E(c) =c;

convert_ptr_to D _to_ptr_to_E(d) =d - sizeof(C);

(Runtime) Dispatch Table

class E extends C,
field el;

method m2() {..}
method m4() {..}
method m5() {..}

a2

> vtable
1 T m1C_C
a
m2C_E
a2
—>» m3D D
> vtable —
m4D _E
al
m5E_E
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Multiple Inheritance

class A{
field al;
field a2;
method ml() {..}
method m3() {..}

}

class C extends A { class D extends A {

field cl; field dl;

field c2;

method ml() {..} method m3() {..}

method m2() {..} method m4 () {...}
} }

class E extends C, D {

field el;

method m2() {..}
method md() {..}
method m5() {..}
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Multiple Inheritance

class A{
field al;
field a2;
method ml() {..}
method m3() {..}

}
class C extends A { class D extends A {
field cl; field dl;
field c2;
method ml() {..} method m3() {..}
method m2() {..}
} ¥

class E extends C, D {
field el;

method m2() {..}

method m5() {..}
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Dependent Multiple Inheritance

class A{
field al;
field a2;
method ml() {..}
method m3() {..}

}
class C extends A { class D extends A {
field cl; field dl;
field c2;
method ml() {..} method m3() {..}
method m2() {..}
} }

class E extends C, D {
field el;

method m2() {..}

method m5() {..}
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Dependent Inheritance

e The simple solution does not work
e The positions of nested fields do not agree
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Independent Inheritance

class A{ class C class D class E
field al; extends A{ extends A{ extends C,D{
field a2; field cl; field dil; field el;
method ml() {..} field c2;
method m3(){..} method ml() {..} method m3(){..} method m2() {..}
} method m2(){..}
} } method m5() {..}
Y

Runtime E object

Pointer to RUNt Dicpatch Tabl
_E 3] vtable (Runtime) Dispatch Table
-Cinside E 1
d m1A C
a2 m3A_A
cl m2C_E
c2
Pointer to —> m1A_A
-Dinside E > vtable m3A_D
Al m4D_E
a2 mSE_E
dl
el 267




Implementation

e Use an index table to access fields
e Access offsets indirectly
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Implementation

class A{ class C class D class E
field al; extends A{ extends A{ extends C,D{
field a2; field cl; field dl; field el;
method ml(){..} field c2;
method m3(){..} method ml(){..} method m3() {..} method m2() {..}
} method m2(){..} method m4(){..} method md4 () {..}
} } method m5(){..}
Y

Runtime E object (Runtime) Dispatch Table

vtable

al

Pointer to a2
-E
‘>
-Cinside E cl
c2
vtable

Pointer to
-Dinside E > -
J1 & Index
GlaTalslelo] [ala]z] =

el




Class Descriptors

e Runtime information associated with
iInstances

e Dispatch tables

— Invoked methods
e Index tables
e Shared between instances of the same class

e Can have more (reflection)
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Interface Types

Java supports limited form of multiple inheritance
Interface consists of several methods but no fields

public interface Comparable {
public int compare(Comparable o);

}

A class can implement multiple interfaces
Simpler to implement/understand/use

Implementation: record with 2 pointers:
— A separate dispatch table per interface
— A pointer to the object
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Dynamic Class Loading

Supported by some OO languages (Java)

At compile time

— the actual class of a given object at a given program point
may not be known

Some addresses have to be resolved at runtime

Compiling c.f() when f is dynamically loaded:
— Fetch the class descriptor d at offset 0 from ¢

— Fetch the address of the method-instance f from
( )  offset at d into p

— Jump to the routine at address p (saving return address)
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Other OO Features

e Information hiding
— private/public/protected fields
— Semantic analysis (context handling)

e Testing class membership
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Optimizing OO languages

e Hide additional costs
— Replace dynamic by static binding when possible
— Eliminate runtime checks

— Eliminate dead fields

e Simultaneously generate code for multiple
classesa

e Code space is an issue
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Summary

e OO is a programming/design paradigm
e OO features complicates compilation
— Semantic analysis
— Code generation
— Runtime
— Memory management

e Understanding compilation of OO can be
useful for programmers
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The End



