Compilation

0368-3133 2014/15a3
Lecture 13

Compiling Object-Oriented Programs

Noam Rinetzky

Runtime Environment

" Mediates between the OS and the programming
language
" Hides details of the machine from the programmer

= Ranges from simple support functions all the way to a
full-fledged virtual machine

* Handles common tasks
= Runtime stack (activation records)

= Memory management

= Runtime type information
= Method invocation

= Type conversions

Memory Layout

‘ stack \ l
Heap T

static data

code

Memory Layout

‘ stack \ l
Heap T

Runtime type information

static data

code

Object Oriented Programs

= C++, Java, CH#, Python, ...

= Main abstraction: Objects (usually of type called class)

= Code
= Data

= Naturally supports Abstract Data Type implementations
" Information hiding
= Evolution & reusability

A Simple Example

Object

1

Vehicle

int pos

move(..)

Car

int passengers

move(..)

Truck

await(..)

A Simple Example

class Vehicle extends Object { class main extends Object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck() ;
pos = pos + X ; Car ¢ = new Car();
} Vehicle v = c;
} v.move(60) ;
t.move (70) ;
class Truck extends Vehicle { c.await(t);
void move(int Xx){ }
if (x < 55) }

POS = pos + X;
}
Y

class Car extends Vehicle {
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pos - V.pos);
else
this.move(10) ;

A Simple Example

class Vehicle extends object { class main extends Object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
position = position + x ; Car ¢ = new Car();
} Vehicle v = c;
} v.move(60) ;
t.move(70);
class Truck extends Vehicle { c.await(t);
void move(int X){ }
if (x < 55) }

POS = pos + X;

¥
ki pos=10

class Car extends Vehicle {
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pos - V.pos);
else
this.move (10) ;

A Simple Example

class Vehicle extends object { class main extends Object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
pos = pos + X ;
} Vehicle v = c;
} v.move(60) ;
t.move(70);
class Truck extends Vehicle { c.await(t);
void move(int X){ }
if (x < 55) }

POS = pos + X;

ki
} pos=10
class Car extends Vehicle { t—
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pos - V.pos); pos=10
else C —
this.move (10); passengers=0
ki
Y

A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
pos = poOsS + X ; Car ¢ = new Car();
Y
} v.move (60) ;
t.move(70) ;
class Truck extends Vehicle { c.await(t);
void move(int X){ }
if (x < 55) }

POS = pos + X;

Y
} pos=10
class Car extends Vehicle { t—
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(posS - V.pos); pos=10
else
this.move (10) V,C — passengers=0
Y
} 10

A Simple Example

class Vehicle extends object {
int pos = 10;
void move(int x) {
pos = pos + X;
}
}

class Truck extends Vehicle {
void move(int Xx){
if (x < 55)
pos = pos + X;
ki
ki

class Car extends Vehicle {
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pos - V.pos);
else
this.move(10) ;

class main extends object {
void main() {
Truck t = new Truck();
Car ¢ = new Car();
Vehicle v = c;
v.move (60) ;

t.move(70);
C.await(t);
Y
Y
pos=10
t —
pos=7/0
V,C — passengers=0

11

A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
pos = pOsS + X ; Car ¢ = new Car();
} Vehicle v = c;
} v.move (60) ;
t.move (70) ;
class Truck extends Vehicle { c.await(t);
void move(int x){ }
if (x < 55) }

pos = pos + X;

Y
} pos=10
class Car extends Vehicle { t—
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pos - V.pos); pos=70
else
this.move(10) ; V,C —> passengers=0
}
} 12

A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
pos = pOsS + X ; Car ¢ = new Car();
} Vehicle v = ¢;
} v.move (60) ;
t.move(70) ;
class Truck extends Vehicle { c.await(t);
void move(int Xx){ }
if (x < 55) }

POS = pos + X;

}
} pos=10
class Car extends Vehicle { t—
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pOoS - V.posS); pos=130
else
this.move (10); V,C — passengers=0
Y
} 13

A Simple Example

class Vehicle extends object { class main extends object {
int pos = 10; void main() {
void move(int x) { Truck t = new Truck();
pos = pOsS + X ; Car ¢ = new Car();
} Vehicle v = ¢;
} c.move(60) ;
v.move (/70) ;
class Truck extends Vehicle { c.await(t);
void move(int Xx){ }
if (x < 55) }

POS = pos + X;

}
} pos=10
class Car extends Vehicle { t—
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pos - V.pos); pos=130
else
this.move(10) ; V,C —> passengers=0
}
} 14

Translation into C (Vehicle)

class Vehicle extends Object { struct Vehicle {
int pos = 10; int pos;
void move(int x) { }
pos = pos + X ;
}
}

15

16

Translation into C (Vehicle)

class Vehicle extends Object { typedef struct Vehicle {
int pos = 10; int pos;
void move(int x) { } Ve;
pos = pos + X ;
}
}

17

Translation into C (Vehicle)

class Vehicle extends Object { typedef struct Vehicle {
int pos = 10; int pos;
void move(int x) { } Ve;
pos = pos + X ;
} void NewVe (Ve *this) {
} this—pos = 10;
}

void moveVe (Ve *this, int x){
this—pos = this—pos + Xx;

}

18

Translation into C (Truck)

class Truck extends Vehicle {
void move(int Xx){
if (x < 55)
pos = pos + X;

typedef struct Truck {
int pos;
Yy Tr;

void NewTr(Tr *this){
this—pos = 10;
ki

void moveTlr (Ve *this, int x){
if (x<55)
this—pos = this—pos + Xx;

19

Naive Translation into C (Car)

class Car extends Vehicle {
int passengers = 0;
void await(vehicle v){
if (v.pos < pos)
v.move(pos - Vv.pos);
else
this.move(10) ;

typedef struct Car{
int pos;
int passengers,;

t Ca;

void NewCa (Ca *this){
this—pos = 10;
this—passengers = 0;

}

void awaitCa(Ca *this, Ve *v){
if (v—=pos < this—pos)
moveVe(this—pos - v—pos)
else
MoveCa(this, 10)

20

Naive Translation into C (Main)

class main extends object { void mainMa(){

void main() { Tr *t = malloc(sizeof(Tr)),;
Truck t = new Truck(); Ca *c = malloc(sizeof(Ca));
Car ¢ = new Car(); Ve *v = (Ve*) c;
Vehicle v = ¢; moveVe (v, 60);
v.move (60) ; moveVe(t, 70);
t.move(70); awaitCa(c, (Ve*) t);
c.await(t); }

}

Naive Translation into C (Main)

class main extends object { void mainMa(){
void main() { Tr *t = malloc(sizeof(Tr)),;
Truck t = new Truck(); Ca *c = malloc(sizeof(Ca));
Car ¢ = new Car(); Ve *v = (Ve*) c;
Vehicle v = ¢; moveVe (v, 60);
v.move (60) ; moveVe(t, 70);
t.move(70); awaitCa(c, (Ve*) t);
c.await(t); }
}
}

void moveCa() ?

22

Naive Translation into C (Main)

class main extends object { void mainMa(){
void main() { Tr *t = malloc(sizeof(Tr));
Truck t = new Truck(); Ca *c = malloc(sizeof(Ca));
Car ¢ = new Car(); Ve *v = (Ve*) c;
Vehicle v = ¢; moveVe (v, 60);
v.move (60) ; moveVe(t, 70);
t.move(70) ; awaitCa(c, (Ve*) t);
c.await(t); }
}
}

void moveCa() ?

void moveVe (Ve *this, int x){
this—pos = this—pos + Xx;

}

23

Naive Translation into C (Main)

class main extends object {
void main() {
Truck t = new Truck();
Car ¢ = new Car();
Vehicle v = ¢;
v.move (60) ;
t.move(70) ;
c.await(t);
}
}

typedef struct Vehicle {
int pos;
} Ve;

typedef struct Car{
int pos;
int passengers;

t Ca;

void mainMa(){

Tr *t = malloc(sizeof(Tr));
Ca *c = malloc(sizeof(Ca));

Ve *v = (Ve*) c;
moveVe (v, 60);
moveVe(t, 70);
awaitCa(c, (Ve*) t);

void moveCa() ?

void moveVe (Ve *this,

int Xx){

this—pos = this—pos + Xx;

}

24

Naive Translation into C (Main)

class main extends object { void mainMa(){
void main() { Tr *t = malloc(sizeof(Tr)),;
Truck t = new Truck(); Ca *c = malloc(sizeof(Ca));
Car ¢ = new Car(); Ve *v = (Ve*) c;
Vehicle v = ¢; moveVe (v, 60);
v.move (60) ; moveVe(t, 70);
t.move(70); awaitCa(c, (Ve*) t);
c.await(t); }
}
} /
Ve *x = t;

moveTr ((Tr*)x, 20);

Vehicle x = t;
X.move(20);

25

Naive Translation into C (Main)

class main extends object {

void main() {
Truck t = new Truck();
Car ¢ = new Car();
Vehicle v = ¢;
v.move (60) ;
t.move (70);
c.await(t);

/

Vehicle x = t;
X.move(20);

void mainMa(){
Tr *t = malloc(sizeof(Tr));
Ca *c = malloc(sizeof(Ca));
Ve *v = (Ve*) c;
moveVe (v, 60);
moveVe (t, 70);
awaitCa(c, (Ve*) t);

Ve *x = t;
moveTr ((Tr*)x, 20);

void moveVe (Ve *this, int x){..}

void moveTr (Ve *this, int x){..}

26

27

Compiling Simple Classes

= Fields are handled as records
" Methods have unique names

class A { Runtime object Compile-Time Table
field a1; al mi1A
field a2, a2 m2A

method m1() {...}

method m2(int i) {...} void m2A(classA *this, int i) {

// Body of m2 with any object
// field f as this—f

28

Compiling Simple Classes

= Fields are handled as records
" Methods have unique names

class A { Runtime object Compile-Time Table
field a1; al mi1A
field a2, a2 m2A

method m1() {...}

method m2(int i) {...} void m2A(classA *this, int i) {

// Body of m2 with any

// object-field f as this—f
a.m2(5)

m2A(a,5)

29

Features of OO languages

* Inheritance

= Subclass gets (inherits) properties of superclass

* Method overriding

= Multiple methods with the same name with different
signatures

= Abstract (aka virtual) methods
= Polymorphism

= Multiple methods with the same name and different
signatures but with different implementations

= Dynamic dispatch
= Lookup methods by (runtime) type of target object

30

Compiling OO languages

" “Translation into C”
= Powerful runtime environment

= Adding “gluing” code

31

Runtime Environment

" Mediates between the OS and the programming
language
" Hides details of the machine from the programmer

= Ranges from simple support functions all the way to a
full-fledged virtual machine

*" Handles common tasks
= Runtime stack (activation records)

= Memory management

=" Runtime type information
= Method invocation
= Type conversions

32

Memory Layout

]

Heap

static data

code

T

33

Memory Layout

]

Heap

Runtime type information

static data

code

T

34

Handling Single Inheritance

= Simple type extension

class A { class B extends A {
field al; field bl;
field a2; method m3() {..}
method ml() {..} }

method m2() {..}

35

Adding fields

Fields aka Data members, instance variables

= Adds more information to the inherited class
= “Prefixing” fields ensures consistency

class A { class B extends A {
field al; field bl;
field a2; method m3() {..}
method ml() {..} }
method m2() {..}

}

typedef struct { typedef struct {
field al; field al;
field a2; field a2;

}OA; field bl;

} B;

void mlA A(A* this) {..}
void m2A A(A* this){..} void m2A B(B* this) {..}
void m3B_B(B* this) {..}

36

Method Overriding

= Redefines functionality
= More specific
= Can access additional fields

class A {
field al;
field a2;
method ml() {..}
method m2() {..}

class B extends A {
field bl;
method m2() {
. bl ..

}
method m3() {..}

37

Method Overriding

= Redefines functionality
= More specific
= Can access additional fields

class A {
field al;
field a2;
method ml() {..}
method m2() {..}

class B extends A {
field bl;
method m2() {
. bl ..

}
method m3() {..}

38

Method Overriding

= Redefines functionality
= Affects semantic analysis

class A { class B extends A {
field al; field bl;
field a2; method m2() {
method ml() {..} . bl ..
method m2() {..} }

} method m3() {..}

Runtime object = Compile-Time Table

Runtime object Compile-Time Table a1 m1A A

al m1A_A a2 m2A B
a2 m2A_A bl m3B_B

Method Overriding

= Redefines functionality
= Affects semantic analysis

class A { class B extends A {
field al; field bl;
field a2; method m2() {
method ml() {..} . bl ..
method m2() {..} }

} method m3() {..}

Runtime object = Compile-Time Table

Runtime object Compile-Time Table a1 m1A A

al m1A_A a2 m2A_B
a2 m2A_A bl m3B_B

Method Overriding

a.m2(5) // class(a) = A

m2A_A(a, 5)

class A {
field al;
field a2;
method ml() {..}
method m2() {..}

Runtime object Compile-Time Table

al ml1A_A
a2 m2A_A

b.m2(5) // class(b) = B

m2A B(b, 5)

class B extends A {
field bl;
method m2() {
. bl ..

Y
method m3() {..}

Runtime object = Compile-Time Table

al m1lA_A
a2 m2A_B
bl m3B_B
41

Method Overriding

class A {
field al;
field a2;
method ml() {..}
method m2() {..}

}

typedef struct {
field al;
field a2;

A,

void mlA A(A* this) {..}
void m2A A(A* this){..}

Runtime object Compile-Time Table

al

m1A_A

a2

m2A_A

class B extends A {
field bl;
method m2() {
. bl ..
¥
method m3() {..}
}
typedef struct {
field al;
field a2;
field bl;
} B;

void m2A_B(B* this) {..
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al m1lA_A
a2 m2A_B
bl m3B_B

42

Method Overriding

a.m2(5) // class(a) = A

m2A_A(a, 5)

typedef struct {
field al;
field a2;
A

void mlA A(A* this) {..}
void m2A A(A* this){..}

Runtime object Compile-Time Table

al ml1A_A
a2 m2A_A

b.m2(5) // class(b) =B
m2A_B(b, 5)

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A_B(B* this) {..
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al m1lA_A
a2 m2A_B
bl m3B_B

43

Abstract methods & classes

= Abstract methods
= Declared separately, defined in child classes
= E.g., C++ pure virtual methods, abstract methods in Java

= Abstract classes = class may have abstract methods
= E.G., Java/C++ abstract classes

= Abstract classes cannot be instantiated
= Abstract aka “virtual”

" Inheriting abstract class handled like regular inheritance
= Compiler checks abstract classes are not allocated 44

Handling Polymorphism

= \When a class B extends a class A

= variable of type pointer to A may actually refer to object
of type B

= Upcasting from a subclass to a superclass
" Prefixing fields guarantees validity

class B *b = ...;

classA*a=b; classA *a = convert_ptr to B to ptr_A(b);

Pointer to B > al
Pointer to A inside B
(also) a2

bl

Dynamic Binding

" An object (“pointer”) o declared to be of class A
can actually be (“refer”) to a class B

= What does ‘0.m()’” mean?
= Static binding
= Dynamic binding

" Depends on the programming language rules

" How to implement dynamic binding?
= The invoked function is not known at compile time

" Need to operate on data of the B and A in consistent way i

Conceptual Impl. of Dynamic Binding

class A { class B extends A {
field al; field bl;
field a2; method m2() {
method ml() {..} . a3 .
method m2() {..} }
} method m3() {..}
1
typedef struct { typedef struct {
field al; field al;
field a2; field a2;
}A; field bl;
} B;

void mlA A(A* this) {..}
void m2A A(A* this){..} void m2A_B(B* this) {..}
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

Runtime object Compile-Time Table a1 m1A A
al m1A_A a2 m2A_B
a2 m2A_A bl m3B_B

47

Conceptual Impl. of Dynamic

Binding

switch(dynamic_type(p)) {

case Dynamic_class_ A: m2_A_A(p, 3);

case Dynamic_class_B:m2_A B(convert_ptr _to_A_to_ptr_B(p), 3);

}

typedef struct {
field al;
field a2;
YA,

void mlA A(A* this) {..}
void m2A A(A* this){..}

Runtime object Compile-Time Table

al ml1A_A
a2 m2A_A

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A_B(B* this) {..
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al m1lA_A
a2 m2A_B
bl m3B_B

48

Conceptual Impl. of Dynamic

Binding

switch(dynamic_type(p)) {

case Dynamic_class_ A: m2_A_A(p, 3);

case Dynamic_class_B:m2_A B(convert_ptr _to_A_to_ptr_B(p), 3);

}

typedef struct {
field al;
field a2;
YA,

void mlA A(A* this) {..}
void m2A A(A* this){..}

Runtime object Compile-Time Table

al ml1A_A
a2 m2A_A

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A_B(B* this) {..
void m3B_B(B* this) {..}

Runtime object = Compile-Time Table

al m1lA_A
a2 m2A_B
bl m3B_B

49

More efficient implementation

= Apply pointer conversion in sublasses
= Use dispatch table to invoke functions
= Similar to table implementation of case

void m2A_B(classA *this_A) {
Class_B *this = convert_ptr_to_A_ptr_to A_B(this_A);

50

More efficient implementation

typedef struct {
field al;
field a2;
A

void mlA A(A* this) {..}

void m2A A(A* this,

int x){..}

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA, int x){

Class B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

51

More efficient implementation

typedef struct { typedef struct {
field al; field al;
field a2; field a2;
} A, field bl;
} B;

void mlA A(A* this){..}
void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

Runtime object (Runtime) Dispatch Table
P > vtable > m1A_A
al m2A_A

a2

More efficient implementation

typedef struct { typedef struct {
field al; field al;
field a2; field a2;
} A, field bl;
} B;

void mlA A(A* this) {..}
void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class B *this =

convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

Runtime object (Runtime) Dispatch Table Code
P > vtable > mlA > ml1A_A
al m2A > m2A_A

a2

53

More efficient implementation

typedef struct {
field al;
field a2;

P A

void mlA A(A* this){..}
void m2A A(A* this, int x){..}

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA, int x){

Class B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

p.m2(3); p—dispatch_table—m2A(p, 3);
Runtime object (Runtime) Dispatch Table
P > vtable > m1A_A
al m2A_A
a2

54

More efficient implementation

typedef struct { typedef struct {
field al; field al;
field a2; field a2;
} A, field bl;
} B;

void mlA A(A* this){..}
void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

Runtime object (Runtime) Dispatch Table
P > vtable > m1A_A
al m2A B
a2 m3B B
bl

More efficient implementation

typedef struct { typedef struct {
field al; field al;
field a2; field a2;
} A, field bl;
} B;

void mlA A(A* this){..}
void m2A_A(A* this, int x){..} void m2A B(A* thisA, int x){
Class B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}

p.m2(3);
Runtime object (Runtime) Dispatch Table
P > vtable > m1A_A
al m2A B
a2 m3B B
bl

More efficient implementation

typedef struct {
field al;
field a2;

P A

void mlA A(A* this){..}
void m2A A(A* this, int x){..}

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA, int x){
Class B *this =
convert ptr_to A to ptr_to B(thisA);
}

void m3B_B(B* this){..}

p.m2(3); p—dispatch_table—m2A(g, 3);
Runtime object (Runtime) Dispatch Table
P > vtable > m1A_A
al m2A B
a2 m3B B
bl

57

More efficient implementation

typedef struct {
field al;
field a2;
A

void mlA A(A* this){..}
void m2A A(A* this, int x){..}

typedef struct {
field al;
field a2;
field bl;

} B;

void m2A B(A* thisA, int x){

Class B *this =
convert ptr_to A to ptr_to B(thisA);

} "

void m3B_B(B* this){..}
.conve rt_ptr_to_B_to_ptr_to_A(p)'

p.m2(3); p%dispatch_table%mZA(', 3);
Runtime object (Runtime) Dispatch Table
P > vtable > m1A_A
al m2A_B
a2 m3B B
bl 58

Multiple Inheritance

class C {
field cl;
field c2;
method ml() {..}
method m2() {...}

clas

class D {
field dil;

method m3() {..}
method md () {..}

}

s E extends C, D {
field el;

method m2() {..}
method m4() {..}
method m5() {...}

59

Multiple Inheritance

= Allows unifying behaviors

" But raises semantic difficulties
= Ambiguity of classes
= Repeated inheritance

" Hard to implement
= Semantic analysis
= Code generation

= Prefixing no longer work
* Need to generate code for downcasts

= Hard to use

60

A simple implementation

" Merge dispatch tables of superclases
" Generate code for upcasts and downcasts

61

A simple implementation

class C { class D { class E extends C, D {
field cl; field dl; field el;
field c2;
method ml() {..} method m3() {..} method m2() {..}
method m2() {..} method m4() {..} method md() {..}
} } method m5() {..}
}
Runtime object (Runtime) Dispatch Table
> vtable
1 T m1C_C
d
m2C_E
a2
—>» m3D_D
> vtable —
m4D_E
al
m5E_E
a2

Downcasting (E->C,D)

class C { class D { class E extends C, D {
field cl; field di; field el;
field c2;
method ml() {..} method m3() {..} method m2() {..}
method m2(){..} method m4(){..} method m4() {..}

} } method m5() {..}

convert_ptr to E to ptr_to C(e) =e;

convert_ptr_to E_to_ptr_to_D(e) = e + sizeof(C);

Runtime object (Runtime) Dispatch Table
> vtable
1 T m1C_C
a
m2C_E
a2
—>» m3D_D
> vtable —
m4D_E
al
mSE_E
a2

Upcasting (C,D—>E)

class C { class D {
field cl; field di;
field c2;

method ml(){..}
method m2() {..}

method m3() {..}
method m4(){..}

class E extends C, D {
field el;

method m2() {..}
method md4() {..}
method m5() {...}

convert_ptr to C to_ptr _to E(c) =c;

convert_ptr to D to_ptr to E(d) =d - sizeof(C);

Runtime object

(Runtime) Dispatch Table

> vtable
1 T m1C_C
a
m2C_E
a2
—>» m3D D
> vtable —
m4D_E
al
m5E_E
a2

64

Inependent multiple Inheritance

class A{ class A{
field al; field al;
field a2; field a2;
method ml() {..} method ml() {..}
method m3() {..} method m3() {..}
ki }
class C extends A { class D extends A {
field cl; field dil;
field c2;
method ml() {..} method m3() {..}
method m2() {..} method m4() {..}
} }

class E extends C, D {
field el;

method m2() {..}
method md() {..}

method m5() {..} s

Inependent multiple Inheritance

class A{ class A{
field al; field al;
field a2; field a2;
method ml() {..} method ml() {..}
method m3() {..} method m3() {..}
ki }
class C extends A { class D extends A {
field cl; field dl;
field c2;
method ml() {..} method m3() {..}
method m2() {..} method m4 () {..}
} }

class E extends C, D {
field el;

method m2() {..}
method md() {..}

method m5() {..} o

Inependent multiple Inheritance

class A{ class A{
field al; field al;
field a2; field a2;
method ml() {..} method ml() {..}
method m3() {..} method m3() {..}
ki }
class C extends A { class D extends A {
field cl; field dl;
field c2;
method ml() {..} method m3() {..}
method m2() {..} method m4() {..}
} }

class E extends C, D {
field el;

method m2() {..}
method md() {..}

method m5() {..} o

Inependent multiple Inheritance

class A{ class A{
field al; field al;
field a2; field a2;
method ml() {..} method ml() {..}
method m3() {..} method m3() {..}
ki }
class C extends A { class D extends A {
field cl; field dl;
field c2;
method ml() {..} method m3() {..}
method m2() {..} method m4() {..}
} }

class E extends C, D {
field el;
method m3 () {..} //alt explicit qualification
method m2() {..}
method md() {..}
method m5() {..}

Independent Inheritance

class A{
field al;
field a2;
method ml(){..}
method m3(){..}

class C class D class E
extends A{ extends A{ extends C,D{
field cl; field dil; field el;
field c2;

method ml(){..}
method m2() {..}

Runtime E object

method m3(){..} method m2() {..}

method m5(){..}

Y
(Runtime) Dispatch Table

5| vtable
al m1A_C
a2 m3A_A
cl m2C_E
e —> ml1A_A
> vtable m3A_D
gl ma4D_E
a2 mSE_E
d1
el

69

Dependent multiple inheritance

= Superclasses share their own superclass

" The simple solution does not work
" The positions of nested fields do not agree

70

Dependent multiple Inheritance

class A{
field al;
field a2;
method ml() {..}
method m3() {..}

}

class C extends A { class D extends A {

field cl; field dil;

field c2;

method ml() {..} method m3() {..}

method m2() {..} method m4() {..}
} }

class E extends C, D {

field el;

method m2() {..}
method md() {..}

method m5() {..} .

Dependent multiple Inheritance

class A{
field al;
field a2;
method ml() {..}
method m3() {..}

}
class C extends A { class D extends A {
field cl; field dl;
field c2;
method ml() {..} method m3() {..}
method m2() {..}
} }

class E extends C, D {
field el;

method m2() {..}

method m5() {..}

72

Dependent Multiple Inheritance

class A{
field al;
field a2;
method ml() {..}
method m3() {..}

}
class C extends A { class D extends A {
field cl; field dl;
field c2;
method ml() {..} method m3() {..}
method m2() {..}
} }

class E extends C, D {
field el;

method m2() {..}

method m5() {..}

73

Dependent Inheritance

= Superclasses share their own superclass

" The simple solution does not work
" The positions of nested fields do not agree

74

Implementation

= Use an index table to access fields
= Access offsets indirectly

75

Implementation

class A{ class C class D class E
field al; extends A{ extends A{ extends C,D{
field a2; field cl; field dl; field el;
method ml(){..} field c2;
method m3(){..} method ml(){..} method m3() {..} method m2() {..}
} method m2(){..} method m4 () {..} method md() {..}
} } method m5(){..}
Y

Runtime E object (Runtime) Dispatch Table

Index

\"
dil
- [T B =%

Class Descriptors

= Runtime information associated with instances

= Dispatch tables
= |nvoked methods

=" Index tables
= Shared between instances of the same class

= Can have more (reflection)

77

Interface Types

= Java supports limited form of multiple inheritance
= Interface consists of several methods but no fields

= A class can implement multiple interfaces
Simpler to implement/understand/use

" Implementation: record with 2 pointers:
= A separate dispatch table per interface
= A pointer to the object

78

Dynamic Class Loading

= Supported by some OO languages (Java)
= At compile time

= the actual class of a given object at a given program
point may not be known

= Some addresses have to be resolved at runtime

= Compiling c.f() when f is dynamically loaded:
= Fetch the class descriptor d at offset O from ¢

= Fetch the address of the method-instance f from
(constant) f offset at d into p

= Jump to the routine at address p (saving return address)

79

Other OO Features

" Information hiding
= private/public/protected fields
= Semantic analysis (context handling)

= Testing class membership

80

Optimizing OO languages

* Hide additional costs
= Replace dynamic by static binding when possible
= Eliminate runtime checks
= Eliminate dead fields

= Simultaneously generate code for multiple classesa
= Code space is an issue

81

Summary

" 00 is a programming/design paradigm
= OO features complicates compilation

= Semantic analysis

= Code generation

" Runtime
= Memory management

= Understanding compilation of OO can be useful for
programmers

82

Compilation

0368-3133 2014/15a3
Lecture 13

Memory Management

Noam Rinetzky

83

Stages of compilation

Compilation = Execution

Lexical Syntax Context Portable/ l 3
Source Analysis Analysis Analysis Retargetable G EXECUUng arget COde
COde . code generation program
Parsing xecutable)
(program)
£
© S
Q = e
[(] . 2
X 7 B 2] | 3 s
— c < 0 £ —13 £
Q 0 — B
-z << c
o &
|_

Runtime Environment

= Mediates between the OS and the programming language
* Hides details of the machine from the programmer

= Ranges from simple support functions all the way to a full-fledged
virtual machine

" Handles common tasks
= Runtime stack (activation records)

= Dynamic optimization
= Debugging

86

Where do we allocate data?

= Activation records
= Lifetime of allocated data limited by procedure lifetime
= Stack frame deallocated (popped) when procedure return

=" Dynamic memory allocation on the heap

87

Memory Layout

stack

heap

static data

code

88

Alignment

» Typically, can only access memory at aligned
addresses

= Either 4-bytes or 8-bytes

= What happens if you allocate data of size 5 bytes?

= Padding — the space until the next aligned addresses is
kept empty

= (side note: x86, is more complicated, as usual, and also
allows unaligned accesses, but not recommended)

89

Allocating memory

=" |n C-malloc

"void *malloc(size t size)

= Why does malloc return void™* ?
= |t just allocates a chunk of memory, without regard to its
type
" How does malloc guarantee alignment?
= After all, you don’t know what type it is allocating for
= |t has to align for the largest primitive type
" |n practice optimized for 8 byte alignment (glibc-2.17)

90

Memory Management

" Manual memory management
" Automatic memory management

91

Manual memory management

" malloc
" free

92

malloc

= where is malloc implemented?
" how does it work?

93

free

" Free too late — waste memory (memory leak)
* Free too early — dangling pointers / crashes
= Free twice — error

94

When can we free an object?

// free (a); 7

Cannot free an object if it has a reference with a future use!

95

When can free x be inserted after p?

W fre/\/

after p no uses of references to the object
referenced by x free x p valid

96

Automatic Memory Management

= automatically free memory when it is no longer
needed

" not limited to OO languages

" prevalent in OO languages such as Java
= also in functional languages

97

Garbage collection

" approximate reasoning about object liveness
= use reachability to approximate liveness
= assume reachable objects are live

" non-reachable objects are dead

98

Garbage Collection — Classical Techniques

= reference counting
" mark and sweep

= copying

99

GC using Reference Counting

" add a reference-count field to every object
= how many references point to it

= when (rc==0) the object is non reachable
= non reachable => dead
= can be collected (deallocated)

100

Managing Reference Counts

" Each object has a reference count 0.RC

" A newly allocated object o gets 0.RC=1
= why?

= write-barrier for reference updates
update(x,old,new) {
old.RC--;
new.RC++;
if (old.RC == 0) collect(old);

}

= collect(old) will decrement RC for all children and recursively
collect objects whose RC reached 0.

101

Cycles!

" cannot identify non-reachable cycles

= reference counts for nodes on the cycle will never
decrementto 0

= several approaches for dealing with cycles
= ignore
= periodically invoke a tracing algorithm to collect cycles
= specialized algorithms for collecting cycles

102

The Mark-and-Sweep Algorithm
[McCarthy 1960]

" Marking phase
= mark roots
= trace all objects transitively reachable from roots
" mark every traversed object

= Sweep phase
= scan all objects in the heap
= collect all unmarked objects

103

The Mark-Sweep algorithm

= Traverse live objects & mark black.

= White objects can be reclaimed.

/

Roots

yoejs

11

el

Heap

heap

104

Triggering

New(A)=
if free_list is empty
mark_sweep()
if free_list is empty
return (“out-of-memory”)
pointer = allocate(A)
return (pointer)

105

Basic Algorithm

mark_sweep()=
for Ptr in Roots

mark(Ptr)
sweep()

Sweep()=
p = Heap_bottom
while (p < Heap_top)

mark(Obij)=
if mark_bit(Obj) == unmarked
mark_bit(Obj)=marked
for Cin Children(Obj)
mark(C)

if (mark_b|t(p) == unmarked) then free(p)

else mark_bit(p) = unmarked;

p=p+size(p)

106

rl A

r2

107

Mark&Sweep in Depth

mark(Obj)=
if mark_bit(Obj) == unmarked
mark_bit(Obj)=marked
for Cin Children(Obj)
mark(C)

" How much memory does it consume?

= Recursion depth?

= Can you traverse the heap without worst-case O(n) stack?

= Deutch-Schorr-Waite algorithm for graph marking without recursion

or stack (works by reversing pointers)
108

Properties of Mark & Sweep

e Most popular method today
e Simple
e Does not move objects, and so heap may fragment
e Complexity
Mark phase: live objects (dominant phase)

® Sweep phase: heap size
e Termination: each pointer traversed once
e Engineering tricks used to improve performance

109

Mark-Compact

® During the run objects are allocated and reclaimed
= Gradually, the heap gets fragmented

= When space is too fragmented to allocate, a compaction
algorithm is used

= Move all live objects to the beginning of the heap and
update all pointers to reference the new locations

= Compaction is very costly and we attempt to run it
infrequently, or only partially

i B B B E B
i I B B E B

110

Mark Compact

" |mportant parameters of a compaction
algorithm

= Keep order of objects?

= Use extra space for compactor data structures?
" How many heap passes?

= Canitrunin parallel on a multi-processor?

= \We do not elaborate in this intro

111

Copying GC

= partition the heap into two parts
= old space

" new space

= Copying GC algorithm
= copy all reachable objects from old space to new space
= swap roles of old/new space

112

old new

113

old new

114

Properties of Copying Collection

= Compaction for free
" Major disadvantage: half of the heap is not used
= “Touch” only the live objects

" Good when most objects are dead

= Usually most new objects are dead

. Some methods use a small space for young objects and
collect this space using copying garbage collection

115

A very simplistic comparison

Reference Mark & sweep |Copying
Counting
Complexity | Pointer updates + | Size of heap Live objects
dead objects (live objects)
Space Count/object + Bit/object + stack for Half heap
overhead stack for DFS DFS wasted
Compaction | Additional work | Additional work For free
Pause time | Mostly short long long
More issues | Cycle collection

116

Parallel Mark&Sweep GC

®Thread 1
®Thread 2 ()
-
1 ——>O—>0 >
(>)
r2 @ @
-

Parallel GC: mutator is stopped, GC threads
run in parallel

117

Concurrent Mark&Sweep Example

1 O—> >
r2 ®. @

Concurrent GC: mutator and GC threads run in

parallel, no need to stop mutator

118

Problem: Interference

SYSTEM = MUTATOR || GC

-8

-

1. GCtraced B

119

Problem: Interference

SYSTEM = MUTATOR | | GC

-8

-

1. GC traced B 2. Mutator
 links Cto B

120

Problem: Interference

SYSTEM = MUTATOR | | GC

-8

o

1. GC traced B 2. Mutator 3. Mutator
 links Cto B i unlinks C from A

121

Problem: Interference

SYSTEM = MUTATOR || GC

C LOST

o [T [[

—

1. GC traced B 2. Mutator | 3. Mutator 4. GC traced A
links Cto B . unlinks C from A

122

The 3 Families of Concurrent GC
Algorithms

O
O

-~ -~
C

123

Conservative GC

" How do you track pointers in languages such as C?
= Any value can be cast down to a pointer

" How can you follow pointers in a structure?

= Easy — be conservative, consider anything that can
be a pointer to be a pointer

" Practical! (e.g., Boehm collector)

124

Conservative GC

= Can you implement a conservative copying GC?
= What is the problem?

= Cannot update pointers to the new address... you
don’t know whether the value is a pointer, cannot
update it

125

Modern Memory Management

= Considers standard program properties
* Handle parallelism

= Stop the program and collect in parallel on all available
processors

= Run collection concurrently with the program run

= Cache consciousness

= Real-time

126

Terminology Recap

= Heap, objects
= Allocate, free (deallocate, delete, reclaim)
= Reachable, live, dead, unreachable

= Roots

= Reference counting, mark and sweep, copying,
compaction, tracing algorithms

" Fragmentation

127

Compilation

0368-3133 2014/15a3
Lecture 13

Assembler, Linker and Loader
Noam Rinetzky

128

What is a compiler?

“A compiler is a computer program that transforms
source code written in a programming language
(source language) into another language (target
language).

The most common reason for wanting to transform

source code is to create an executable program.”
--Wikipedia

Stages of compilation

Lexical Syntax Context Portable/ Code
Source Analysis Analysis Analysis Retargetable Generation Ta rget COde
code . code generation
Parsing (executable)
(program)
e
= = >
L g re)
s
5 2 = o £
|q_J c < A - A
Q + 7))
~ <
= 7
= <

Compilation = Execution

Lexical Syntax Context Portable/ l 1
SOUrce Analysis Analysis Analysis Retargetable G EXGCUUng arget COde
code . code generation progra m
Parsing pxecutable)
(program)
=
© £
()] = D
o [- @
% 7 ” s Iz |3 »
et c < I E I E £
()] %) — B
v < S
(@) o2
|_

.

Program Runtime State

Registers

0x11000

foo, extern_foo
printf

0x22000

G, extern_G

0x33000
X

0x88000

0x99000

Code

Static
Data

Stack

Heap

Challenges

= goto L2 = JMP Ox110FF

" G:=3 = MOV 0x2200F, 0..011

= foo() =& CALL Ox130FF

= extern_G :=1=» MOV 0x2400F, 0..01
= extern_foo() =» CALL Ox140FF

= printf() = CALL Ox150FF

= x:=2 = MOV FP+32, 0...010
= goto L2 =» JMP [PC +] OxO00FF

foo, extern_foo
printf

G, extern_G

X

0x88000

Code

Static
Data

Stack

Heap

Assembly =» Image

Source program
Compiler
Assembly lang. program (.s)
Assembler
Machine lang. Module (.0): program (+library) modules

Linker

“compilation” time gxecutable (“.exe”):

“execution” time Loader o
Libraries (.0)

Image (in memory): (dynamic loading)

Outline

= Assembly
= Linker / Link editor
= | pader

= Static linking

Assembly =» Image

Source file (e.qg., utils) Source file (e.g., main) library
Assembly (.s) Assembly (.s) Assembly (.s)
Object (.0) Object (.0) Object (.0)

Executable (“.elf”)

Image (in memory):

Assembler

= Converts (symbolic) assembler to binary (object) code

= QObject files contain a combination of machine instructions, data, and
information needed to place instructions properly in memory

= Yet another(simple) compiler
= One-to one translation

= Converts constants to machine repr. (3=20...011)
= Resolve internal references
= Records info for code & data relocation

Object File Format

Header

Text
Segment

Data
Segment

Relocation
Information

Symbol
Table

Debugging
Information

" Header: Admin info + “file map”

" Text seg.: machine instruction

" Data seg.: (Initialized) data in machine format

" Relocation info: instructions and data that depend
on absolute addresses

= Symbol table: “exported” references + unresolved
references

Handling Internal Addresses

.data

.align 8
varl:

.long 666
.code

addl wvarl, zeax
jmp labell

labell:

Resolving Internal Addresses

= Two scans of the code
= Construct a table label — address

= Replace labels with values

®" One scan of the code (Backpatching)

= Simultaneously construct the table and resolve symbolic
addresses

= Maintains list of unresolved labels

= Useful beyond assemblers

Backpatching

Backpatch list
for labell

Assembly Assembled
code binary
jmp labell EA 0
jmp labell EA 0
jmp labell EA 0
labell:

%LUU

Handling External Addresses

= Record symbol table in “external” table

= Exported (defined) symbols
= G, fool)

" Imported (required) symbols
= Extern_G, extern_bar(), printf()

= Relocation bits

= Mark instructions that depend on absolute (fixed)
addresses

= |nstructions using globals,

a.o 0
reference to
_printf = II
1000
b.o 0
250
400
3000
printf.o 0
100
/' 500
entry point
_printf original code

segments

relocation
bit maps

External references
resolved by the

Linker using the
relocation info.

Example of External Symbol Table

External symbol Type Address
_options entry point 50 data
__main entry point 100 code
_printf reference 500 code
_atoi reference 600 code
_printf reference 650 code
_exit reference 700 code
_msg_list entry point 200 data
_Out_Of Memory entry point 800 code
_fprintf reference 900 code
_exit reference 950 code

_file list reference 4 data

Assembler Summary

= Converts symbolic machine code to binary
= addl %edx, %ecx = 000 0001 11 010 001 =01 D1 (Hex)

" Format conversions
= 3 =9 0x0..011 or 0x000000110...0

= Resolves internal addresses

= Some assemblers support overloading
= Different opcodes based on types

Linker

"= Merges object files to an executable
" Enables separate compilation

" Combine memory layouts of object modules

" Links program calls to library routines
= printf(), malloc()

= Relocates instructions by adjusting absolute references
= Resolves references among files

Linker

Code

Segment 1

100
Data

200 Segment 1

Code

Segment 2 |
300

Data

450 | Segment 2

foo

ext_bar
Z00

100

400

500

650

Code
Segment 1

Code

Segment 2
]

Data

Segment 1
Data

Segment 2

foo

ext_bar
Z00

Relocation information

e |[nformation needed to change addresses

= Positions in the code which contains addresses
= Data
= Code

" Two implementations
= Bitmap
" Linked-lists

External References

" The code may include references to external
names (identifiers)

= Library calls
= External data

= Stored in external symbol table

Example of External Symbol Table

External symbol Type Address
_options entry point 50 data
__main entry point 100 code
_printf reference 500 code
_atoi reference 600 code
_printf reference 650 code
_exit reference 700 code
_msg_list entry point 200 data
_Out_Of Memory entry point 800 code
_fprintf reference 900 code
_exit reference 950 code

_file list reference 4 data

Example

reference to

_printf =[0 |
1000
b.o 0
|1600
250
400
3000
printf.o 0
100

500

1000

4000

e — —— — —— -

e - —— — — —

Linker (Summary)

= Merge several executables
= Resolve external references

= Relocate addresses

= User mode

" Provided by the operating system

= But can be specific for the compiler
= More secure code

= Better error diagnosis

Linker Design Issues

= Merges
= Code segments
= Data segments
= Relocation bit maps
= External symbol tables

= Retain information about static length

= Real life complications
= Aggregate initializations
= Object file formats
= Large library
= Efficient search procedures

Loader

= Brings an executable file from disk into memory and starts it
running

= Read executable file’s header to determine the size of text and data
segments

* Create a new address space for the program
= Copies instructions and data into memory
= Copies arguments passed to the program on the stack

= |nitializes the machine registers including the stack ptr

= Jumps to a startup routine that copies the program’s arguments
from the stack to registers and calls the program’s main routine

Program Loading

Registers

Code
Segment

Static
Data

Stack

Heap

100

400

500

650

Code
Segment 1

Code

Segment 2
]

Data

Segment 1
Data

Segment 2

foo

ext_bar
Z00

Loader (Summary)

Initializes the runtime state

Part of the operating system
" Privileged mode

Does not depend on the programming language

“Invisible activation record”

Static Linking (Recap)

= Assembler generates binary code
= Unresolved addresses
= Relocatable addresses

" Linker generates executable code
" Loader generates runtime states (images)

Dynamic Linking

* Why dynamic linking?
= Shared libraries

= Save space
= Consistency

= Dynamic loading

= [Load on demand

What’s the challenge?

Source program
Compiler
Assembly lang. program (.s)
Assembler
Machine lang. Module (.0): program (+library) modules

Linker

“compilation” time gxecutable (“.exe”):

“execution” time Loader o
Libraries (.0)

Image (in memory): (dynamic linking)

Position-Independent Code (PIC)

= Code which does not need to be changed regardless of the
address in which it is loaded

= Enable loading the same object file at different addresses
* Thus, shared libraries and dynamic loading

= “Good” instructions for PIC: use relative addresses
= relative jumps
= reference to activation records

= “Bad” instructions for : use fixed addresses

= Accessing global and static data
" Procedure calls
= Where are the library procedures located?

How?

“All problems in computer science can be solved by
another level of indirection”

Butler Lampson

PIC: The Main ldea

= Keep the global data in a table
= Refer to all data relative to the designated register

Per-Routine Pointer Table

= Record for every routine in a table

foo

Per-Routine Pointer Table

= Record for every routine in a table

foo

Code
Segment 1

Code

Segment 2

Data

Segment 1
Data

Segment 2

—

foo
ext g

ext_bar
Z00

Per-Routine Pointer Table

" Record for every routine in a table

= Record used as a address to procedure

Caller: Callee:
1. Load Pointer table address 1. RP points to pointer table

into RP 2. Table has addresses of pointer table
2. Load Code address from for subprocedures

O(RP) into RC
3. CallviaRC

RP >
.func

Other data

PIC: The Main ldea

= Keep the global data in a table
= Refer to all data relative to the designated register

= Efficiency: use a register to point to the beginning
of the table

= Troublesome in CISC machines

ELF-Position Independent
Code

= Executable and Linkable code Format
" |ntroduced in Unix System V

= Observation

= Executable consists of code followed by data

= The offset of the data from the beginning of the code is known at
compile-time

Code
Segment call L2
L2:
GOT P popl %ebx

Data (Global Offset Table) addl S_GOT]I.-..L2], %ebx
Segment

ELF: Accessing global data

mov ..., ...
Code Relative
Section Offset

1 Var #1 address -—
Var #2 address
Var #3 address

GOT

Var #N address

Data
Section

ELF: Calling Procedures

(before 1st call)

Code:

call £func@PLT

PLT:
—pp| PLT[0] :

call resolver

PLT[n]: <

GOT:

GOT [n]:

jmp *GOT[n]

P <addr>

prepare resolver <%
jmp PLT[0]

ELF: Calling Procedures

(after 1st call)

Code:

call func@PLT

PLT:

PLT[O]:

call resaolver

GOT:

GOT([n):

P <addr>

PLT[n]: -

jmp *GOT[n]
prepare resolver

jmp PLT([0]

Code:

func: -¢——

Shared Libraries

= Heavily used libraries

= Significant code space
= 5-10 Mega for print
= Significant disk space
= Significant memory space

= Can be saved by sharing the same code
* Enforce consistency
= But introduces some overhead

= Can be implemented either with static or dynamic loading

Content of ELF file

Text

Data

Program

Libraries

Call

Routine

PLT

PLT

GOT

GOT

Text

Data

Consistency

* How to guarantee that the code/library used the
“right” library version

Loading Dynamically Linked
Programs

= Start the dynamic linker
" Find the libraries
" |nitialization

= Resolve symbols

= GOT
= Typically small

= Library specific initialization

" Lazy procedure linkage

Microsoft Dynamic Libraries (DLL)

= Similar to ELF
= Somewhat simpler

= Require compiler support to address dynamic
libraries

" Programs and DLL are Portable Executable (PE)
= Each application has it own address
= Supports lazy bindings

Dynamic Linking Approaches

* Unix/ELF uses a single name space space and MS/
PE uses several name spaces

= ELF executable lists the names of symbols and
libraries it needs

= PE file lists the libraries to import from other
libraries

= ELF is more flexible
= PE is more efficient

Costs of dynamic loading

" Load time relocation of libraries

" Load time resolution of libraries and executable
= Overhead from PIC prolog

= Overhead from indirect addressing

= Reserved registers

Summary

" Code generation yields code which is still far from
executable

= Delegate to existing assembler

= Assembler translates symbolic instructions into
binary and creates relocation bits

= |inker creates executable from several files
produced by the assembly

" Loader creates an image from executable

Compilation

0368-3133 2014/15a3
Lecture 13

RECAP

Noam Rinetzky

180

What is a compiler?

“A compiler is a computer program that transforms
source code written in a programming language
(source language) into another language (target
language).

The most common reason for wanting to transform

source code is to create an executable program.”
--Wikipedia

181

Conceptual Structure of a Compiler

exe

—> Executable

code

ot Compiler
:| Frontend Semantic Backend
Source ¥ :
: Representation
text
Lexica_l Synta>§ Semant_ic Intermedia_te Code
Analysis Analysis Analysis Representation Generation
Parsing (IR)

182

Conceptual Structure of a Compiler

exe

—> Executable

code

ot Compiler
:| Frontend Semantic Backend
Source ¥ :
: Representation
text
Lexica_l Synta>§ Semant_ic Intermedia_te Code
Analysis Analysis Analysis Representation Generation
Parsing (IR)

183

Id

From scanning to parsing

-

23

7

LP

LP

Num

S|+ |

Num

OP

o

syntax

lvalid
/N

184

From scanning to parsing

program text

((23 + 7) * x)

Lexical
Analyzer

token stream |—_

23

7) * X

LP

Num

+
oP

um RP oP Id

RP

Grammar:
E—..|Id
Id—a"|..]| ‘7

PN

Num(23) Num(7)

Abstract Syntax Tree

185

Conceptual Structure of a Compiler

exe

—> Executable

code

ot Compiler
:| Frontend Semantic Backend
Source ¥ .
: Representation
text
Lexica_l Synta>§ Semant_ic Intermedia_te Code
Analysis Analysis Analysis Representation Generation
Parsing (IR)

186

Context Analysis

Op(*) Ab
stract Syntax Tree
Type rules AN y
El: int E2 :int Op(+) Id(b)
/\
El + E2 :int Num(23) Num(7)

N\

Semantic Error Valid + Symbol Table

187

Code Generation

?{ Valid Abstract Syntax Tree

ceen Symbol Table

Frame Manager Op(+) Id(b)

PN

Num(23) Num(7)

< |

Intermediate Representation (IR)

!

input ~ mm) Executable Code mmmm) output 188

Verification (possible runtime)
Errors/Warnings

Optimization

source
code

Front
end

Code

| generator

Program Analysis

Abstract interpretation

Can appear in later stages too

target

code

189

Conceptual Structure of a Compiler

exe

—> Executable

code

ot Compiler
:| Frontend Semantic Backend
Source ¥ .
: Representation
text
Lexical Syntax Semantic Intermediate Code
Analysis Analysis Analysis Representation Generation
Parsing (IR)

190

Register Allocation

Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

AST

Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation

Target code

(executable)

" The process of assigning variables to registers and

managing data transfer in and out of registers

= Using registers intelligently is a critical step in any
compiler

= A good register allocator can generate code orders of
magnitude better than a bad register allocator

191

Register Allocation: Goals

Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

AST

Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation

Target code

(executable)

" Reduce number of temporaries (registers)
= Machine has at most K registers

= Some registers have special purpose

= E.g., pass parameters

= Reduce the number of move instructions
= MOVE R1,R2 //R1 & R2

192

Code generation

Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

Context
Analysis

Portable/
Retargetable
code generation

Code
Generation

Target code

(executable)

193

Code generation

Lexical Syntax Context
SOU rce Analysis Analysis Analysis
COde Parsing
(program)
£
©
Q
) S
5 @ 2

= 3
Y
o
|_

AST + Sym. Tab.

Portable/
Retargetable
code generation

IR (TAC) generation
IR Optimization

IR

Instruction selection

Code
Generation

register allocation

I Peephole optimization I

Target code

(executable)

Assembly

194

Runtime System (GC)

Lexical Syntax Context Portable/ I 1
Source Analysis Analysis Analysis Retargetable G Executlng arget code
COde . code generation progra m
Parsing rxecutable)
(program)
S
© S
Q < 2
— (7} - 2
X 5 7 2 ||z | 8 4
st c < o k= S £
(D] %) - -)
v < 5
o =
|_

195

Compilation = Execution

Source Lexical Syntax Context Portable/ Code Linking Loading Executing
code Analysis Analysis Analysis Retargetable Generation program
Parsin code generation
(program) &
c o 9 2
© P
© = L o el =
. .— GJ - O
+ — - Qo
O n (52 > oc 0 < © 0 =
— c < wn Q = = € o
Q S =) — b= =
+ o) Q c
S = o Q 2] 2
2 N X< “1 £
<< L =

196

197

