Compilation

0368-3133 2014/15a
Lecture 5

Syntax Analysis: Bottom-Up parsing
Noam Rinetzky

txt
Source

text

Where are we?

I
n
n
n
n
n
n
n

characters

o/

tokens

Annotated AST

Syntax
Analysis

4
S

AST

III.

Sem.
Analysis

Intermediate
code
generation

Intermediate
code
optimization

Code
generation

Symbolic Instructions

Target code
optimization

SI

Machine code
generation

Ml

Write

executable

output

exe
Executable

code

Bottom-Up vs Top-Down

Top-Down Parsing

Reduction starts by choosing a
derivation rule

Reduction is done in context

Bottom-Up vs Top-Down

Top-Down Parsing

Reduction starts by choosing a
derivation rule

Reduction is done in context

Expr — Even * Even | Odd - 0Odd
Even—0]2]|4|6]|8
Odd —1|3|5]|7]9

6 * 8

used unused

Bottom-Up vs Top-Down

Top-Down Parsing

Reduction starts by choosing a
derivation rule

Reduction is done in context

Expr — Even * Even | Odd - 0Odd
Even—0]2]|4|6]|8
Odd —1|3|5]|7]9

Expr

6 * 8
matched unmatched

Bottom-Up vs Top-Down

Top-Down Parsing

Reduction starts by choosing a
derivation rule

Reduction is done in context

Expr — Even * Even | Odd - 0Odd
Even—0]2]|4|6]|8
Odd —1|3|5]|7]9

Expr

/ 1\

Even * Even

6 * 8
matched unmatched

Bottom-Up vs Top-Down

Top-Down Parsing

Reduction starts by choosing a
derivation rule

e Reduction is done in context of a rule

Expr — Even * Even | Odd + Odd
Even—0]2]|4|6]|8
Odd -1|3|5|7]|9

Expr

/ 1\

Even * Even

6

61* 8
matched unmatched

Bottom-Up vs Top-Down

Top-Down Parsing Bottom-Up Parsing
Reduction starts by choosinga Reduction considers all possible
derivation rule reduction rules

e Reduction is done in context of a rule e Ruleis determined at the end

Expr — Even * Even | Odd + Odd
Even—0]2]|4|6]|8
Odd -1|3|5|7]|9

Expr

/ 1\

Even * Even

6

61* 8
matched unmatched

Top-Down Parsing

Reduction starts by choosing a
derivation rule

Expr — Even * Even | Odd + Odd
Even—0]2]|4|6]|8
Odd -1|3|5|7]|9

matched

Reduction is done in context of a rule

Bottom-Up vs Top-Down

Expr

/ 1\

Even * Even

6

6

* 8

unmatched

Bottom-Up Parsing

Reduction considers all possible
reduction rules

e Ruleis determined at the end

Expr — Num * Num | Num + Num
Num—0|1]2|3|4|5/6]|7|8]9

I 6 * 8

matched unmatched

Bottom-Up vs Top-Down

Top-Down Parsing Bottom-Up Parsing

Reduction starts by choosinga Reduction considers all possible
derivation rule reduction rules

e Reduction is done in context of a rule e Ruleis determined at the end

Expr — Even * Even | Odd + Odd Expr — Num * Num | Num + Num
Even—0|2|4|6]8 Num—0|1]2|3|4|5|6]|7|8]9
Odd -1|3|5|7]|9

Expr

/ 1\

Even * Even

6 Expr — Num * Num | Num + Num
Num—0]1]..
— <
61* 8 I 6 * 8
matched unmatched matched unmatched 10

Bottom-Up vs Top-Down

Top-Down Parsing Bottom-Up Parsing

Reduction starts by choosinga Reduction considers all possible
derivation rule reduction rules

e Reduction is done in context of a rule e Ruleis determined at the end

Expr — Even * Even | Odd + Odd Expr — Num * Num | Num + Num
Even—0|2|4|6]8 Num—0|1]2|3|4|5|6]|7|8]9
Odd -1|3|5|7]|9

Expr

/ 1\

Even * Even

6 Expr — Num * Num | Num + Num
Num—0]1]..
— <
61* 8 I 6 * 8
matched unmatched matched unmatched 11

Bottom-Up vs Top-Down

Top-Down Parsing Bottom-Up Parsing

Reduction starts by choosinga Reduction considers all possible
derivation rule reduction rules

e Reduction is done in context of a rule e Ruleis determined at the end

Expr — Even * Even | Odd + Odd Expr — Num * Num | Num + Num
Even—0|2|4|6]8 Num—0|1]2|3|4|5|6]|7|8]9
Odd -1|3|5|7]|9

Expr
/ 1\
Even * Even Num
I I
6 [Expr — Num * Num | Num + Num} 6
Num—=>0|1]..
6|* 8 6l* s

matched unmatched matched unmatched 12

Bottom-Up vs Top-Down

Top-Down Parsing Bottom-Up Parsing

Reduction starts by choosinga Reduction considers all possible
derivation rule reduction rules

e Reduction is done in context of a rule e Ruleis determined at the end

Expr — Even * Even | Odd + Odd Expr — Num * Num | Num + Num
Even—0|2|4|6]8 Num—0|1]2|3|4|5|6]|7|8]9
Odd -1|3|5|7]|9

Expr
Even * Even Num *
6 Expr — Num * Num | Nura-+Num 6
6|* 8 6 *|8
matched unmatched matched unmatched 13

Bottom-Up vs Top-Down

Top-Down Parsing Bottom-Up Parsing

Reduction starts by choosinga Reduction considers all possible
derivation rule reduction rules

e Reduction is done in context of a rule e Ruleis determined at the end

Expr — Even * Even | Odd + Odd Expr — Num * Num | Num + Num
Even—0|2|4|6]8 Num—0|1]2|3|4|5|6]|7|8]9
Odd -1|3|5|7]|9

Expr
Even * Even Num *
6 Expr — Num * Num | NewasNum 6
Num—0]1]..
6|* 8 6+ |8
matched unmatched matched unmatched 14

Bottom-Up vs Top-Down

Top-Down Parsing Bottom-Up Parsing

Reduction starts by choosinga Reduction considers all possible
derivation rule reduction rules

e Reduction is done in context of a rule e Ruleis determined at the end

Expr — Even * Even | Odd + Odd Expr — Num * Num | Num + Num
Even—0|2|4|6]8 Num—0|1]2|3|4|5|6]|7|8]9
Odd -1|3|5|7]|9

Expr
/ 1\

Even * Even Num * Num
| I I
6 [Expr — Num * Num | N-um—-l-Num} 6 8

Num —=0|1]..
6|* 8 6 * 8

matched unmatched matched unmatched 15

Bottom-Up vs Top-Down

Top-Down Parsing Bottom-Up Parsing

Reduction starts by choosinga Reduction considers all possible
derivation rule reduction rules

e Reduction is done in context of a rule e Ruleis determined at the end

Expr — Even * Even | Odd + Odd Expr — Num * Num | Num + Num
Even—0|2|4|6]8 Num—0|1]2|3|4|5|6]|7|8]9
Odd -1|3|5|7]|9

Expr Expr
/ |1\ / 1\
Even * Even Num * Num
| I I
6 [E_xp_r_—>Num*Num | N-um—-l-Num} 6 8
Num—0|1]..
6|* 8 6 * 8

matched unmatched matched unmatched 16

Bottom-up parsing: LR(k) Grammars

e Agrammar isin the class LR(K) when it can be
derived via:

— Bottom-up derivation
— Scanning the input from left to right (L)

— Producing the rightmost derivation (R)
— With lookahead of k tokens (k)

e We will look at LR(0) grammars

17

Terminology: Reductions & Handles

e The opposite of derivation is called reduction

— Let A—oa be a production rule
— Derivation: BAL =2 Bopu
— Reduction: Bau = BAL

e A handle is the reduced substring
is the handles for Bapu

18

How does the parser know what to do?

[

token stream

LP LP Num OP Nu

Input

=

% <:> .< <:< Action table
Parser

Stack
Output \ Goto table
59
VO

()

How does the parser know what to do?

e A state will keep the info gathered on handle(s)

— A state in the “control” of the PDA
e Also (part of) the stack alphabet [

— State = set of LR(0) items

Expr — Num * Num | Nem-+Num
Num —=0|1]..

T\

o A table will tell it “what to do” based on current
state and next token

— The transition function of the PDA

e A stack will records the “nesting level”
— Prefixes of handles

20

LR Iitem

Already matched To be matched

Input

N — o*f

Hypothesis about af being a possible handle, so far we’ve matched
a, expecting to see 21

Example: LR(O) Items

e All items can be obtained by placing a dot at

every position for every production:

Grammar

(1)S—ES$
(2)E—T

(4) T —id

(5)T—(E)

)

)
(3)E—E+T

)

)

LR(O) items

—

1: S — *E$
2:S—E-°$
3:S—ES$-
4:E—= T
5:E—=Te
6:E—°E+T
7.E—E*+T
&E—E+°T
OE—E+Te
10: T— <id
11: T—1d
12: T— ¢ (E)
13: T— (*E)
14: T—(Ee°)
15:T— (E)

22

Example: LR(O) Items

e All items can be obtained by placing a dot at
every position for every production:

Grammar [(1)S—E$ LR(O) items ;::EE$$
(2Q)E—=T ‘ 3:S—>ES§e
(3)E—E+T 4:E—> T
@)1~ id .

E—e*LE+
BIT—(E) JE—Ee+T
S:E—=E+°T
e Before ® =reduced ?;)E:Ef?
T— 1
— matched prefix 11: T —id
12: T— *(E
e After ® = may be reduced 3T (,(E§
— May be matched by suffix 14:T—=(E*)
15: T — (E)*

23

LR(O) Items

E>E*B|E+B|B
B->0|1

e A derivation rule with a location marker (@) is called LR(0) item

24

PDA States

E>E*B|E+B|B
B->0|1

e A PDA state is a set of LR(O) items. E.g.,
q3={E>Ee*B,E>Ee+B, B> 1e}

e |ntuitively, if we matched 1,
Then the state will remember the 3 possible alternatives rules
and where we are in each of them

(1)E>Ee*B (2JE>Ee+B (3)B>1e

25

LR(0) Shift/Reduce Items

N — o®f3 Shift Item

N — of3® Reduce ltem

Intuition

Read input tokens left-to-right and remember
them in the stack

When a right hand side of a rule is found, remove
it from the stack and replace it with the non-
terminal it derives

Remembering token is called shift

— Each shift moves to a state that remembers what
we’ve seen so far

Replacing RHS with LHS is called reduce

— Each reduce goes to a state that determines the
context of the derivation

27

Mod

Input [id | + | id | + | id | $
Stack 4 A
tat
R LR Parser
symbol ———| T
2
Terminals and +
Non-terminals
7 Action Goto
. Table Table
id
5

el of an LR parser

Output

LR parser stack

e Sequence made of state, symbol pairs

e For instance a possible stack for the
grammar
S—ES
E—T
E—=E+T
T—id
T—(E)
couldbe: 0T ” + /id

Stack grows this way

29

Form of LR parsing table

state terminals non-terminals
0 Shift/Reduce actions Goto part
1
acc
gm

SN

rk

error

shift state n || reduce by rule k

goto statem

accept

30

LR parser table example

STATE action goto
id + () S E T
0 s5 s/ gl g6
1 s3 acc
2
3 s5 s/ g4
4 r3 r3 r3 r3 r3
5 r4 r4 r4 r4 r4
6 r2 r2 r2 r2 r2
7 s5 s/ g8 g6
8 s3 s9
9 r5 r5 r5 r5 r5

31

Shift move

Input . a
Stack 4)
LR
q Parsing
program
action goto

e action]q, a] =sn

Result of shift

Input . a v | S
Stack 4)
LR
n Parsing
a program
q
action goto

e action]q, a] =sn

Reduce move

Input a S
Stack - ~
q LR
Parsing
o, program
2*n
q, action goto
0,
q

e action[q,, a] =rk
e Production: (k) A — o,... 0,

Top of stack looks like q,0,...q,0, for some q;... q,
* goto[q, Al =q,

Result of reduce move

Input a S
Stack - ~
LR
T Parsing
program
9, [€— action goto
A

action|q,, a] = rk

Production: (k) A — o,... 0,

Top of stack looks like q,0,...q,0, for some q;... q,
goto[q, Al =q,

Accept move

Input a | $
Stack 4)
LR
q Parsing
program
action goto

If action[q, a] = accept
parsing completed

Error move

Input . a
Stack 4)
LR
q Parsing
program
action goto

If action[g, a] = error (usually empty)
parsing discovered a syntactic error

Example

7 — E §
FE — T | E 4+ T
T — 1| (E)

Example: parsing with LR items

-)
Z — E §
E—> T | E+ T i - | §
T —-1 1] (E)

- Y

7Z — °E S Why do we need these additional LR items?

E —» eT Where do they come from?

What do they mean?

E — e + T

T — e1

T — ¢(E)

39

c-closure

e Given a set S of LR(0) items

e [fP— a*NBisinstate S

e then for each rule N —y in the grammar
state S must also contain N — ¢y

e-closure ({Z — °*E $}) ={ Z — °E 3,
s A

()

Z — E § E — ¢ + T,

E—T | E+T T —» 1

T > i | (E) '

_ Y, T — *(E) }

Example: parsing with LR items

A 01| |+ i S

Remember position from
which we’re trying to
reduce

ltems denote possible
future handles

;

(Z—>E$)
E—-T|E+T
\T_’”(E))

41

Example: parsing with LR items

-
Z—ES

AR EEAEE ET|E+T
T—>||(E)

’ J

I\/Iatch items with
current token

| . Reduce item!

Example: parsing with LR items

4)
Z—ES
2 | T + i S E—-T|E+T
| \T_’il(E))

Reduce item!

Example: parsing with LR items

a4)
Z—ES
E—-T|E+T
T—il(E)

Reduce item!

Example: parsing with LR items

- - —{m

(Z—>E$)
E—-T|E+T
\T_’”(E))

Example: parsing with LR items

-
Z—ES
E—-T|E+T

(T—il(E)

Example: parsing with LR items

-
Z—ES
E—-T|E+T

(T—il(E)

Example: parsing with LR items

a4)
Z—ES
NT x| S E—-T|E+T
l Toil(E)

Reduce item!

Example: parsing with LR items

(Z—>E$)
E—-T|E+T
\T_’”(E))

Example: parsing with LR items

a4)
Z—ES
7 | E I\S = E—-T|E+T
\ \T—>i|(E) p
E+T
| |
i

Reduce item!

Z— E°S Z— ES®

Example: parsing with LR items

~ ™
Z—ES
EPAR E—-T|E+T
| JT—il(E)
E S
TN
E+ T _
| , Reduce item!

Z— ES®

GOTO/ACTION tables

empty —
GOTO Table error move ACTION
/ Table
\ \
|
q0 g5 q7 ql g6 shift
ql g3 g2 shift
g2 Z—ES
q3 g5 q7 g4 | Shift
qé E—E+T
a5 T—i
sk E—T
q7 q5 q7 g8 g6 | shift
q8 g3 q9 shift
q9 T—E

52

LR(O) parser tables

e Two types of rows:

— Shift row — tells which state to GOTO for
current token

— Reduce row — tells which rule to reduce
(independent of current token)

e GOTO entries are blank

53

LR parser data structures

e |nput —remainder of text to be processed
e Stack —sequence of pairs N, qi

— N — symbol (terminal or non-terminal)

— qi — state at which decisions are made

4)

Input suffix

: >
\ Stack grows this way J

e |nitial stack contains g0

e Shift move

LR(0) pushdown automaton

e Two moves: shift and reduce

— Remove first token from input

— Push it on the stack

— Compute next state based on GOTO table

— Push new state on the stack

— If new state is error — report error

input

stack

~

© N/

q/

shift

=)

gl

4)
oput [
\§ /
Stack grows this way
g6 | shift =c

LR(0) pushdown automaton

Reduce move
— Using arule N —a

— Symbols in a and their following states are removed from stack

— New state computed based on GOTO table (using top of stack,

before pushing N)
— N is pushed on the stack
— New state pushed on top of N

e ~ Reduce
oput | T
oo RN =
_ J

q0 a5 q7

o
_ J

Stack grows this way

gl \ g6 / shift

56

GOTO/ACTION table
(state | i [+ | ([) [s [e[T |

o]0, s5 s/ sl s6
gl s3 s2
g2 rl rl rl rl rl rl rl
q3 s5 s7 s4
qé r3 r3 r3 r3 r3 r3 r3
a5 ra4 r4 r4 r4 r4 r4 r4
0[5 r2 r2 r2 r2 r2 r2 r2
q7/ s5 s/ s8 S6
g8 s3 s9
q9 r5 r5 r5 r5 r5 r5 r5
a (1)z — E $ A . ’ .
OV E — T Warning: numbers mean different things!
(3)E — E + T rn = reduce using rule number n
S 0 = 3]) sm = shift to state m

Parsing id+idS

Stack grows this way

(1)S—ES

Stack Input Action

0, id+id S|s5

Initialize with state O

(2)E—=T
(3)E—=E+T
(4)T—id
(5)T—(E)

S action goto

id | + () S E T

O | s5 s/ gl | gb

1 s3 acc

2

3 | s5 s/ gl

4 {3 (r3(r3|r3]|Tr3

5 rd | rd | rd | rd | r4

6 | r2 | r2|r2]|r2]|r2

7 | s5 s/ g8 | gb

8 s3 s9

9 |51 5155|715

rn = reduce using rule number n
sm = shift to state m

58

Parsing id+idS

Stack grows this way

(1)S—ES

Stack Input Action

0, id+id S|s5

Initialize with state O

(2)E—=T
(3)E—=E+T
(4)T—id
(5)T—(E)

S action goto

id | + () S E T

O | s5 s/ gl | gb

1 s3 acc

2

3 | s5 s/ gl

4 {3 (r3(r3|r3]|Tr3

5 rd | rd | rd | rd | r4

6 | r2 | r2|r2]|r2]|r2

7 | s5 s/ g8 | gb

8 s3 s9

9 |51 5155|715

rn = reduce using rule number n
sm = shift to state m

59

Stack grows this way

Parsing id+idS

(1)S—ES

Stack Input Action
0 id+id S|s5
0id5 +id S| rd

(2)E—=T
(3)E—=E+T
(4)T—id
(5)T—(E)

S action goto

id | + () S E T

O | s5 s/ gl | gb

1 s3 acc

2

3 | s5 s/ gl

4 {3 (r3(r3|r3]|Tr3

5 rd | rd | rd | rd | r4

6 | r2 | r2|r2]|r2]|r2

7 | s5 s/ g8 | gb

8 s3 s9

9 |51 5155|715

rn = reduce using rule number n
sm = shift to state m

60

(1)S—=ES

(2)E—=T
P : . d . d (3)E—E+T
arsing 1a+i (4)T - id
Stack grows this way (5)T—(E)
Stack Input Action S action goto
0 id+id $|s5 id | + | ([)| S|E|T
0id5 +id S | rd 0 s 2 gl | 86
1 s3 acc
2
3 | s5 s/ g4
. 4 1 r3 | r3[r3(r3]r3
pop id 5 g
I 5 A1 rd | rd | rd | rd
6 r2 (r2|r2)|r2]r2
7 | s5 s/ g8 | gb
8 s3 s9
9 r5 (5| r5]r5]r5

rn = reduce using rule number n
sm = shift to state m

(1)S—ES
(2)E—=T
P . . d . d (3)E—E+T
arsing 1a+i (4) T — id
Stack grows this way (5)T—(E)
Stack Input Action S action goto
0 id+id S|s5 id | + | (|)| S|E]|T
0id5 +id S| r4 0 | s5 s7 /;J/%
1 s3 | _+—=—Tacc
/ 3 | s5 57 g4
4 1 r3 | r3[r3(r3]r3
push T 6
5 rd | rd | r4d | r4d | r4
6 r2 (r2|r2)|r2]r2
7 | s5 s/ g8 | gb
8 s3 s9
9 r5 (5| r5]r5]r5

rn = reduce using rule number n
sm = shift to state m

62

Stack grows this way

Parsing id+idS

(1)S—ES

Stack Input Action
0 id+id S|s5
0id5 +id S| r4
0T6 +id S| r2

(2)E—=T
(3)E—=E+T
(4)T—id
(5)T—(E)

S action goto

id | + () S E T

O | s5 s/ gl | gb

1 s3 acc

2

3 | s5 s/ gl

4 {3 (r3(r3|r3]|Tr3

5 rd | rd | rd | rd | r4

6 | r2 | r2 | r2|r2]| r2

7 | s5 s/ g8 | gb

8 s3 s9

9 |51 5155|715

rn = reduce using rule number n
sm = shift to state m

63

Stack grows this way

Parsing id+idS

(1)S—ES

Stack Input Action
0 id+id S|s5
0id5 +id S| r4
0T6 +id S| r2
OE1l +id S| s3

(2)E—=T
(3)E—=E+T
(4)T—id
(5)T—(E)

S action goto

id | + () S E T

O | s5 s/ gl | gb

1 s3 acc

2

3 | s5 s/ gl

4 {3 (r3(r3|r3]|Tr3

5 rd | rd | rd | rd | r4

6 | r2 | r2|r2]|r2]|r2

7 | s5 s/ g8 | gb

8 s3 s9

9 |51 5155|715

rn = reduce using rule number n
sm = shift to state m

64

Stack grows this way

Parsing id+idS

(1)S—ES

Stack Input Action
0 id+id S|s5
0id5 +id S| r4
0T6 +id S| r2
OE1l +id S| s3
OE1+3 idS | s5

(2)E—=T
(3)E—=E+T
(4)T—id
(5)T—(E)

S action goto

id | + () S E T

O | s5 s/ gl | gb

1 s3 acc

2

3 | s5 s/ gl

4 {3 (r3(r3|r3]|Tr3

5 rd | rd | rd | rd | r4

6 | r2 | r2|r2]|r2]|r2

7 | s5 s/ g8 | gb

8 s3 s9

9 |51 5155|715

rn = reduce using rule number n
sm = shift to state m

65

Stack grows this way

Parsing id+idS

(1)S—ES

Stack Input Action
0 id+id S|s5
0id5 +id S| r4
0T6 +id S| r2
OE1 +id S| s3
OE1+3 idS | s5
OE1+3id5 S|rd

(2)E—=T
(3)E—=E+T
(4)T—id
(5)T—(E)

S action goto

id | + () S E T

O | s5 s/ gl | gb

1 s3 acc

2

3 | s5 s/ gl

4 {3 (r3(r3|r3]|Tr3

5 rd | rd | rd | rd | r4

6 | r2 | r2|r2]|r2]|r2

7 | s5 s/ g8 | gb

8 s3 s9

9 |51 5155|715

rn = reduce using rule number n
sm = shift to state m

66

Stack grows this way

Parsing id+idS

(1)S—ES

Stack Input Action
0 id+id S|s5
0id5 +id S| r4
0T6 +id S| r2
OE1 +id S |s3
OE1+3 idS | s5
OE1+3id5 S|rd
OE1+3T4 S|r3

(2)E—=T
(3)E—=E+T
(4)T—id
(5)T—(E)

S action goto

id | + () S E T

O | s5 s/ gl | gb

1 s3 acc

2

3 | s5 s/ gl

4 {3 (r3(r3|r3]|7r3

5 rd | rd | rd | rd | r4

6 | r2 | r2|r2]|r2]|r2

7 | s5 s/ g8 | gb

8 s3 s9

9 |51 5155|715

rn = reduce using rule number n
sm = shift to state m

67

Stack grows this way

Parsing id+idS

(1)S—ES

Stack Input Action
0 id+id S|s5
0id5 +id S| r4
0T6 +id S| r2
OE1 +id S |s3
OE1+3 idS | s5
OE1+3id5 S|rd
OE1+3T4 S|r3
OE1 S|s2

(2)E—=T
(3)E—=E+T
(4)T—id
(5)T—(E)

S action goto

id | + () S E T

O | s5 s/ gl | gb

1 s3 acc

2

3 | s5 s/ gl

4 {3 (r3(r3|r3]|Tr3

5 rd | rd | rd | rd | r4

6 | r2 | r2|r2]|r2]|r2

7 | s5 s/ g8 | gb

8 s3 s9

9 |51 5155|715

rn = reduce using rule number n
sm = shift to state m

68

Constructing an LR parsing table

e Construct a (determinized) transition
diagram from LR items

e If there are conflicts — stop
e Fill table entries from diagram

69

LR Iitem

Already matched To be matched

Input

N — o°*f

Hypothesis about a3 being a possible handle, so far we’ve matched
o, expecting to see [3 7

Types of LR(0) items

N — o®[Sshiftltem

N — O(B' Reduce ltem

LR(0) automaton example

<hift state 0 - reduce state
Z— °ES T — (°E)
E— T (E— T
E—<°E+T E—°*E+T
T— e / q T— e
eew) T (@
E 7¥r/ (
d, q
+ E— E+°T
T—ei
S

T
q

Computing item sets

e |nitial set
— Zis in the start symbol
— e-closure({ Z—°*a | Z—a is in the grammar })

e Next set from a set I and the next symbol X
— step(I,X) ={ N—aX*B | N—a*XP in the item set 1}
— nextSet(I,X) = e-closure(step(1,X))

73

Operations for transition
diagram construction

e |nitial = {S’—*SS}

e Foranitemset I
Closure(I) = Closure(I) U
{X—euisin grammar| N—a*XB in I}

e Goto(I, X) ={ N—aX*B | N—a*XB in I}

omitting S’

[Forsimplici/j Initial example

e |nitial = {S — °E S}

Grammar

(1)S—ES
(2)E—T
(3)E—E+T
(4)T—id
(5)T—(E)

75

Closure example

e |nitial = {S — °E S}
e Closure({S — °E S}) = {

Grammar

(1)S—ES
(2)E—T
(3)E—E+T
(4) T —id
(5)T—(E)

76

Goto example

Grammar
(1) S—ES
e |nitial = {S — *E S} 2)E—T
(3)E—E+T
e Closure({S — °E S}) ={ (4)T —id
S%‘ES (5)T—(E)
E— oT
E—>oE+T
T — eid
T—<(E) }

e Goto({S—°*ES,E—*E+T, T— °id}, E) =
{S—E*S,E—E*+T}

71

Constructing the transition diagram

e Start with state O containing item
Closure({S — °E S})
e Repeat until no new states are discovered

— For every state p containing item set Ip, and
symbol N, compute state q containing item set
Iq = Closure(goto(Ip, N))

78

LR(0) automaton example

<hift state 0 - reduce state
Z— °ES T — (°E)
E— T (E— T
E—<°E+T E—°*E+T
T— e / q T— e
eew) T (@
E 7¥r/ (
d, q
+ E— E+°T
T—ei
S

T
q

Automaton construction example

()S—E$
Q) E—T
B)E—E+T
4) T —id
- (5)T - (E)

— Initialize

80

do

Automaton construction example

()S—ES§
2Q)E—=T
B)E—E+T
4 T—1d
) T—=(E)

apply
Closure

81

Automaton construction example

()S—ES§
2Q)E—=T
B)E—E+T
4 T—1d
) T—=(E)

82

Automaton construction example

Yo T

S — °ES
E— T (

(1)S—=ES$
2 E—T
3)E—E+T
4) T —id
(5)T—(E)

..Q
: :G\
_|
&y

non-terminal transition
corresponds to goto

E— eE+T
T — oi

T — o(E) |

d.,
terminal transition
corresponds to shift
action in parse table

action in parse table

ds
i

T—ie
. ((
|

¢

b

q

Qs
T— i
) y

T — *(E)
@ a single reduce item
corresponds to reduce action 83

Are we done?

e Can make a transition diagram for any
grammar

e Can make a GOTO table for every grammar

e Cannot make a deterministic ACTION table
for every grammar

LR(O) conflicts

7

T— s

T —i°[E]
Shift/reduce conflict

85

LR(O) conflicts

7

reduce/reduce conflict

86

LR(O) conflicts

e Any grammar with an e-rule cannot be LR(0)

e Inherent shift/reduce conflict
— A— g®* —reduce item
— P —a*AB — shift item

— A— ¢* in Closure (P —a°*AB)

87

Conflicts

e Can construct a diagram for every grammar
but some may introduce conflicts

e shift-reduce conflict: an item set contains at
least one shift item and one reduce item

e reduce-reduce conflict: an item set
contains two reduce items

88

LR variants

LR(0) — what we’ve seen so far
SLR(O)

— Removes infeasible reduce actions via FOLLOW
set reasoning

LR(1)
— LR(0) with one lookahead token in items
LALR(O)

— LR(1) with merging of states with same LR(0)
component

89

LR (0) GOTO/ACTIONS tables

ACTION
GOATO Table

90

SLR parsing

e A handle should not be reduced to a non-terminal N if the
lookahead is a token that cannot follow N

e Areduceitem N — a¢° is applicable only when the
lookahead is in FOLLOW(N)

— If bis notin FOLLOW(N) we just proved there is no derivation S
=> * BNb.

— Thus, it is safe to remove the reduce item from the conflicted
state

e Differs from LR(0) only on the ACTION table

— Now a row in the parsing table may contain both shift actions and
reduce actions and we need to consult the current token to
decide which one to take

91

SLR action table
state | i |+ [([) [t 1] s |

0 shift shift

1 shift accept
2

3 shift shift

4 E—E+T E—E+T E—E+T
5 T—i T—i [shift] T—i
6 E—-T E—-T E—-T
7 shift shift

8 shift shift

9 T—(E) T—(E) T—(E)

SLR — use 1 token look-ahead

S befo

a
—>1_L1

—)

VS.

o[0) shift
ql shift
g2

g3 shift
g4 E—E+T
g5 T—i
g6 E—-T
q7 shift
g8 shift
q9 T—E

LR(0) — no look-ahead

92

LR(1) grammars

In SLR: a reduce item N — a* is applicable
only when the lookahead is in FOLLOW(N)

But FOLLOW(N) merges lookahead for all
alternatives for N

— Insensitive to the context of a given production

LR(1) keeps lookahead with each LR item

ldea: a more refined notion of follows
computed per item

93

— LR(0) item

LR(1) items

e LR(1)item is a pair

— Lookahead token

e Meaning

— We matched the part left of the dot, looking to match the part on

the right of the dot, followed by the lookahead token

e Example

— The production L — id yields the following LR(1) items

fkmhés A

(1)S>L=R
(2)S>R

(%L%*R

\(S)RQL)

LR(O) items

|

[L > eid]
[L = id e]

|

LR(1) items

FIL> eid, *]
[L> eid, =]
[L > eid, id]
[L> eid, S]
[L>id e, *]
[L—>id e, =]

[L->id e, id]
\JL>ide] /

94

LALR(1)

LR(1) tables have huge number of entries
Often don’t need such refined observation

— (and cost)

ldea: find states with the same LR(0) component
and merge their lookaheads component as long
as there are no conflicts

LALR(1) not as powerful as LR(1) in theory but
works quite well in practice

— Merging may not introduce new shift-reduce conflicts,
only reduce-reduce

95

Summary

96

LR is More Powerful than LL

e Any LL(k) language is also in LR(k), i.e., LL(k) C LR(k).

— LR is more popular in automatic tools

e But less intuitive

e Also, the lookahead is counted differently in the two cases

— In an LL(k) derivation the algorithm sees the left-hand side of the
rule + k input tokens and then must select the derivation rule
— In LR(k), the algorithm “sees” all right-hand side of the derivation
rule + k input tokens and then reduces
e LR(0) sees the entire right-side, but no input token

97

Grammar Hierarchy

Non-ambiguous CFG
LR(1)
/~ LARQ) /E\

(SIR(1)

RO) | O
A —

.

