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But first, a short reminder




What is a compiler?

“A compiler is a computer program that
transforms source code written in a
programming language (source language) into
another language (target language).

The most common reason for wanting to
transform source code is to create an executable
program.”

--Wikipedia
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What is a compiler?

“A is a computer program that

source written in a programming language
(source language) into another language (target
language).

The most common reason for wanting to transform
source code is to create an executable program.”



A CPU is (a sort of) an Interpreter

“A is a computer program that

source written in a programming language
(source language) into another language (target
language).

The most common reason for wanting to transform
source code is to create an executable program.”

e |nterprets machine code ...
— Why not AST?

e Do we want to go from AST directly to MC?

— We can, but ...
e Machine specific
e Very low level
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Code Generation in Stages
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1 Note: Compile Time vs Runtime

e Compile time: Data structures used during
program compilation

e Runtime: Data structures used during program
execution

— Activation record stack
— Memory management

e The compiler generates code that allows the
program to interact with the runtime
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Intermediate Representation
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Source
code

(program)

Code Generation: IR

e Translating from abstract syntax (AST) to
intermediate representation (IR)
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Compilers

Principles, Techniques,

i'.A : and Tools ,
N 4
A o)

Three-Address Code IR g
Chapteé
e A popular form of IR

e High-level assembly where instructions
have at most three operands
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IR by example



Sub-expressions example

Source IR

int a;

int b;

int c;

intd;

a=b+c+d; _t0=b+cg;

b=a*a+b*b; a=_t0+d;
_tl=a*a;
_t2=b *b;
b=_t1+ t2;



Sub-expressions example

Source

int a;

int b;

int c;

intd;
a=b+c+d;
b=a*a+b*b;

LIR (unoptimized)

_t0=b +g;
a=_to+d;
tl=a*a;
_t2=b *b;
b= _t1+ t2;

7

Temporaries explicitly
store intermediate
values resulting from

sub-expressions
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Variable assignments

var = constant;

var, =var,;

var, = var, op var,;

var, = constant op var,;

var, = var, op constant;

var = constant, op constant, ;
Permitted operators are +, -, *, /, %
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Booleans

e Boolean variables are represented as integers
that have zero or nonzero values

e |n addition to the arithmetic operator, TAC
supports <, ==, | |, and &&

e How might you compile the following?

b= (x <=vy); t0 = x < y;

tl =x ==y;
b= _t0 || _tl1;
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Unary operators

e How might you compile the following assignments
from unary statements?

o
|

o
]

%

z = lw; z =w == 0;
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Control flow instructions

Label introduction
_label name:
Indicates a point in the code that can be jumped to

Unconditional jump: go to instruction following label L
Goto L;

Conditional jump: test condition variable t;

if 0, jump to label L
IfZ t Goto L;

Similarly : test condition variable t;
if not zero, jump to label L
IfNZ t Goto L;

23



Control-flow example — conditions

int x;
int y;

int z;

if (x
z
else
z
Z

Z =

LO:

L1:

t0

Xx <y,

EfZ _t0 Goto _LO;

A

X,

Goto _Ll;

A

Y-

z * z;
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Control-flow example — loops

int x;

int y;

while (x < y) {

X =

x * 2;

LO:

L1:

0 = x < y;

IfZ t0 Goto LI1;
X =x * 2;

Goto LO;

y = X;

25



Procedures / Functions

P(){
int y=1, x=0;
x=f (a,,..,a,)
print (x) ;
}

e What happens in runtime?
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Memory Layout
(popular convention)

Global Variables

Stack
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High
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Low
addresses
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A logical stack frame

—_

Param N

Parameters — Param N-1
(actual

arguments) < |Param1

_t0 __ Stack frame

for function
Localsand _| _tk f(a,,...,a,)
temporaries X
Y _
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Procedures / Functions

e A procedure call instruction pushes arguments to
stack and jumps to the function label
A statement x=£f (al,..,an) ; looks like
Push al; .. Push an;
Call f£;

Pop x; // pop returned value, and copy to it
e Returning a value is done by pushing it to the

stack (return x;)
Push x;

e Return control to caller (and roll up stack)
Return;
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Functions example

int SimpleFn (int z) {
int x, y;
X =x *y * z;

return x;

void main () {
int w;

w = SimpleFunction(137);

_SimpleFn:
t0 = x * y;

Return;

main:

_t0 137;

Push tO0;

Call SimpleFn;
Pop w;
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Memory access instructions

Copy instruction:a=b

Load/store instructions:
a="%b *a=b

Address of instruction a=&b
Array accesses:

a=Dbli ali]=b
Field accesses:
a = b|[f] alfl=b

Memory allocation instruction:
a = alloc(size)
— Sometimes left out (e.g., malloc is a procedure in C)



Memory access instructions

Copy instruction:a=b

Load/store instructions:
a=%*b *a=b

Address of instruction a=&b
Array accesses:

a=Dbli ali]=b
Field accesses:
a = b|[f] alfl=b

Memory allocation instruction:
a = alloc(size)
— Sometimes left out (e.g., malloc is a procedure in C)



Array operations

X .= yli]

4 )
tl:=&y ;tl=address-ofy
t2:=tl1+i ;t2 =address of y][i]
X :=*t2 ;loads the value located at y]i] )
x[i] ==y

4 )

tl :=&x ;tl=address-of x
t2 :=tl+i ;12 =address of x]i]

\*tz =y ; store through pointer
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IR Summary



Intermediate representation

* Alanguage that is between the source language and
the target language — not specific to any machine

 Goal 1: retargeting compiler components for
different source languages/target machines

Java Pentium

C++ IR Java bytecode

Pyhton Sparc
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Intermediate representation

e A language that is between the source language and
the target language — not specific to any machine

e Goal 1: retargeting compiler components for
different source languages/target machines

e Goal 2: machine-independent optimizer
— Narrow interface: small number of instruction types

Lowering:> Code Gen.
|

optimize

Pentium

Java bytecode

Sparc
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Multiple IRs

e Some optimizations require high-level
structure

e Others more appropriate on low-level code
e Solution: use multiple IR stages

optimize optimize Pentium

AST Java bytecode

Sparc
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AST vs. LIR for imperative languages
LIR

AST

e Rich set of language constructs
e Rich type system

e Declarations: types (classes,
interfaces), functions,
variables

e Control flow statements: if-
then-else, while-do, break-
continue, switch, exceptions

e Data statements: assignments,
array access, field access

e Expressions: variables,
constants, arithmetic
operators, logical operators,
function calls

An abstract machine language
Very limited type system

Only computation-related
code

Labels and conditional/
unconditional jumps, no
looping

Data movements, generic
memory access statements

No sub-expressions, logical as
numeric, temporaries,
constants, function calls —
explicit argument passing

38



Lowering AST to TAC




IR Generation

K Valid Abstract Syntax Tree
Symbol Table

Op(+) Id(b)

PN

Num(23) Num(7)

< |

Intermediate Representation (IR)

!

) Executable Code )

Verification (possible runtime)
Errors/Warnings
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TAC generation

e At this stage in compilation, we have
— an AST
— annotated with scope information
— and annotated with type information
e To generate TAC for the program, we do
recursive tree traversal

— Generate TAC for any subexpressions or
substatements

— Using the result, generate TAC for the overall
expression
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TAC generation for expressions

e Define a function cgen(expr) that generates
TAC that computes an expression, stores it in a
temporary variable, then hands back the name
of that temporary

— Define cgen directly for atomic expressions
(constants, this, identifiers, etc.)
e Define cgen recursively for compound

expressions (binary operators, function calls,
etc.)
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cgen for basic expressions

cgen(k) ={// k is a constant
Choose a new temporary t
Emit(t=k)
Return t

J

cgen(id) ={//id is an identifier
Choose a new temporary t
Emit(t=id)
Returnt

J
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cgen for binary operators

cgen(e, +e,) ={
Choose a new temporary t
Let t, = cgen(e,)
Let t, = cgen(e,)
Emit(t=t, +t,)
Return t
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cgen example

cgen(5 + x) ={
Choose a new temporary t
Let t, = cgen(5)
Let t, = cgen(x)
Emit(t=t, +t,)
Return t
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cgen example

cgen(5 + x) ={

Choose a new temporary t

Let t, ={
Choose a new temporary t
Emit(t=5;)
Returnt

}

Let t, = cgen(x)

Emit(t= t, + t2)

Returnt
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cgen example

cgen(5 + x) ={

Choose a new temporary t Returns an arbitrary
| et t1 = { fresh name

Choose a new temporary t
Emit(t=5;)

Return t tl = 5;
} t2

I
G

Choose a new temporary t
Emit(t=x;)
Return t

}
Emit(t = t, + tz,')
Returnt
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cgen example

cgen(5 + x) ={
Choose a new temporary t

Returns an arbitrary

Let t, = { fresh name
Choose a new temporary t
Emit(t=5;)

Return t _ti8 = 5;

} _t29 = x;
Choose a new temporary t /\
Emit(t=x; )

Ret ¢ Inefficient translation,
eturn but we will improve

} this later

Emit( t= tl + l'z,')

Return t



cgen as recursive AST traversal

cgen(5 + x)

l

tl = 5;

t2 = x;
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Naive cgen for expressions

e Maintain a counter for temporaries in c
e |nitially:c=0
e cgen(e,ope,)={

Let A = cgen(e,)

c=c+1

Let B = cgen(e,)

c=c+1

Emit( _tc=AopB;)

Return tc
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cgen( (a*b)-d)

Example
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c=0
cgen( (a*b)-d)

Example
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c=0
cgen( (a*b)-d) = {
Let A = cgen(a*b)
c=c+1
Let B = cgen(d)
c=c+1
Emit( _tc=A-B;)
Return _tc

Example
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c=0
cgen( (a*b)-d) = {
Let A = {
Let A = cgen(a)
c=c+1
Let B = cgen(b)
c=c+1
Emit( _tc=A *B;)
Return tc
}
c=c+1
Let B = cgen(d)
c=c+1
Emit( _tc=A-B;)
Return _tc

Example
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Example

c=0
cgen( (a*b)-d) ={
Let A = { here A=_t0
‘ Let A ={ Emit(_tc =a;), return _tc}
c=c+1
Let B = { Emit(_tc=b;), return _tc}
c=c+1
Emit(_tc=A *B;)
Return _tc
}
c=c+1
Let B = { Emit(_tc=d;), return _tc}
c=c+1
Emit( _tc=A-B;)
Return _tc

Code
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Example

c=0
cgen( (a*b)-d) ={
Let A = { here A=_t0
Let A ={ Emit(_tc =a;), return _tc}
c=c+1
Let B = { Emit(_tc=b;), return _tc}
c=c+1
Emit(_tc=A *B;)
Return _tc
}
c=c+1

Let B = { Emit(_tc=d;), return _tc}
c=c+1

Emit( _tc=A-B;)

Return _tc

Code
_tO0=a;
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Example

c=0
cgen( (a*b)-d) ={
Let A = { here A=_t0
Let A ={ Emit(_tc =a;), return _tc}
c=c+1
Let B = { Emit(_tc=b;), return _tc}
c=c+1
Emit(_tc=A *B;)
Return _tc
}
c=c+1

Let B = { Emit(_tc=d;), return _tc}
c=c+1

Emit( _tc=A-B;)

Return _tc

Code
t0=a;
tl=b;
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Example

c=0
cgen( (a*b)-d) ={
Let A = { here A=_t0
Let A ={ Emit(_tc =a;), return _tc}
c=c+1
Let B = { Emit(_tc=b;), return _tc}
c=c+1
Emit(_tc=A *B;)
Return _tc
}
c=c+1

Let B = { Emit(_tc=d;), return _tc}
c=c+1

Emit( _tc=A-B;)

Return _tc

Code
_tO0=ay;
_tl=b;

_t2= t0* tl
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Example

c=0 here A=_t2
cgen( (a* =
Let A =% here A=_t0
Let A ={ Emit(_tc =a;), return _tc}
c=c+1
Let B = { Emit(_tc=b;), return _tc}
c=c+1
Emit(_tc=A *B;)
Return _tc
}
c=c+1
Let B = { Emit(_tc=d;), return _tc}
c=c+1
Emit( _tc=A-B;)
Return _tc

Code
_tO0=ay;
_tl=b;

_t2= t0* tl
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Example

c=0 here A=_t2
cgen( (a* =
Let A =% here A=_t0
Let A ={ Emit(_tc =a;), return _tc}
c=c+1
Let B = { Emit(_tc=b;), return _tc}
c=c+1
Emit(_tc=A *B;)
Return _tc
}
c=c+1
Let B = { Emit(_tc=d;), return _tc}
c=c+1
Emit( _tc=A-B;)
Return _tc

Code
_tO0=ay;
_tl=b;

_t2= t0* tl
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Example

c=0 here A=_t2
cgen( (a* - ~ Code
Let A= { here A= t0 _tO0=a;
Let A = { Emit(_tc = a;), return _tc} tl=Db;
c=c+1l t2= t0* tl
Let B = { Emit(_tc=b;), return _tc} _t3=a; o
c=c+1 —
Emit(_tc=A *B;) _td=_t2-_t3
Return _tc
}
c=c+1
Let B = { Emit(_tc=d;), return _tc}
c=c+1
Emit(_tc=A-B;)
Return _tc
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cgen for short-circuit disjunction

cgen(el || e2)

Emit( t1=0;, t2=0;)
Let L
Let tl1 =cgen(el)

Emit( IfNZ _t1 Goto L_g.,)
Let t2 =cgen(e2)

Emit( L g )

Emit( t= t1]|]| t2;)
Return _t

be a new label

after
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cgen for statements

e \We can extend the cgen function to
operate over statements as well

e Unlike cgen for expressions, cgen for
statements does not return the name of a
temporary holding a value.

— (Why?)
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cgen for simple statements

cgen(expr;) = {
cgen(expr)

J



cgen for if-then-else

cgen(if (e) s, else s,)

Let t=cgen(e)
Let L
Let L. be a new label
Let L ¢,
Emit( IfZ _t Goto L,.,; )
cgen(s,)

Emit( Goto L_g.,; )
Emit( Li,..: )

cgen(s,)

Emit( Goto L ¢.,;)

Emit( Lo, )

be a new label

true

be a new label
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cgen for while loops

cgen(while (expr) stmt)

Let I‘before
Let L. be a new label.
Emit( I-before: )

Let t = cgen(expr)

Emit( IfZ t Goto Lafter; )
cgen(stmt)

Emit( Goto L ¢ o; )
Emit( L. )

be a new label.
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Our first optimization
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Naive cgen for expressions

e Maintain a counter for temporaries in c
e |nitially:c=0
e cgen(e,ope,)={

Let A = cgen(e,)

c=c+1

Let B = cgen(e,)

c=c+1

Emit( _tc=AopB;)

Return tc
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Naive translation

cgen translation shown so far very inefficient

— Generates (too) many temporaries — one per sub-
expression

— Generates many instructions — at least one per sub-
expression

Expensive in terms of running time and space
Code bloat

We can do much better ...

69



Naive cgen for expressions

Maintain a counter for temporaries in c
Initially: c=0
cgen(e, op e,) =1

Let A = cgen(e,)

c=c+1

Let B = cgen(e,)

c=c+1

Emit( tc=AopB;)

Return tc

}

Observation: temporaries in cgen(e,) can be reused in
cgen(e,)
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Improving cgen for expressions

Observation — naive translation needlessly generates
temporaries for leaf expressions

Observation — temporaries used exactly once

— Once a temporary has been read it can be reused for
another sub-expression

cgen(e, op e,) =1
Let _t1 = cgen(e,)
Let _t2 = cgen(e,)
Emit( t=tlop t2;)
Return t

}

Temporaries cgen(e,) can be reused in cgen(e,)
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Sethi-Ullman translation

e Algorithm by Ravi Sethi and Jeffrey D. Ullman
to emit optimal TAC
— Minimizes number of temporaries

e Main data structure in algorithm is a stack of

temporaries

— Stack corresponds to recursive invocations of _t = cgen(e)
— All the temporaries on the stack are live
e Live = contain a value that is needed later on
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Live temporaries stack

e Implementation: use counter c to implement
live temporaries stack

— Temporaries _t(0), ..., t(c) are alive
— Temporaries _t(c+1), t(c+2)... can be reused
— Push means increment ¢, pop means decrement c

* In the translation of _t(c)=cgen(e, op e,)
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Using stack of temporaries example

10 = cgen( ((c*d)-(e*f))+(a*b) )

------ c = 0
~t0 = c¢*d
------ cC = C 1
£t0 = cgen(c*d) - (e*f)) _tl =e*t
- - < ¢< -/ mm_—_—— cC = C 1
t0 = t0 - t1l
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Tempora ries]

Weighted register allocation

e Suppose we have expression e, op e,

— e,, e, without side-effects
e That is, no function calls, memory accesses, ++x

— cgen(e, op e,) = cgen(e, op e,)
— Does order of translation matter?

e Sethi & Ullman’s algorithm translates heavier
sub-tree first

— Optimal local (per-statement) allocation for side-
effect-free statements
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Example

10 = cgen( a+(b+(c*d)) )
+ and * are commutative operators

left child first
_t0 |+

AN

t0| a tl | +

SN

tl |b

t2

t2

4 temporaries

AN

C

right child first

(3

t3

to |+

d

AN

t0 | +

t1|b t0

tl |c

2 temporary
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Weighted register allocation

Can save registers by re-ordering subtree computations

Label each node with its weight
— Weight = number of registers needed
— Leaf weight known
— Internal node weight
o w(left) > w(right) then w = left
e w(right) > w(left) then w = right
e w(right) = w(left) thenw =left +1
Choose heavier child as first to be translated

WARNING: have to check that no side-effects exist before
attempting to apply this optimization

— pre-pass on the tree
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Weighted reg. alloc. example
10 =cgen( a+b[5*c] )

Phase 1: - check absence of side-effects in expression tree
- assign weight to each AST node

+ @
d array access

base /Wx
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t0
tl
t0
tl
t0
tl
t0

Weighted reg. alloc. example
10 =cgen( a+b[5*c] )

Phase 2: - use weights to decide on order of translation

t0

tl

)

/\%\/ier sub-tree

t0 j[array access

base /Wx

\Hei/ier sub-tree
_t1 /\

(¥ t0

b | w=0 to | *
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Note on weighted register allocation

e Must reset temporaries counter after every
statement: x=y; y=z

— should not be translated to

_t0 =y,
x = t0;
_tl = z;
y = _tl1;

— But rather to

# Finished translating statement. Set c=0
_t0 = z;
y= _t0;
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