Program Analysis and Verification Course 0368-4479
 2015/15 - Semester B
 Exercise \#2

Noam Rinetzky

Due Monday 15/June/2015

1 Galois Connections and Distributive functions

1.1 Question 1

Let A and C be lattices, and let $\alpha: C \rightarrow A$ and $\gamma: A \rightarrow C$ be total functions. Then: (A) $\forall c \in C: c \sqsubseteq \gamma(\alpha(c))$ and (B) $\forall a \in A: \alpha(\gamma(a)) \sqsubseteq a$ and (C) α and γ are monotonic iff (D) $\forall a \in A, c \in C: \alpha(c) \sqsubseteq a \Leftrightarrow c \sqsubseteq \gamma(a)$.

1.2 Question 2

(i) If both $\left(A, \alpha, \gamma_{1}, C\right)$ and $\left(A, \alpha, \gamma_{2}, C\right)$ are Galois connections, than $\gamma_{1}=\gamma_{2}$. (ii) If both $\left(A, \alpha_{1}, \gamma, C\right)$ and $\left(A, \alpha_{2}, \gamma, C\right)$ are Galois connections, than $\alpha_{1}=\alpha_{2}$.

1.3 Question 3

Let S be a set, L a lattice and $\beta: S \rightarrow L$ a total function. Let $\alpha_{\beta}: 2^{S} \rightarrow L$ be a total function defined as $\alpha_{\beta}(X)=\sqcup\{\beta(s) \mid s \in X\}$ for any $X \subseteq S$, and $\gamma_{\beta}(a): L \rightarrow 2^{S}$, a total function defined as $\gamma_{\beta}(a)=\{s \in S \mid \beta(s) \sqsubseteq a\}$ for any $a \in L$. Then, $\left(2^{S}, \alpha_{\beta}, \gamma_{\beta}, L\right)$ is a Galois connection.

1.4 Question 4

Let S be a set and L a lattice. Let $\left(2^{S}, \alpha, \gamma, L\right)$ be a Galois connection. Then, (A) exists $\beta: S \rightarrow L$ s.t. $\alpha(X)=\sqcup\{\beta(s) \mid s \in X\}$ for any $X \subseteq S$, and (B) $\gamma(a)=\{s \in$ $S \mid \beta(s) \sqsubseteq a\}$ for any $a \in A$.

2 Pointer Analysis

The states of the concrete semantics used in this section are functions in $S=$ Loc \rightarrow Loc $\cup Z$. The abstract domain in this section is $A=2^{\text {Var** Var* }}$ and the abstraction function (α) is defined by means of an extraction function (β), where $\beta(s)=\{(x, y) \mid$ $s(\operatorname{loc}(x))=\operatorname{loc}(y)\}$. The function loc : Var* \rightarrow Loc returns the "address" of each variable.

Recall that as usual in cases in which the Galois connection induced by an extraction function, $\alpha(S)=\cup\{\beta(s) \mid s \in S\}$, and $\gamma(a)=\left\{s \in 2^{\operatorname{Var}^{*} \times \operatorname{Var}^{*}} \mid \beta(s) \subseteq a\right\}$.

2.1 Question 1

The concrete semantics of the statement $x=y$ is $\llbracket x=y \rrbracket(s)=s[\operatorname{loc}(x) \mapsto s(\operatorname{loc}(y))]$. The abstract transformer associated with this statement is $\llbracket x=y \rrbracket \rrbracket(a)=a \backslash\{(x, z) \mid$ $z \in \operatorname{Var} *\} \cup\{(x, w) \mid(y, w) \in a\}$. Show that the abstract transformer is the best, e.g., $\llbracket x=y \rrbracket \sharp(a)=\alpha(\{\llbracket x=y \rrbracket(s) \mid s \in \gamma(a)\})$, for any $a \in A$.

2.2 Question 2

The abstract transformer of simple assignment $\left(\llbracket x=y \rrbracket^{\sharp}(a)=a \backslash\{(x, z) \mid z \in\right.$ $\operatorname{Var} *\} \cup\{(x, w) \mid(y, w) \in a\})$ is distributive, i.e.,

$$
\forall a_{1}, a_{2} \in A: \llbracket x=y \rrbracket^{\sharp}\left(a_{1}\right) \sqcup \llbracket x=y \rrbracket^{\sharp}\left(a_{1}\right)=\llbracket x=y \rrbracket^{\sharp}\left(a_{1} \sqcup a_{2}\right)
$$

2.3 Question 3

The abstract transformer of the statement $\llbracket * x=y \rrbracket^{\sharp}(a)=a \cup\{(t, z) \mid(x, t) \in$ $a,(y, z) \in a\}$ is not distributive, i.e., exists $a_{1}, a_{2} \in A$ s.t. $\llbracket * x=y \rrbracket \sharp\left(a_{1}\right) \sqcup \llbracket * x=$ $y \rrbracket^{\sharp}\left(a_{1}\right) \neq \llbracket * x=y \rrbracket^{\sharp}\left(a_{1} \sqcup a_{2}\right)$

3 Interval Analysis

In this section, (Interval, $\sqsubseteq)$ is a complete lattice as presented in class.

3.1 Question 1

Define an abstract transformer $\llbracket x=y+c \rrbracket^{\sharp}$ and show that it is the best transformer. (Do not use γ to define he transformer.)

3.2 Question 2

Let Var* be a finite set of program variables.

1. Show that (Var* \rightarrow Interval, \sqsubseteq^{\prime}), where $\forall f_{1}, f_{2} \in \operatorname{Var}^{*} \rightarrow$ Interval: $f_{1} \sqsubseteq^{\prime}$ $f_{2} \Longleftrightarrow \forall v \in \operatorname{Var}^{*}, f_{1}(v) \sqsubseteq f_{2}(v)$ is a complete lattice.
2. Define a widening operator for the lattice Show that (Var* \rightarrow Interval, \sqsubseteq^{\prime}) defined above.
3. Define functions α^{\prime} and γ^{\prime} such that $\left(P(\operatorname{Var} * \rightarrow \mathbb{Z}), \alpha^{\prime}, \gamma^{\prime}\right.$, Var $* \rightarrow$ Interval $)$ is a Galois connection. Is the Galois connection a Galois insertion?
