Program Analysis
and Verification

0368-4479

Noam Rinetzky

Lecture 2: Operational Semantics

Slides credit: Tom Ball, Dawson Engler, Roman Manevich, Erik Poll,
Mooly Sagiv, Jean Souyris, Eran Tromer, Avishai Wool, Eran Yahav

Verification by over-approximation

Exact set of
configurations/
behaviors

Over
Approximation

Under
Approximation

\universe

Program semantics

/ Exact set of

configurations/
behaviors

\universe /

Program analysis & verification

assert (y == 42); ?

What does P do?

assert (y == 42); ?

What does P mean?

assert (y ==42);

syntax semantics

Program semantics

State-transformer
— Set-of-states transformer
— Trace transformer

Predicate-transformer
Functions

Cat-transformer

Program semantics & Verification

Agenda

* Operational semantics
— Natural operational semantics
— Structural operational semantics

What does P mean?

assert (y ==42);

syntax semantics

10

“Standard” semantics

y="7
X=y*2

if (x% 2==0){
y =42;

} else {

y =73
foo();

}
assert (y == 42);

..-1,0,1,-1,0,1,...

y X

11

“Standard” semantics

(“state transformer”)

y=7
X=y*2

if (x% 2 ==0) {
y=42;

} else {

y =73
foo();

}
assert (y == 42);

..-1,0,1,-1,0,1,...

y X

12

“Standard” semantics

(“state transformer”)

y="7; y=3, x=9
X=y*2
if (x% 2 ==0) {
y =42;
} else {
y =73;
foo();

}
assert (y == 42);

..-1,0,1,-1,0,1,...

y X

13

“Standard” semantics

(“state transformer”)

y="7; y=3, x=9
X=y*2 y=3, Xx=6 1,01
if (x% 2==0){ vy=3, x=6 y
y=42; v=42, x=6
} else {
y =73,
foo();
}

assert (y ==42); y=42, x=6

, - --1,0,1,...

14

“State transformer” semantics

l y=3,Xx=
l y=3,x=6 l;
4

y=3,x=9

—

._/ reachable

/ states
/Qmitial
states

15

“State transformer” semantics

reachable

states

/
|n|t|al o iy 48
states

y4x1

16

“State transformer” semantics

reachable

/ states

initial
stateso

“State transformer” semantics

Main idea: find all reachable states*

“Standard” (collecting) semantics

(“sets-of states-transformer”)

?; {(y,x) | y,x € Nat}

assert (y == 42);

19

“Standard” (collecting) semantics

(“sets-of states-transformer”)

Yy = ?; {(y=3, x=9),(y=4,x=1),(y=..., x=...)}
X=y*2 {y=3, x=6),(y=4,x=8),(y=..., x=...)}
if (X % 2 == 0) { {(y=3, x=6),(y=4,x=8),(y=..., x=...)}
y=42; {(y=42, x=6),(y=42,x=8),(y=42, x=...)}
} else {
y =73; {}
foo(); {}

} Yes

assert (y == 42); {(y=42, x=6),(y=42,x=8),(y=42, x=...)}
20

“Set-of-states transformer” semantics

l y=3’ =

y=3,x=6

reachable

y=3,x=9 =0

w

states
./v (o]
|n|t|al o E
states "
y =4,x=1

21

Program semantics

e State-transformer
— Set-of-states transformer
— Trace transformer

* Predicate-transformer
* Functions

22

Program semantics

State-transformer
— Set-of-states transformer
— Trace transformer

Predicate-transformer
Functions

Cat-transformer

23

“Abstract-state transformer”

semantics

y=7
X=y*2

if (x% 2 ==0) {
y =42;

} else {

y =73
foo();

}

assert (y == 42);

y=T, x=T

4 VARN T)
O E O E
\,/ \,/
Y X

Q/=E,X=E)={(0,0), (0,2), (-4,10),--y

24

“Abstract-state transformer”

semantics

y=7; V=Tx=T (T)
X=y*2 y=_,X=E \l/E \l/E
if (x%2==0){ y=T, x=E y X

y = 42 y=T, x=E \ [y=Ex=E}={(0,0), (0,2), (-4,10),..}
} else {

y =73,

fool();
}

assert (y == 42); y=E, x=E YES/?/NO

25

“Abstract-state transformer”

semantics

y =7 v=T,x=T (/T T)
X=y*2 y=T, x=E O\l/E O\l/E
if (x% 2==0){ y=T, x=E v x

y =42 y=T, x=F \YEtreo 02 .
} else {

y =73,

fool();
}
assert (y == 42); y=E, x=E /?/NO

26

“Abstract-state transformer”

semantics

V=7 V=Tx=T (T)
X=y*2 y=T, Xx=E \ /A /
if (x%2==0){ y=T, x=E y X

y = 42 V= E x=E \ [y=Ex=E}={(0,0), (0,2), (-4,10),..}
} else {

y =73,

fool();
}

assert (y%2 == 0) y=E, x=E P,

27

“Abstract-state transformer”
semantics

initial
states

28

“Abstract-state transformer”

semantics

initial
states

29

“Abstract-state transformer”

semantics

initial
states

30

How do we say what P mean?

assert (y == 42);

syntax semantics

31

Agenda

* Operational semantics
— Natural operational semantics
— Structural operational semantics

32

Programming Languages

* Syntax
* “how do | write a program?”

— BNF

— “Parsing”

e Semantics

* “What does my program mean?”

33

Program semantics

e State-transformer
— Set-of-states transformer
— Trace transformer

* Predicate-transformer
* Functions

34

Program semantics

e State-transformer
— Set-of-states transformer
— Trace transformer

* Predicate-transformer
* Functions

35

What semantics do we want?

e Captures the aspects of computations we care
about

— “adequate”

e Hides irrelevant details
— “fully abstract”

 Compositional

36

What semantics do we want?

e Captures the aspects of computations we care
about

— “adequate”

e Hides irrelevant details
— “fully abstract”

 Compositional

Formal semantics

“Formal semantics is concerned with rigorously
specifying the meaning, or behavior, of
programs, pieces of hardware, etc.”

Semantics with Applications —a Formal Introduction (Page 1)
Nielsen & Nielsen

38

Formal semantics

“This theory allows a program to be
manipulated like a formula —
that is to say, its properties can be calculated.”

39

Why formal semantics?

* Implementation-independent definition of a
programming language

* Automatically generating interpreters
— and some day maybe full fledged compilers

e Verification and debugging

— if you don’t know what it does, how do you know
its incorrect?

40

Why formal semantics?

* Implementation-independent definition of a
programming language

* Automatically generating interpreters
— and some day maybe full fledged compilers

e Verification and debugging

— if you don’t know what it does, how do you know
its incorrect?

41

Levels of abstractions and applications

Static Analysis
(abstract semantics)

[

Program Semantics

[

Assembly-level Semantics
(Small-step)

42

Semantic description methods

* Operational semantics
— Natural semantics (big step) [G. Kahn]

— Structural semantics (small step) [G. Plotkin]
* Trace semantics
* Collecting semantics
* [Instrumented semantics]

* Denotational semantics [D. Scott, C. Strachy]

e Axiomatic semantics [C. A. R. Hoare, R. Floyd]

43

Operational Semantics

http://www.daimi.au.dk/~bra8130/Wiley book/wiley.html

l
i
l A Formal Introduction

! !)
_ : | | : ’
'

‘l “ .

» % » »
.
» B »

.
" " .
' .
_ 't .

.
.

| .l .\ .
’ y |

Hanne Riis Nielson
and Flemming Nielson

45

A simple imperative language: While

Abstract syntax:
az=n|x|a+a,|a*xa,|a-—a,
b:= true | false

| a, = dy | a, < a, | _'b| bl/\bQ
Suz=x:=a | skip | §; S,

if b then §, else §,

while 6do §

46

Concrete Syntax vs. Abstract Syntax

Z:=X; X:=Yy,; Y:=2

S
zZ = q S S A S v o= a
N I TN TN |
X X = a y = a Z = a X = a
| | | |
y Z X y
z:=x; (x:=y, y:=2) (z:=x, x:=y),; y:=2

47

Exercise: draw an AST

y:=1; while - (x=1) do (y:=y*x, x:=x-1)

S

IS

S ; S

48

Syntactic categories

7€ Num
x € Var

a € Aexp
b € Bexp
S e Stm

numerals

program variables
arithmetic expressions
boolean expressions
statements

49

Semantic categories

Z
T
State

Example state:
Lookup:
Update:

Integers {0, 1, -1, 2, -2, ...}
Truth values {ff, tt}
Var — Z

s=[x+~5, y»7, z—0]
sx=5
s[x—6] = [x~6, y—7, z—0]

50

Example state manipulations

x—1, y—7, z—16] y =
x+—1, y—7, z—16] t =

x+—1, y—7, z—16][x+—5]

x—1, y—7, z+—16][x+—5] x =

x—1, y—7, 2—16][x—5] y =

51

Semantics of arithmetic expressions

Arithmetic expressions are side-effect free

Semantic function A4 | Aexp | : State — Z

Defined by induction on the syntax tree
[n]s=n

[x]s=sx

[a,+a, [s=A[a,]|s + Al a,]s
[a,-a, [s=A[a,]s- Al a,]s
[a,*a, [s=A[a,]sx Al a, |5
[(a)]s=Aa,]s - notneeded
[-a]ls=0-A[a,]s

Compositional

NN NN NN

Properties can be proved by structural induction

52

Arithmetic expression exercise

Supposesx=3
Evaluate A4 [x+1]s

53

Semantics of boolean expressions

* Boolean expressions are side-effect free

« Semantic function [Bexp | : State = T

 Defined by induction on the syntax tree
[true [s=tt

[false || s = ff

o, =a,]s=

(a,<a,]s=

:b1/\bz]]5=

[-b]s=

NN RNR RN

54

Operational semantics

* Concerned with how to execute programs
— How statements modify state
— Define transition relation between configurations

e Two flavors

— Natural semantics: describes how the overall
results of executions are obtained
» So-called “big-step” semantics
— Structural operational semantics: describes how
the individual steps of a computations take place
* So-called “small-step” semantics

55

Natural operating semantics (NS)

56

Natural operating semantics (NS)

e aka “Large-step semantics”

(S,s) — ¢’

all steps

57

Natural operating semantics

* Developed by Gilles Kahn [STACS 1987]

e Configurations
(S, s) Statement S is about to execute on state s

S Terminal (final) state

e Transitions

(S,s) — s’ Execution of S from s will terminate
with the result state s’

— lgnores non-terminating computations

58

Natural operating semantics

e — defined by rules of the form

side condition

premise !\ /
V4 V4
<51' 51> — S1)) <Sn' Sn> — Sn if
S,s)— s
conclusion

* The meaning of compound statements is
defined using the meaning immediate
constituent statements

59

Natural semantics for While
[ass.] (x:=a,s)— s[x~Aa]s]
[skip,] (skip,s)—s

(S, s) —>5,(S,, sy —s"
[Compns] <51’ 52’ S> — SII

([- (S, 8) =& t Zb] s =t
(1f bthenS, elseS,, s)—s

[] | (S 5) = ¢ t B[b]s - f
(if bthenS,elseS, s)—s

60

Natural semantics for While

[whilef_]

[while®_]

(while bdoS,s)—s

if Z[b]s=ff

Non-compositional

(§,s) = s, (while bdoS, s)—s"
(while bdoS,s)—s”

if Z[b]s=tt

61

Example

* Let s, be the state which assigns zero to all
program variables

(x:=x+1,5,) — Solx—1]
(skip, sy) — S,

(skip, Sp) — Sq (x:=%x+1, 59) — Sp[x—1]
(skip; x:=x+1,5,) — Sy[x—>1]

(x:=x+1, sp) = splx~1]

(1f x=0 then x:=x+1 else skip,s,) — sy[x~1]

62

Derivation trees

e Using axioms and rules to derive a transition
(S, s) — s’ gives a derivation tree
— Root: (S, s) — s’
— Leaves: axioms

— Internal nodes: conclusions of rules
* Immediate children: matching rule premises

63

Derivation tree example 1

* Assume s,=[x-5, y»7, z=0]
s,=[x»5, y»7, z=5]
S,=[x~7, y»7, z-5]
S;=[x~7, y»5, z-5]

[ass,] [ass,]

(z:=%,5) =S, (x:=y,5)—S5,

[comp,] [ass,]

((z:zx; X:=y),so>%s2 (y:=z,52>%53

[comp,]
((z:=x; xX:=y); y:=2%,5)—S;

Derivation tree example 1

* Assume s,=[x-5, y»7, z=0]
s,=[x»5, y»7, z=5]
S,=[x~7, y»7, z-5]
S;=[x~7, y»5, z-5]
[ass,] [ass,]

(z:=%,55) =5, | |[{x:=y,5) =5,

comp,]~~~

((z:=x; x:=Yy),S,) =S,

ass,,.]

(y:i=2,5,) =S,

:ComV

((z:=x; xX:=y); y:=2%,5)—S;

65

Top-down evaluation via derivation trees

* Given a statement S and an input state s
find an output state s’ such that (S, s)—s’

e Start with the root and repeatedly apply rules
until the axioms are reached

— Inspect different alternatives in order

* |[n While s’ and the derivation tree is unique

66

Top-down evaluation example

* Factorial program with s x =2

e Shorthand: w=unhi1e - (x=1) do (y:=y*x; x:=x-1)

ass,] ass,]

<y:=y*x, sy »1] > — s[y »2] (x :=x-1, S[y »2] > — s[y »2][x~1]

comp,] \/:Whileﬁm]

(y:=y*x; x:=x-1, s[y »1]) = s[y »2][x~1]

(W, s[y »2][x~1]) = s[y »2, x 1]

[ass,] m\ /

(y:=1,s)— s[y~1] -(W, sly »1]) = sly =2, x=1]

[comN

(y:=1; while - (x=1) do (y:=y*x; x:=x-1),s)— s[y~2][x~1]

67

Program termination

* Given a statement S and input s

— S terminates on s if there exists a state s’ such that
(S,s) >
— S loops on s if there is no state s’ such that
(S,s) >’
e (Given a statement S

— S always terminates if
for every input state s, S terminateson s

— S always loops if
for every input state s, S loops on s

68

Semantic equivalence

* S, and S, are semantically equivalent if
forall sand s’

(S,,s) — s’ if and only if (S,, s) — s’
* Simple example
whilebdo S
is semantically equivalent to:
if bthen(S;whilebdoS)else skip
— Read proof in pages 26-27

69

Properties of natural semantics

* Equivalence of program constructs
— skip; skipis semantically equivalent to skip
—((Sy; S,); S3) is semantically equivalent to
(S1; (S5 S3))
— (x:=5;, y:=x*8) is semantically equivalent to
(x:=5; y:=40)

70

Equivalence of (S;; S,); S; and Sy; (S,; Sj)

71

Equivalence of (S4; S,); S; and Sy; (S,; Sj)
Assume ((S3; S,); S3, s) — s then the following unique derivation tree exists:

(S1,8) = 51,(S,,51) = S1p

((Sy; S,), 8) = 515, (S3, S1,) — S
((Sy; S,); S5,) = &

Using the rule applications above, we can construct the following derivation tree:

(S,, S1) = S35, (53, S15) = S’

(Sy,5) = 54, ((Sz; S3), 515) = 8
((Sy; S,); S5, 5) = &

And vice versa.
72

Deterministic semantics for While

* Theorem: for all statements S and states s, s,
if (S, s) — s, and (S, s) — s, then s,=s,

* The proof uses induction on the shape of

derivation trees (pages 29-30) A Srigilee

— Prove that the property holds for all simple
derivation trees by showing it holds for axioms

— Prove that the property holds for all composite
trees: #nodes>1

* For each rule assume that the property holds for its
premises (induction hypothesis) and prove it holds for
the conclusion of the rule

73

The semantic function S

* The meaning of a statement S is defined as a
partial function from State to State

S, Stm — (State — State)

undefined otherwise

S [S]s= { s if (S, s) — &

* Examples:
S, [skip]s=s
S, [x:=1]s=s[x~1]

S

ns L

[while true do skip]s=undefined

74

Structural operating semantics (SOS)

75

Structural operating semantics (SOS)

e aka “Small-step semantics”

(S, sy =>(S’, s’)

(

first step

/76

Structural operational semantics

* Developed by Gordon Plotkin

* Configurations: y has one of two forms:
(S, s) Statement S is about to execute on state s
S Terminal (final) state

/ first step

* Transitions (S, s) =y
y =(§’, s’) Execution of S from s is not completed and

remaining computation proceeds from intermediate
configuration y

Yy =¢ Execution of S from s has terminated and the final
state is s’

* (S, s)is stuck if there is no y such that (S, s) =y

77

Structural semantics for While
[ass...] {x:=a, s) => s[x~> A[a]s]

SOS

[skip,] (skip,s)=>s

: (Sy)= (5, 5)
[COmp sos:| <Sl; 52, 5> = <Sll; 52’ S’>
When does
[comp?,] (s, s)=s" °°
P sos <51; 52, 5> = <52’ S’>

[if%] (if bthenS,elseS, s)=(S,s) ifZB[b]s=tt

[if" o) (1f bthenS,elseS,, s)=(S, s) ifB[b]s=ff

/78

Structural semantics for While

(while bdosS,s)=
(1f b then
[while,,] S;while bdoS)
else
skip, s)

79

Derivation sequences

A derivation sequence of a statement S starting in state s is
either

A finite sequence y,, Y4, Y, -+ ¥ Such that
1. v,=(S5)
2. V=i
3. Y. is either stuck configuration or a final state

An infinite sequence y,, Y4, Y5, ... such that

1. v,=(59)

2. Yi=Yia
Notations:

— Yo =1, Yo derives vy, in k steps

— Yo="7 Yo derives yin a finite number of steps

For each step there is a corresponding derivation tree

80

Derivation sequence example

* Assume s,=[x~5, y»7, z~0]

((z:=x; x:=Yy); y:=2,5)
= (x:=y; y:=z,S,[z~5])
= (y : =z, (s5[z~5])[x~7])
= ((solz3])[x~7])[y=5]

* Derivation tree for first step:

(z :=x%, 55) = S,[z—5]

(z:=x; x:=y,5,) =>(x:=y, s,[z~5])

((z:=x; x:=y); y:=2,8)=(x:=y; y:=z, Sp[z~5])

81

Evaluation via derivation sequences

* For any While statement S and state s it is
always possible to find at least one derivation
sequence from (S, s)

— Apply axioms and rules forever or until a terminal
or stuck configuration is reached

* Proposition: there are no stuck configurations
in While

82

Factorial (n!) example

* |[nput state s suchthatsx=3

Yy .

1; while = (x=1) do (y =y * x; X := x — 1)

(y:=1;W,s)

= (W, s[y~1])

= (if =(x =1) then ((y :=y * x; x := x— 1); W else skip), s[y~1])

= (((y :=y * x; x := x = 1); W), s[y~1])

= ((x :=x—1; W), s[y~3])

= (W, s[y~3][x~2])

= (if =(x =1) then ((y :=y * x; x := x— 1); W else skip), s[y~3][x—~2])
= (((y :==y * x; x := x = 1); W), s[y~3] [x~2])

= ((x :=x—1; W), s[y~6] [x~2])

= (W, s[y~6][x—~1])

= (if = (x =1) then ((y :=y * x; x := x = 1); W else skip, s[y~6][x—1])
=> (skip, s[y~6][x~1])

=> s[y~6][x~1]

83

Program termination

* Given a statement S and input s

— S terminates on s if there exists a finite derivation
sequence starting at (S, s)

— S terminates successfully on s if there exists a
finite derivation sequence starting at (S, s) leading
to a final state

— Sloops on s if there exists an infinite derivation
sequence starting at (S, s)

84

Properties of structural operational semantics

* 5, and S, are semantically equivalent if:

— for all s and y which is either final or stuck,
(S,, s)y="yifand only if (S,, s) ="y
— for all s, there is an infinite derivation sequence

starting at (S,, s) if and only if there is an infinite
derivation sequence starting at (S,, s)

e Theorem: While is deterministic:
—If (S, s) =" s, and (S, s) =" s, then s,=s,

85

Sequential composition

* Lemma: If (S, S,, s) =K s" then
there exists s and k=m+n such that
(S, s)y=ms"and(S,, s’y ="s"
* The proof (pages 37-38) uses induction on the
length of derivation sequences
— Prove that the property holds for all derivation
sequences of length O

— Prove that the property holds for all other derivation

sequences:

* Show that the property holds for sequences of length k+1
using the fact it holds on all sequences of length k (induction

hypothesis)

86

The semantic function S__,

* The meaning of a statement S is defined as a
partial function from State to State
S.,s: Stm — (State — State)

Seos [S] s = { * if (S, 5)=*¢
" undefined else

* Examples:
S..[skip]s=s

SOS LU

S...[x:=1]s=s5[x~1]

SOS

S... [while true do skip]s=undefined

SOS

87

An equivalence result

* For every statement in While
Sns S]] = Ssos [S1]
* Proof in pages 40-43

88

Language Extensions

abort statement (like C’s exit w/o return value)
Non-determinism
Parallelism

While + abort

Abstract syntax
Su:=x:=a| skip | §; 3,
if 6 then §, else §,

while do §
abort

Abort terminates the execution
— In “skip; S”the statement S executes
— In“abort; S”the statement S should never execute

Natural semantics rules: ...?
Structural semantics rules: ...?

20

Comparing semantics

Natural Structural
semantics semantics

abort

abort; S

skip; S

while true do skip

if x = 0 then abort else y =y / x

Conclusions

 The natural semantics cannot distinguish between looping and
abnormal termination

— Unless we add a special error state

* In the structural operational semantics looping is reflected by

infinite derivations and abnormal termination is reflected by stuck
configuration

91

While + non-determinism

* Abstract syntax
Su:=x:=a | skip | §; S,
if b then §, else §,

while 6do §
S, or S,

* Either S, is executed or S, is executed
e Example: x:=1 or (x:=2; X:=x+2)

— Possible outcomes for x: 1 and 4

92

While + non-determinism:
natural semantics

1 (S, 5) =5
Lo, (S,orS,,s)—=¢s
[or?,] (S, 5) s

(S,orS,,s)—=s

93

While + non-determinism:
structural semantics

[orl_] ?

SOS

[or?._] ?

SOS

94

While + non-determinism

e What about the definitions of the semantic
functions?

—S [S,0rS8,]s
—S.. 1S orsS,][s

95

Comparing semantics

Natural Structural
semantics semantics

X:=1 or (x:=2; X:=x+2)

(while true do skip) or (x:=2; xX:=x+2)

Conclusions

* |n the natural semantics non-determinism will suppress
non-termination (looping) if possible

* |n the structural operational semantics non-determinism
does not suppress non-terminating statements

96

While + parallelism

Abstract syntax
S:=x:=a | Skip | S15 SQ
if b then §, else §,

while bdo §
Sy 1S,

* All the interleaving of S; and S, are executed

e Example: x:=1 || (x:=2; x:=x+2)

— Possible outcomes for x: 1, 3,4

97

While + parallelism:
structural semantics

(S1,5)=(5,,5)
arl z ’
[p SOS] <Sl ||52’ S> = <Sl ||52) S >

, (Sy,)=’
[par sos] <Sl ||52, S> = <521 51)

3 (Sy 5)=>(S,,)
[par sos] <Sl ||52’ 5> = <Sl ||52’; SI)

4 (5,5 =5
[par sos] <Sl ||52, S> = <511 SI>

98

While + parallelism:
natural semantics

Q

Challenge problem:
Give a formal proof that
this is in fact impossible.

Idea: try to prove on a
restricted version of While
without loops/conditions

99

Example: derivation sequences
of a parallel statement

(x:=1 || (x:=2; x:=x+2),5)=

100

Conclusion

* |n the structural operational semantics we
concentrate on small steps so interleaving of
computations can be easily expressed

* |n the natural semantics immediate
constituent is an atomic entity so we cannot
express interleaving of computations

101

While + memory

Abstract syntax

St=zxr:=a | skip | Sl; SQ

if b/ then §, else §,
while /do §

r:=malloc (a)

State : Stack X Heap
Stack : Var — Z

Heap:Z— /7

Integers as memory
addresses

=

102

From states to traces

Trace semantics

Low-level (conceptual) semantics
Add program counter (pc) with states
— ¥ = State + pc

The meaning of a program is a relation
TC Y xStmx >

Execution is a finite/infinite sequence of states

A useful concept in defining static analysis as
we will see later

104

Example

v = 1;

while 2:

- (x=1) do

y ¥ X7

x = 1

(

105

Traces

: = * X e e
3: Y Y Set of traces is infinite therefore trace
semantics is incomputable in general

({x~2,y~3},1) [y : =1] ({x~2,y~1},2) [- (x=1)] {{x~2,y~1},3) [y:=y*x]
({Xl—>2,yl—>2},4> [x:=x%x-1] ({Xl—>1,yl—>2},2> [- (x=1)] <{Xl—>1,yl—>2},5>

({x~3,y~3},1) [y : =1] ({x~3,y~1},2) [- (x=1)] {{x~3,y~1},3) [y:=y*x]
<{Xl—>3,yl—>3},4> [x:=x-1] ({Xl—>2,yl—>3},2> [- (x=1)] <{Xl—>2,yl—>3},3>
[y:=y*x] ({x~»2,y~6},4) [x:=x-1] ({x~>1,y~6},2) [~ (x=1)] ({x~1,y~6},
5)

106

Operational semantics summary

SOS is powerful enough to describe imperative
programs

— Can define the set of traces
— Can represent program counter implicitly

— Handle goto statements and other non-trivial control
constructs (e.g., exceptions)

Natural operational semantics is an abstraction

Different semantics may be used to justify
different behaviors

Thinking in concrete semantics is essential for a
analysis writer

107

The End

