Program Analysis and Verification

0368-4479

Noam Rinetzky

Lecture 10: Pointer Analysis

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

Abstract Interpretation [Cousot'77]

- Mathematical foundation of static analysis
 - Abstract domains
 - Abstract states
 - Join (□)
 - Transformer functions
 - Abstract steps
 - Chaotic iteration
 - Abstract computation
 - Structured Programs

Monotonic functions

Fixpoints

The collecting lattice

- Lattice for a given control-flow node v: $L_v = (2^{\text{State}}, \subseteq, \cup, \cap, \varnothing, \text{State})$
- Lattice for entire control-flow graph with nodes V:

$$L_{CFG} = Map(V, L_v)$$

 We will use this lattice as a baseline for static analysis and define abstractions of its elements

Galois Connection

$$c \sqsubseteq \gamma(\alpha(c))$$

Galois Connection

- Given two complete lattices $C = (D^C, \sqsubseteq^C, \sqcup^C, \sqcap^C, \perp^C, \top^C)$ concrete domain $A = (D^A, \sqsubseteq^A, \sqcup^A, \sqcap^A, \perp^A, \top^A)$ abstract domain
- A Galois Connection (GC) is quadruple (C, α , γ , A) that relates C and A via the monotone functions
 - The abstraction function $\alpha: D^{\mathcal{C}} \to D^{\mathcal{A}}$
 - The concretization function $\gamma: D^A \to D^C$
- for every concrete element $c \in D^C$ and abstract element $a \in D^A$ $\alpha(\gamma(a)) \sqsubseteq a$ and $c \sqsubseteq \gamma(\alpha(c))$
- Alternatively $\alpha(c) \sqsubseteq a$ iff $c \sqsubseteq \gamma(a)$

Abstract (conservative) interpretation

Plan

- Understand the problem
- Mention some applications
- Simplified problem
 - Only variables (no object allocation)
- Reference analysis
- Andersen's analysis
- Steensgaard's analysis
- Generalize to handle object allocation

Constant propagation example

$$x = 3;$$
 $y = 4;$
 $z = x + 5;$

Points-to Analysis

- Determine the set of targets a pointer variable could point-to (at different points in the program)
 - "p points-to x"
 - "p stores the value &x"
 - "*p denotes the location x"
 - targets could be variables or locations in the heap (dynamic memory allocation)
 - p = &x;
 - p = new Foo(); or p = malloc (...);
 - must-point-to vs. may-point-to

More terminology

- *p and *q are said to be aliases (in a given concrete state) if they represent the same location
- Alias analysis
 - Determine if a given pair of references could be aliases at a given program point
 - *p may-alias *q
 - *p must-alias *q

Pointer Analysis

- Points-To Analysis
 - may-point-to
 - must-point-to

- Alias Analysis
 - may-alias
 - must-alias

Applications

- Compiler optimizations
 - Method de-virtualization
 - Call graph construction
 - Allocating objects on stack via escape analysis
- Verification & Bug Finding
 - Datarace detection
 - Use in preliminary phases
 - Use in verification itself

Points-to analysis: a simple example

```
We will usually drop
p = &x;
              \{p=&x\}
                                                      variable-equality
q = &y;
            p=&x \land q=&y
                                                      information
if (?) {
              \{x\$=p \land x\$=q\}
   q = p;
               {p=&x \land (q=&y \lor q=&x)}
             | \{p=&x \land (q=&y \lor q=&x) \land x=&a\} |
x = &a;
   = &b; \{p=&x \land (q=&y \lor q=&x) \land x=&a \land y=&b\}
             | \{p=&x \land (q=&y \lor q=&x) \land x=&a \land y=&b \land (z=x \lor z=y) \}
z = *q;
```

How would you construct an abstract domain to represent these abstract states?

Points-to lattice

• Points-to

```
-PT-factoids[x] = \{x=&y \mid y \in Var\} \cup false \\ PT[x] = (2^{PT-factoids}, ⊆, ∪, ∩, false, PT-factoids[x]) \\ (interpreted disjunctively)
```

 How should combine them to get the abstract states in the example?

```
{p=&x \land (q=&y \lor q=&x) \land x=&a \land y=&b}
```

Points-to lattice

- Points-to
 - $-PT-factoids[x] = \{x=&y \mid y \in Var\} \cup false \\ PT[x] = (2^{PT-factoids}, ⊆, ∪, ∩, false, PT-factoids[x]) \\ (interpreted disjunctively)$
- How should combine them to get the abstract states in the example?

```
\{p=&x \land (q=&y \lor q=&x) \land x=&a \land y=&b\}
```

- $D[x] = Disj(VE[x]) \times Disj(PT[x])$
- For all program variables: $D = D[x_1] \times ... \times D[x_k]$

Points-to analysis

```
a = &y
                   How should we
x = &a;
                   handle this
y = \&b;
                   statement?
if (?) {
                                                   Strong update
  p = &x;
} else {
  p = &y;
                  \{x=\&a \land y=\&b \land (p=\&x \lor p=\&y) \land a \not\models y\}
    = &c;
                  {x=&a \land y=&b \land (p=&x \lor p=&y) \land a=&c}
     &c;
              { (x=&a\xspace x=&c) \land (y=&b\y=&c) \land (p=&x\y=&y) }
                           Weak update
```

Questions

- When is it correct to use a strong update?
 A weak update?
- Is this points-to analysis precise?
- What does it mean to say
 - p must-point-to x at program point u
 - p may-point-to x at program point u
 - p must-not-point-to x at program u
 - p may-not-point-to x at program u

Points-to analysis, formally

 We must formally define what we want to compute before we can answer many such questions

PWhile syntax

- A primitive statement is of the form
 - x := null
 - x := y
 - x := *y
 - x := &y;
 - *x := y
 - skip

Omitted (for now)

- Dynamic memory allocation
- Pointer arithmetic
- Structures and fields
- Procedures

(where x and y are variables in Var)

PWhile operational semantics

- State : (Var→Z) ∪ (Var→Var∪{null})
- $\| \mathbf{x} = \mathbf{y} \| \mathbf{s} =$
- **|** | *x = y | s =
- | x = null | s =

PWhile operational semantics

- State : (Var→Z) ∪ (Var→Var∪{null})
- $[x = y]s = s[x \mapsto s(y)]$
- [x = *y] $s = s[x \mapsto s(s(y))]$
- $\llbracket *x = y \rrbracket s = s[s(x) \mapsto s(y)]$
- $\| \mathbf{x} = \mathbf{null} \| \mathbf{s} = \mathbf{s}[\mathbf{x} \mapsto \mathbf{null}]$
- $[x = &y]s = s[x \mapsto y]$

must say what happens if null is dereferenced

PWhile collecting semantics

 CS[u] = set of concrete states that can reach program point u (CFG node)

Ideal PT Analysis: formal definition

Let u denote a node in the CFG

• Define IdealMustPT(u) to be $\{ (p,x) \mid \mathbf{forall} \ s \ \text{in } CS[u]. \ s(p) = x \}$

• Define IdealMayPT(u) to be { $(p,x) \mid exists \ s \ in \ CS[u]. \ s(p) = x \ }$

May-point-to analysis: formal Requirement specification

May/Must Point-To Analysis

may

Compute R: V -> 2^{Vars'} such that R(u)⊇IdealMayPT(u)

must

For every vertex u in the CFG, compute a set R(u) such that R(u) \subseteq { (p,x) | \exists s \in CS[u]. s(p) = x }

Var' = Var U {null}

May-point-to analysis: formal Requirement specification

Compute R: V -> 2^{Vars'} such that R(u) ⊇ IdealMayPT(u)

 An algorithm is said to be correct if the solution R it computes satisfies

$$\forall u \in V. R(u) \supseteq IdealMayPT(u)$$

 An algorithm is said to be precise if the solution R it computes satisfies

$$\forall u \in V. R(u) = IdealMayPT(u)$$

• An algorithm that computes a solution R_1 is said to be more precise than one that computes a solution R_2 if

$$\forall u \in V. R_1(u) \subseteq R_2(u)$$

(May-point-to analysis) *Algorithm A*

- Is this algorithm correct?
- Is this algorithm precise?

 Let's first completely and formally define the algorithm

Points-to graphs

```
x = &a;
y = &b;
if (?) {
  p = &x;
} else {
  p = &y;
                    \{x=&a \land y=&b \land (p=&x \lor p=&y)\}
                    {x=&a \land y=&b \land (p=&x \lor p=&y) \land a=&c}
*x = &c;
               \{ (x=&a \lor x=&c) \land (y=&b \lor y=&c) \land (p=&x \lor p=&y) \land a=&c \}
*p = &c;
                                                                   The points-to
                                                                   set of x
                                                                              31
```

Algorithm A: A formal definition the "Data Flow Analysis" Recipe

- Define join-semilattice of abstract-values
 - PTGraph ::= (Var, Var×Var')
 - $-g_1 \sqcup g_2 = ?$
 - $\bot = ?$
 - $\top = ?$
- Define transformers for primitive statements
 - [stmt]# : PTGraph → PTGraph

Algorithm A: A formal definition the "Data Flow Analysis" Recipe

- Define join-semilattice of abstract-values
 - PTGraph ::= (Var, Var×Var')
 - $-g_1 \sqcup g_2 = (Var, E_1 \cup E_2)$
 - $\perp = (Var, \{\})$
 - $\top = (Var, Var \times Var')$
- Define transformers for primitive statements
 - [stmt]# : PTGraph → PTGraph

Algorithm A: transformers

Abstract transformers for primitive statements

```
- [ stmt ] # : PTGraph → PTGraph
```

- [x := y] # (Var, E) = ?
- [x := &y] # (Var, E) = ?
- [x := *y] # (Var, E) = ?
- [*x := &y]# (Var, E) = ?

Algorithm A: transformers

- Abstract transformers for primitive statements
 - [stmt] # : PTGraph → PTGraph
- [x:=y]# (Var, E) = (Var, E[succ(x)=succ(y)]
- [x:=null]# (Var, E) = (Var, E[succ(x)={null}]
- [x := &y] # (Var, E) = (Var, E[succ(x)={y}]
- [x := *y] (Var, E) = (Var, E[succ(x)=succ(succ(y))]
- [*x := &y]# (Var, E) = ???

Correctness & precision

- We have a complete & formal definition of the problem
- We have a complete & formal definition of a proposed solution

 How do we reason about the correctness & precision of the proposed solution?

Points-to analysis (abstract interpretation)

$$\alpha(Y) = \{ (p,x) \mid \text{exists s in } Y. \ s(p) = x \}$$

IdealMayPT (u) =
$$\alpha$$
 (CS(u))

Concrete transformers

- CS[stmt]: State → State
 [x = y]s = s[x→s(y)]
 [x = *y]s = s[x→s(s(y))]
 [*x = y]s = s[s(x)→s(y)]
 [x = null]s = s[x→null]
 [x = &y]s = s[x→y]
- $CS*[stmt]: 2^{State} \rightarrow 2^{State}$
- CS*[st] X = { CS[st]s | s ∈ X }

Abstract transformers

- [stmt][#] : PTGraph → PTGraph
- [x:=y]# (Var, E) = (Var, E[succ(x)=succ(y)]
- [x := null] # (Var, E) = (Var, E[succ(x)={null}]
- $[x := &y]^{\#} (Var, E) = (Var, E[succ(x)={y}])$
- [x:=*y]# (Var, E) = (Var, E[succ(x)=succ(succ(y))]
- [*x := &y]# (Var, E) = ???

Algorithm A: transformers Weak/Strong Update

Algorithm A: transformers Weak/Strong Update

Abstract transformers

```
    [*x := &y ]# (Var, E) =
    if succ(x) = {z} then (Var, E[succ(z)={y}]
    else succ(x)={z₁,...,zk} where k>1
        (Var, E[succ(z₁)=succ(z₁)∪{y}]
    ...
        [succ(zk)=succ(zk)∪{y}]
```

Some dimensions of pointer analysis

- Intra-procedural / inter-procedural
- Flow-sensitive / flow-insensitive
- Context-sensitive / context-insensitive
- Definiteness
 - May vs. Must
- Heap modeling
 - Field-sensitive / field-insensitive
- Representation (e.g., Points-to graph)

Andersen's Analysis

- A flow-insensitive analysis
 - Computes a single points-to solution valid at all program points
 - Ignores control-flow treats program as a set of statements
 - Equivalent to merging all vertices into one (and applying Algorithm A)
 - Equivalent to adding an edge between every pair of vertices (and applying Algorithm A)
 - A (conservative) solution R: Vars → 2^{Vars'} such that
 R ⊇ IdealMayPT(u) for every vertex u

Flow-sensitive analysis

Flow-insensitive analysis

```
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:
```


Andersen's analysis

Strong updates?

• Initial state?

Why flow-insensitive analysis?

- Reduced space requirements
 - A single points-to solution
- Reduced time complexity
 - No copying
 - Individual updates more efficient
 - No need for joins
 - Number of iterations?
 - A cubic-time algorithm
- Scales to millions of lines of code
 - Most popular points-to analysis
- Conventionally used as an upper bound for precision for pointer analysis

Andersen's analysis as set constraints

- $[x := y]^{\#}$ $PT[x] \subseteq PT[y]$
- $\llbracket x := null \rrbracket^{\#}$ $PT[x] \subseteq \{null\}$
- $\llbracket x := &y \rrbracket^{\#} PT[x] \subseteq \{y\}$
- [x := *y] # PT[x] ⊆ PT[z] for all z∈PT[y]
- [*x := &y]# PT[z] \subseteq PT[y] for all z \in PT[x]

Cycle elimination

- Andersen-style pointer analysis is O(n³) for number of nodes in graph
 - Improve scalability by reducing n
- Important optimization
 - Detect strongly-connected components in PTGraph and collapse to a single node
 - Why? In the final result all nodes in SCC have same PT
 - How to detect cycles efficiently?
 - Some statically, some on-the-fly

Steensgaard's Analysis

- Unification-based analysis
- Inspired by type inference
 - An assignment lhs := rhs is interpreted as a constraint that lhs and rhs have the same type
 - The type of a pointer variable is the set of variables it can point-to
- "Assignment-direction-insensitive"
 - Treats lhs := rhs as if it were both lhs := rhs and rhs := lhs

Steensgaard's Analysis

- An almost-linear time algorithm
 - Uses union-find data structure
 - Single-pass algorithm; no iteration required
- Sets a lower bound in terms of performance

Steensgaard's analysis initialization

```
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5: z
```

Steensgaard's analysis **x=&a**

```
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:
```


Steensgaard's analysis y=x

```
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:
```


Steensgaard's analysis **x=&b**

```
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:
```


Steensgaard's analysis **z=x**

```
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:
```


Steensgaard's analysis final result

```
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:
```


Andersen's analysis final result

```
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:
```


Another example

```
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5:
```

Andersen's analysis result = ?

```
L1: x = &a;
L2: y = x;
L3: y = &b;
L4: b = &c;
L5:
```

Another example

```
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5:
```


Steensgaard's analysis result = ?

```
L1: x = &a;
L2: y = x;
L3: y = &b;
L4: b = &c;
L5:
```

Steensgaard's analysis result =

```
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5:
```


May-points-to analyses

Ideal points-to analysis

- A sequence of states s₁s₂ ... s_n is said to be an execution (of the program) iff
 - s₁ is the Initial-State
 - $s_i \rightarrow s_{i+1}$ for $1 \le 1 \le n$
- A state s is said to be a reachable state iff there exists some execution $s_1s_2 ... s_n$ is such that $s_n = s$.
- CS(u) = { s | (u,s) is reachable }
- IdealMayPT (u) = $\{(p,x) \mid \exists s \in CS(u). s(p) = x\}$
- IdealMustPT (u) = $\{(p,x) \mid \forall s \in CS(u). s(p) = x\}$

Does *Algorithm A* compute the most precise solution?

Ideal vs. Algorithm A

 Abstracts away correlations between variables

- Relational analysis vs.
- Independent attribute (Cartesian)

x: {&y,&b} y: {&x,&z}

Does *Algorithm A* compute the most precise solution?

Is the precise solution computable?

 Claim: The set CS(u) of reachable concrete states (for our language) is computable

 Note: This is true for any collecting semantics with a finite state space

Computing CS(u)

Precise points-to analysis: decidability

- Corollary: Precise may-point-to analysis is computable.
- Corollary: Precise (demand) may-alias analysis is computable.
 - Given ptr-exp1, ptr-exp2, and a program point u, identify if there exists some reachable state at u where ptr-exp1 and ptr-exp2 are aliases.
- Ditto for must-point-to and must-alias
- ... for our restricted language!

Precise Points-To Analysis: Computational Complexity

- What's the complexity of the least-fixed point computation using the collecting semantics?
- The worst-case complexity of computing reachable states is exponential in the number of variables.
 - Can we do better?
- Theorem: Computing precise may-point-to is PSPACE-hard even if we have only two-level pointers

May-Point-To Analyses

Precise points-to analysis: caveats

- Theorem: Precise may-alias analysis is undecidable in the presence of dynamic memory allocation
 - Add "x = new/malloc ()" to language
 - State-space becomes infinite

 Digression: Integer variables + conditionalbranching also makes any precise analysis undecidable

High-level classification

Handling memory allocation

- s: x = new () / malloc ()
- Assume, for now, that allocated object stores one pointer
 - s: x = malloc (sizeof(void*))
- Introduce a pseudo-variable V_s to represent objects allocated at statement s, and use previous algorithm
 - Treat s as if it were " $x = \&V_s$ "
 - Also track possible values of V_s
 - Allocation-site based approach
- Key aspect: V_s represents a set of objects (locations), not a single object
 - referred to as a summary object (node)

Dynamic memory allocation example

Summary object update

```
L1: x = new 0;

L2: y = x;

L3: *y = &b;

L4: *y = &a;
```


Object fields

Field-insensitive analysis

```
class Foo {
    A* f;
    B* g;
L1: x = new Foo()
x->f = \&b;
```


Object fields

Field-sensitive analysis

```
class Foo {
    A* f;
    B* g;
L1: x = new Foo()
x->f = \&b;
```


Other Aspects

- Context-sensitivity
- Indirect (virtual) function calls and call-graph construction
- Pointer arithmetic
- Object-sensitivity