Runtime interface and language specific
concerns

Oleg Dobkin

2/12/2014



Table of Contents

Runtime interface
Allocation



Object allocation and initialization sequence

» Allocate a block of requested size

» Memory manager
» System initialization

» System headers (i.e. virtual table in C++)
» Object metadata

» Secondary initialization
» User-defined object fields



Language examples

» C: includes only the first step
» Programmer is responsible to initialize everything
» Java: first two steps result in empty but type-safe object.
Third step applies constructor
» User defined constructor ’sees’ type-safe but empty object
» Haskell: values for all fields must be provided to the
constructor

» New object is fully initialized before it becomes accessible
to the program



Runtime allocator post-conditions

No initialization
Allocated block is zeroed
Object header is initialized

v

v

v

v

Object header is initialized and block is zeroed
Object is fully initialized

v



Zeroing - allocation guarantee

» C - weak allocation guarantee
» No zeroing

» Java requires zeroing
» Functional languages - strong allocation guarantee

» All fields values must be specified
» Do not strictly need zeroing



Zeroing - when to zero

» At allocation

» Increases allocation time

» After collection

» Increases collection pause
» Best from debugging point of view

» Best time - ahead of the allocator



Table of Contents

Runtime interface

Finding pointers



Pointer finding

Where to look for pointers

» Heap
Objects
Stack
Registers

v

v

v

» Dynamic code

Types of pointer finding techniques

» Conservative - non-pointer values may be treated as a
pointers, if they appear to refer to an allocated object

» Accurate - pointer locations are found exactly



Conservative pointer finding - main idea

Definition
Ambiguous pointer - each contiguous pointer-sized sequence
of bytes that looks like a pointer

Finding ambiguous pointers

» Scan heap, stacks, registers

> Collector knows the address and size of heap and the
addresses and sizes of allocated blocks inside the heap



Conservative pointer finding - interior pointers

Definition
Interior pointers - pointers that reference inside of an object

Handling interior pointers

> Some languages require the pointers to refer to the first
byte of the object

» Instead of looking for allocated blocks - look in the list of
objects

» Caveat: even in such languages some pointers may still be
interior



Conservative pointer finding - known implementation
tricks

» Black-listing - avoid using heap regions (blocks), when
their addresses correspond to previously found non-pointer
values

» Avoid allocating blocks on addresses with many zeros

» Support for non-pointer blocks (bitmaps)



Accurate pointer finding using tagged values

» Bit stealing - use several bits to indicate object’s type -
usually to differentiate between pointers and non-pointers

| Tag | Encoded value |
00 | Integer

01 | Pointer

10 | Other Primitive Value
11 | Object header

Table 11.2: Tag encoding for the SPARC architecture



Accurate pointer finding using tagged values

» Bit stealing - use several bits to indicate object’s type -
usually to differentiate between pointers and non-pointers

| Tag | Encoded value

00 | Integer

01 | Pointer

10 | Other Primitive Value
11 | Object header

Table 11.2: Tag encoding for the SPARC architecture

» Big bags of pages - type information is associated with

entire blocks

» There are blocks in the heap containing only integers or
only floating point numbers, ...



Accurate pointer finding in objects

» With reflection
» Object metadata is stored in object’s header

» Without reflection

» Bit vector
» Vector of offsets of pointer fields
» Can be changed dynamically to control order of pointer
tracing
» Partitioning pointer and non-pointer data
» Compiler-generated methods for tracing objects



Accurate pointer finding in stacks

» Finding frames within the stack
» Usually already provided by the runtime in some way

» Finding pointers within each frame
» Stack maps

» Dealing with calling conventions



Stack structure

high address
int foobar(int a, int b, int c) EBEP + 16 [
{ . EBP + 12 b
int xx =a + 2; EBP + 8
int yy = b + 3; *
int zz = ¢ + 4; EBP +4 return address
int sum = xx + yy + zz; EBP saved ebp  f-§—— EBP
EBP-4 X
return xx * yy * zz + sum;
} EBP-8 ¥y
EBP-12 z
int main() EBP - 16 sum |—— ESP
{
return foocbar(77, 88, 99);
} low address

http://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86



Accurate pointer finding in registers

» Usually harder to ’partition’ into pointer and non-pointer
registers

» Even when the language guarantees no interior pointers,
register may at some point refer to the middle of an object

» Harder to supply register map in some calling conventions



Accurate pointer finding in dynamic code (Problems)

» Not often possible to distinguish code from embedded data

» Pointers embedded in instructions may be broken into
small pieces

» Embedded pointer value may not refer directly to its target
object

» Difficult to update references



Accurate pointer finding in dynamic code
(ARM/Thumb example)

» All opcodes are either 16-bit or 32-bit words (in original
ARM - all opcodes are 32-bit words)

» Impossible to store absolute addresses
» Only relative references are supported

» Some of B - relative (conditional) branch - encodings

Encoding T3 ARMVT-M
B<c>. W <label> Not allowed in IT block.

|1514131211109 87654321 0‘1514131211109 87654321 0|

[1 111 0]s] ocond | imm6 [1 ofu]ofez] imm11
Encoding T4 ARMVT-M
B<c>.W <label> Qutside or last in IT block

[151413121110 9 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0]
[1 111 0s] imm10 [1 ofn1]e2] imm11

I1 = NOT(J1 EOR §); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imml@:immll:’@*, 32);

ARM Reference manual



Accurate pointer finding in dynamic code (Solutions)

» Disassemble code to find pointers
» Large overhead, but must be done only once

> Generate side table with pointer locations

» Avoid embedded pointers



Handling interior pointers

Computing standard reference from interior pointer

» Table with starting addresses of each object
» Heap parsability
» Big bags of pages

Interior pointers with copying collectors

» Update interior pointer appropriately

» Pinning



Handling derived pointers

Definition
Derived pointer is a pointer that is derived from other pointers
using arithmetic or logic expression

» uppery(p) or lowerg(p)
» p =+ ¢, such that the result lies outside of p
» p — q, distance between two objects

In general case we must have access to the base expression from
which the pointer was derived



Table of Contents

Runtime interface

Object tables



Object tables

Definition
Object table - dense array of small records which describe
objects

» Instead of mutator holding a direct pointer to an object in
heap - let it hold a unique identifier (handle) into object
table

» Object table must contain at least contains direct pointer
to object
» Handle is:
» Index into object table

» FEasier to relocate the table
» Requires calculating entry’s address

» Pointer into table entry



Object tables (cont.)

Object tables advantages

» Fasy to find and scan pointers
» Easy to move objects

» Only the table entries must be scanned and updated
» To simplify moving, each object should contain a (hidden)
self-reference (back-pointer)

» Additional metadata may be stored in object table, for
example, class and size information



Object tables (cont.)

Object tables advantages

» Fasy to find and scan pointers
» Easy to move objects

» Only the table entries must be scanned and updated
» To simplify moving, each object should contain a (hidden)
self-reference (back-pointer)

» Additional metadata may be stored in object table, for
example, class and size information

Object tables disadvantages

» Performance hit

» Two memory accesses instead of one (and optionally integer
addition)

» No support for interior or derived pointers



Table of Contents

Runtime interface

References from external code



References from external (non-managed) code

Motivation

» Some languages/runtimes support passing heap pointers
outside of managed environment - JNI, Python C interface,
P /Invoke

» Every runtime must at some point use native OS interface,
possibly passing pointers to it

Restraints

» Garbage collector must not free or move objects referenced
from external code



References from external (non-managed) code (cont.)

» If the object must survive only for the duration of the call
to external code, it’s enough to leave a live reference to the
object on stack

» Otherwise, external code must explicitly register an object

it wishes to reference, and deregister when it’s done using
it

» Collector may treat registered objects as additional roots
» Moving collectors can use handles (similar to object tables)
instead of direct pointers

» In cases where external code cannot use handles (OS code),
collector may need to pin externally referenced objects



Pinning

» Defer collection, at least of a pinned object’s region, while
it’s pinned
» Simple, but no guarantee that the object will be unpinned
before running out of memory

» Prior to pinning - move object to a non-moving region

» Extend collector to tolerate pinned objects

» Complicates the collector and may introduce new
inefficiencies



Table of Contents

Runtime interface

Stack barriers



Stack barriers

» Not safe to scan a frame in which a thread is running

» Usually not acceptable to pause a thread long enough to
scan its entire stack



Stack barriers

» Not safe to scan a frame in which a thread is running

» Usually not acceptable to pause a thread long enough to
scan its entire stack

» It’s possible to scan a stack incrementally using stack
barriers
» Divert a thread by altering one of stored return addresses
into a custom procedure



Stack barriers

» Not safe to scan a frame in which a thread is running

» Usually not acceptable to pause a thread long enough to
scan its entire stack

» It’s possible to scan a stack incrementally using stack
barriers

» Divert a thread by altering one of stored return addresses
into a custom procedure

» Stack barriers can also mark portions of stack that have
not changed

» Stack barriers can handle dynamic code changes



Table of Contents

Runtime interface

GC-safe points and mutator suspension



GC-safe points

Definition
GC-safe point (GC-point) - point in code where GC can
suspend the mutator (stop the world) and do its work

Most systems have short sequences of code that must be run
entirely to preserve GC invariants

» Initializing a new object
» Setting up a new stack frame

» Write barrier



GC-safe points (cont.)

Collector managed GC points
Stopping a mutator’s thread in an unsafe point will require
» Interpreting instruction ahead

» Waking up the thread for a short time, hoping it will stop
in a safe point

Mutator managed GC points

» Mutator decides which points are safe and invokes collector
explicitly



Table of Contents

Runtime interface

Write barriers



Precision of write barriers

Definition
Write barriers detect and record interesting pointers in
remembered sets.



Precision of write barriers

Definition
Write barriers detect and record interesting pointers in
remembered sets.

» How accurately should pointer writes be recorded
» Filtering



Precision of write barriers

Definition
Write barriers detect and record interesting pointers in
remembered sets.

» How accurately should pointer writes be recorded
» Filtering
» At what granularity is the location of the pointer to be
recorded

Address of field into which the pointer was written
Address of object containing the field

Card tables

Virtual memory pages

vV vy vy



Precision of write barriers

Definition
Write barriers detect and record interesting pointers in
remembered sets.

» How accurately should pointer writes be recorded
» Filtering
» At what granularity is the location of the pointer to be
recorded

Address of field into which the pointer was written
Address of object containing the field

Card tables

Virtual memory pages

vV vy vy

» Should remembered set be allowed to contain duplicates



Card tables

Definition

Card tables record written pointers with card’s size
granularity.

Implemented as dense array of cards (memory blocks) indexed
by dense array of bytes (header), which mark dirty cards.

v

Typically small cards 128-512 bytes

Unlike hash tables or store buffers - can’t overflow

v

More work for the collector

v

v

Commonly used without filtering

v

The most compact header implementation - array of bits -
not very common



Crossing maps

» Used to ease finding an object’s start in a card table
» Crossing map holds as many entries as cards

» Each entry contains the offset to the last object in each
card

» Entries corresponding to cards fully occupied by an object
contain negative card offset

card table [ [ i I

cressing map [ 182 words | -1 card [ -2 cards | 58 words |

scan i

w T T T

408 bytes 200 bytes




Crossing maps (cont.)

Algorithm 11.9: Search a crossing map for a slot-recording card table; trace is the collector’s
marking or copying procedure.

s W =

n

search(card):

start + H + (card << LOG_CARD_SIZE)

end ¢+ start 4+ CARD_SIZE /% start of next card */

offset ¢« crossingMap|card]

while offset < 0
card ¢+ card + offset fx of £set is negative: go back */
offset « crossingMap|card]

offset 4 CARD_SIZE — (offset << LOG_BYTES_IN_WORD)

next + H + (card << LOG_CARD_SIZE) + offset

repeat
trace(next, start, end) /* trace the object at next %/
next ¢ nextObject(next)

until next > end




Crossing map - finding object’s start 1

Start with one card before the dirty one
Look at the value of crossing map at that card and jump back

Wi
card table [ [ [ 4t I
e STy search
crossing map | 102 words | -1 card | -2 cards [ 5@ words |

scan El i EE =

e

408 bytes 200 bytes




Crossing map - finding object’s start 2

If crossing map at current location is positive - start tracing the
last object in the card

V
card table [ [ [ i I
e gy search
crossing map | 102 words | -1 card | -2 cards [ 5@ words |
scan Ao -

e

408 bytes 200 bytes




Crossing map - finding object’s start 3

Trace objects until the end of the original dirty card

card table [ [ [ 4t I
- S search
crossing map | 102 words | -1 card | -2 cards [ 5@ words |
scan S = -

- T e T

408 bytes 200 bytes



Crossing map - finding object’s start 4

Trace objects until the end of the original dirty card

card table [ [ [ i I
e gy search
crossing map | 102 words | -1 card | -2 cards [ 5@ words |
scan e = -

- W]

408 bytes 200 bytes



Crossing map - finding object’s start 5

Trace objects until the end of the original dirty card

card table [ [ [ i I
e gy search
crossing map | 102 words | -1 card | -2 cards [ 5@ words |
scan e = -

- T

408 bytes 200 bytes



Crossing map - finding object’s start 6

Trace objects until the end of the original dirty card

card table [ [ [ i I
e gy search
crossing map | 102 words | -1 card | -2 cards [ 5@ words |
scan e = -

- T T

408 bytes 200 bytes



Hardware and virtual memory techniques

In case the compiler is uncooperative, the only choice is to use
OS mechanisms for building remembered set

>

Virtual memory manager always knows which pages are
dirty

Easily implemented by page protection alteration

Costs little to mutator

Reading dirty page information from OS is expensive
Page protection faults are expensive

OS pages are much larger than cards - collector needs to
have very efficient scanning algorithms



Write barriers summary

» No clear winner amongst different remembered set
mechanisms

» Page-based schemes performed worst

» No choice, if compiler is uncooperative

» Card tables with card size of 512 performed best



Table of Contents

Language-specific concerns
Finalization



Finalization

Definition
Finalization - releasing unmanaged resources

» Managed object may refer to some external unmanaged
resource (file, socket, database, ...)

» GC needs to allow programmer-specified action to finalize
the object



Finalization

Definition
Finalization - releasing unmanaged resources

» Managed object may refer to some external unmanaged
resource (file, socket, database, ...)

» GC needs to allow programmer-specified action to finalize
the object

High-level implementation

» Runtime system maintains table of objects which have
finalizers

» During collection pass, before freeing the object, GC
invokes finalizer if needed



When do finalizers run

» During collection

» Might not support general user code (i.e. allocation, global
locks)



When do finalizers run

» During collection

» Might not support general user code (i.e. allocation, global
locks)

» After collection: collector marks objects that need
finalization

» How to mark objects
» Queue objects - may need allocation
» Mark object header - will need additional pass over all

objects
» During mutator lock - may cause deadlocks, if finalizer
communicates with mutator threads



Which thread runs a finalizer

» Multi-threaded system

>

Most natural approach - to use background finalization
thread(s)

Finalizers run asynchronously with mutator threads - need
to be thread-safe

Finalizer for a type T might run at the same time as
allocation/initialization code for new instance of T
Finalizers must be able to run concurrently with each other



Which thread runs a finalizer

» Multi-threaded system

» Most natural approach - to use background finalization
thread(s)

» Finalizers run asynchronously with mutator threads - need
to be thread-safe

» Finalizer for a type T might run at the same time as
allocation/initialization code for new instance of T

» Finalizers must be able to run concurrently with each other

» Single-threaded system

» The only feasible and safe way - queue finalizers and have
the program to run them under explicit control



Can finalizers access the object that became
unreachable

Motivation

» If finalizer does not have access to the object and is
provided no additional data - it’s not very useful



Can finalizers access the object that became
unreachable

Motivation
» If finalizer does not have access to the object and is
provided no additional data - it’s not very useful
Consequences

> Object queued for finalization survive the collection cycle

» All referenced objects must also be retained by the collector



Can finalizers access the object that became
unreachable
Motivation

» If finalizer does not have access to the object and is
provided no additional data - it’s not very useful

Consequences

> Object queued for finalization survive the collection cycle

» All referenced objects must also be retained by the collector

Implementation

» Tracing collectors work in two passes

» First pass: discover finalizable objects
» Second pass: trace reachable objects

» Reference-counting collectors simply increment finalized
object’s reference count



Is there any guaranteed order to finalization

» Finalization order can matter (BufferedStream must be

finalized before FileStream and StringBuffer)

Methad table

finalize(){
if isOpen
flush();

}

» Finalize from higher layers to lower

&‘\—.

BufferedStream

file
buffer

——

FileStream

int desc 3

StringBuffer
L ]

» Ordered finalization may be slow - one ’level’ at each

collection




[s there any guaranteed order to finalization (cont.)

» Ordered finalization doesn’t handle cycles

AT B
I |

! !

finaliser finaliser




[s there any guaranteed order to finalization (cont.)

» Ordered finalization doesn’t handle cycles

A

=
| !

finaliser finaliser

» Needs help from programmer
» Field separation that breaks cycles

A B

. i
I D el

I n

finaliser
I

finaliser

» Weak references - may be tricky



Finalization in particular languages

Java

» finalize method of Object class
» Finalization order is not guaranteed

» Finalization runs in context starting with no (user-visible)
synchronization locks

» Exceptions thrown during finalization are ignored

» Support for programmer-controlled finalization through
java.lang.ref API



Finalization in particular languages (cont.)

Lisp
» Programmer can register any object with one or more
finalization queues

» When object becomes unreachable it enters the finalization
queue

» Programmer is responsible to empty the queues

» Order of acyclic references in the queue is guaranteed



Finalization in particular languages (cont.)

Ch+

» No explicit memory management
» Destructors are used to finalize objects and free memory

» Reference count can be implemented using destructors
(smart pointers)



Finalization in particular languages (cont.)

NET

» Support for both finalizers and destructors

» Finalizers are implemented with the use of IDisposable
interface and some syntactic sugar

» Destructors are called by the collector



Table of Contents

Language-specific concerns

Weak references



Weak references

Definition

» Weak references - references that refer to their target at
least as long as the target is strongly reachable from
mutator roots

» Object is strongly reachable if it’s reachable via a chain
of regular strong references

» Object is weakly reachable if every path from the roots
includes at least one weak reference



Weak references

Definition

» Weak references - references that refer to their target at
least as long as the target is strongly reachable from
mutator roots

» Object is strongly reachable if it’s reachable via a chain
of regular strong references

» Object is weakly reachable if every path from the roots
includes at least one weak reference

Motivation
» Runtime can hold references to objects even when mutator
doesn’t
> Object caches

» Circular references



Weak references with tracing collectors

» First pass: weak references are only recorded but not
traced

» Only strongly reachable objects are found

» Second pass: weak references are examined
» If weak reference’s target was reached in first pass - weak
reference is retained
» Otherwise, it is set to null



Multiple pointer strengths

> Weak references can be generalized to provide multiple
levels of weak pointers

» FEach level of strength has some collector action associated
with it



Multiple pointer strengths

> Weak references can be generalized to provide multiple
levels of weak pointers

» FEach level of strength has some collector action associated
with it

» The best known language that supports multiple flavors of
weak references is Java

» Strong: ordinary references

» Soft: collector can clear Soft reference at its discretion

» Weak: collector must clear Weak reference as soon as the
referent becomes weakly reachable

» Finalizer: internal, used for finalization tables

» Phantom: weakest kind, only permits clearing of the
referent, can be used to control the order of finalization



Smart pointers in C++ (Boost/C++11)

» boost::scoped_ptr<>/std::unique_ptr<>
» Simple non-copyable smart pointer
» Releases object in destructor
» Doesn’t support sharing or transferring ownership

» boost::shared _ptr<>/std::shared_ptr<>
» Supports shared ownership
» Uses reference counting, last reference releases the referred
object
» Copy-constructor and operator= increase reference count
» Cycles are not supported

» boost::weak_ptr<>/std::weak_ptr<>
» Implements weak references
» shared_ptr can be obtained through weak ptr if the object
is strongly reachable, otherwise will return empty
shared_ptr or throw



Discussion

» OS mechanism to detect zero pointers

» Another use for garbage collector



(My) conclusions

» Garbage collection implementation is a very difficult task,
depending on various factors:
» Hardware and OS support (page protection, atomic
operations, processor cache)
» Language requirements (allowing interior pointers, using
opaque handles, allowing weak references)
» Working memory size and layout (long continuous memory
patches)

» Good implementations must use deep internal knowledge of
the underlying system

» Useful processor instructions (for example, locked integer
increments on x86 system, InterlockedIncrement in
Windows)

» Stack structure (calling conventions, stack traces, stack
barriers)



	Runtime interface
	Allocation
	Finding pointers
	Object tables
	References from external code
	Stack barriers
	GC-safe points and mutator suspension
	Write barriers

	Language-specific concerns
	Finalization
	Weak references


