Compilation

0368-3133

Lecture 13:
Course summary: Putting it all together

Noam Rinetzky

Course Goals

e What is a compiler
e How does it work
e (Reusable) techniques & tools

Course Goals

What is a compiler
How does it work

(Reusable) techniques & tools

Programming language implementation

— runtime systems

Execution environments
— Assembly, linkers, loaders, OS

What is a Compiler?

“A compiler is a computer program that
transforms source code written in a
programming language (source language)
into another language (target language).

The most common reason for wanting to
transform source code is to create an

executable program.”

--Wikipedia

Compiler

e A program which transforms programs
e Input a program (P)
e Qutput an object program (O)

1 (U

— For any x, “O(x)” “=“ “P(x)”

.................. Compiler ...
Source [——* * Executable
text code

Interpreter

e A program which executes a program

* Inputa program (P) + its input (x)

e Qutput the computed output (P(x))

|txt

Source
text

Interpreter

Compilervs. Interpreter

Source Executable
Code Code | Machine
preprocessing processing
Source Intermediate
Code p— Code »| Interpreter
processing

preprocessing

Interpreter vs. Compiler

e How do we know the
translation is correct?

Conceptually simpler
— “define” the prog. lang.

e (Can report errors before input
IS given

Can provide more specific
error report

Easier to port e More efficient code
— Compilation can be expensive
— move computations to
compile-time
e compile-time + execution-time
< interpretation-time is possible

Faster response time

Lexical Analysis

Conceptual Structure of a Compiler

Compiler
P T e T e T T P PP e PP IV TP T T TP EPEPIPIPIPE
:| Frontend Semantic Backend
-$: _ —>
: Representation
Lexical Syntax Semantic Intermediate Code
Analysis |l Analysis Analysis Representation

Generation
Parsing (IR)

Conceptual Structure of a Compiler

Compiler
P T e T e T T P PP e PP IV TP T T TP EPEPIPIPIPE
:] Frontend Semantic Backend
-$: _ -
: Representation
Lexical Syntax Semantic Intermediate Code
Analysis || Analysis Analysis Representation S
Parsing (IR)

l words l lsentences

What does Lexical Analysis do?

e Partitions the input into stream of tokens

— Numbers
- * “word” in the source language
— Identifiers * “meaningful” to the syntactical analysis

— Keywords

— Punctuation

e Usually represented as (kind, value) pairs
— (Num, 23)
- (Op, ™)

12

Some basic terminology

* Lexeme (aka symbol) - a series of letters separated
from the rest of the program according to a
convention (space, semi-column, comma, etc.)

e Pattern-arule specifying a set of strings.
Example: “an identifier is a string that starts with a
letter and continues with letters and digits”

— (Usually) a regular expression

e Token - a pair of (pattern, attributes)

13

Regular languages

e Formal languages
-2 = finite set of letters
— Word = sequence of letter
— Language = set of words

e Regular languages defined equivalently by
— Regular expressions
— Finite-state automata

14

From regular expressions to NFA

o Step 1: assign expression names and obtain
pure regular expressions R;...R,

e Step 3: combine all M, into a single NFA

e Ambiqguity resolution: prefer longest
accepting word

15

From reg. exp. to automata

e Theorem: there is an algorithm to build an
NFA+€E automaton for any reqular expression

e Proof: by induction on the structure of the
regular expression

O30

Basic constructs

R=z¢

- -y,

- e e o =

Composition

4 N
R=RI1|R2 . c
. e >)
4 N
R =RIR2

(O D ()
_ /

Repetition

Scanning with DFA

e Run until stuck
— Remember last accepting state

e Go back to accepting state
e Return token

20

Ambiguity resolution

e Longest word

e Tie-breaker based on order of rules when
words have same length

21

Creating a Scanner using Flex

int num_lines = 0;
%%
\n ++num_lines;
%%
main() {
yylex();
printf("# of lines = %d\n", num_lines);

¥

22

Syntax Analysis

Frontend: Scanning & Parsing

program text ((23 + 7) * x)

Lexical
Analyzer

+-.

token stream ((= /) i, X
LP LP Num oP Num RP oP Id
Grammar: @
s ‘-7 () t vaIid
Id a’ | .|z il 1
Op(*)

AN Abstract Syntax Tree

Num(23) Num(7)

From scanning to parsing

program text ((23 + 7) * x)

Lexical
Analyzer

+
oP N

token stream |—{ (= 7) _ X
LP LP Num um RP oP Id
Grammar: @
R/ (o) tax valid
Id a’ |..|z i Ol;
K Abstract Syntax Tree
Op(+) Id(b)
/\

Num(23) Num(7)

Context free grammars (CFG)

G =(V,I,PS)

e V —non terminals (syntactic variables)
e T—terminals (tokens)

e P —derivation rules
— Each rule of the formV— (TU V)*

e S —start symbol

Pushdown Automata (PDA)

e Nondeterministic PDAs define all CFLs

e Deterministic PDAs model parsers.

— Most programming languages have a
deterministic PDA

— Efficientimplementation

27

CFG terminology

* Derivation - a sequence of replacements of
non-terminals using the derivation rules

* Language - the set of strings of terminals
derivable from the start symbol

e Sentential form - the result of a partial
derivation

— May contain non-terminals

28

Derivations

e Show that a sentence w isin a grammar G
— Start with the start symbol

— Repeatedly replace one of the non-terminals
by a right-hand side of a production

— Stop when the sentence contains only
terminals

e Given a sentence alNB and rule N—p
aNB => auf
e wisinL(G)ifS=>*w

29

Ambiguity

4 \(S S ;S
X :=y+z*w S —id = E | ..
' o
.)\E —1d | E + E | E E | ..
s N s
L/‘l'\ /‘l’\

B

+ E

E . E
!

id itl/ \id

E F
I !
+ E id

|

id

“dangling-else” example p. 174

Ambiguous grammar :
. ing therg1 . This is what we usually Unambiguous grammar
S | ifE thensS elsesS want: match else to closest ?

| other unmatched then .

if E; thenif E, then S, else S,

if E; then (if E, then S; else S,) if E; then (if E, then S;) else S,

S

PN

then

A AN\

E then S else

A A A

31

Broad kinds of parsers

e Parsers for arbitrary grammars

— Earley’s method, CYK method

— Usually, not used in practice (though might change)
e Top-down parsers

— Construct parse tree in a top-down matter

— Find the derivation
e Bottom-up parsers

— Construct parse tree in a bottom-up manner

— Find the derivation in a reverse order

32

Predictive parsing

Given a grammar G and a word w attempt to derive
w using G

ldea

— Apply production to leftmost nonterminal

— Pick production rule based on next input token
General grammar

— More than one option for choosing the next
production based on a token

Restricted grammars (LL)
— Know exactly which single rule to apply
— May require some lookahead to decide

33

Top-Down Parsing: Predictive parsing

e Recursive descent
e LL(k) grammars

Recursive descent parsing

e Define a function for every nonterminal

e Every function work as follows

— Find applicable production rule

— Terminal function checks match with next
input token

— Nonterminal function calls (recursively) other
functions

e |f there are several applicable productions
for a nonterminal, use lookahead

35

LL(k) grammars

e Agrammar isin the class LL(K) when it can
be derived via:

— Top-down derivation

— Scanningthe input from left to right (L)
— Producing the leftmost derivation (L)

— With lookahead of k tokens (k)

e Alanguage is said to be LL(k) when it has an
LL(k) grammar

36

FIRST sets

e FIRST(X)={t | X D*tB} U{E | X>* &}

— FIRST(X) = all terminals that a can appear as
first in some derivation for X

e + £ if can be derived from X

e Example:
— FIRST(LIT) = { true, false }
— FIRST((EOPE))={("}
— FIRST(not E) = { not }

FIRST sets

e No intersection between FIRST sets => can
always pick a single rule

e |f the FIRST sets intersect, may need longer
lookahead

— LL(k) = class of grammars in which production
rule can be determined using a lookahead of k
tokens

— LL(1) is an important and useful class

38

LL(1) grammars

e Agrammar isin the class LL(K) iff

— For every two productions A — a and A — 3 we have
e FIRST(a) N FIRST(B) ={} // including ¢
e If ¢ € FIRST(a) then FIRST(B) N FOLLOW(A) = {}
e If ¢ € FIRST(B) then FIRST(a) N FOLLOW(A) = {}

39

FOLLOW sets

e What do we do with nullable (¢) productions?
— A—=BCD B—=¢C—c¢

— Use what comes afterwards to predict the right
production

e For every productionrule A — a

— FOLLOW(A) = set of tokens that can immediately
follow A

e Can predict the alternative A, for a non-terminal N
when the lookahead token is in the set

— FIRST(A,) — (if A, is nullable then FOLLOW(N))

40

FOLLOW sets: Constraints

e $ € FOLLOW(S)

e FIRST(B)—{c} & FOLLOW(X)
— ForeachA 2 a X B

e FOLLOW(A) < FOLLOW(X)
— Foreach A 2> a X B and € & FIRST(pB)

Prediction Table

e A

e T[At]=a if t =FIRST(a)
e T[At]=a if € = FIRST(a)andt & FOLLOW(A)
—tcanalsobe S

e Tis not well defined =2 the grammar is not LL(1)

Problem 1: productions with
common prefix

4)
term — ID | indexed_elem

indexed_elem — ID [expr]
L J

e FIRST(term)={1D }
e FIRST(indexed elem)={ID }

e FIRST/FIRST conflict

Solution: left factoring

e Rewrite the grammar to be in LL(1)
r A
term — ID | indexed_elem
indexed_elem — ID [expr]
- Y,
r A
term — |ID after_ID
After ID — [expr] | €
- Y,

Intuition: just like factoring x*y + x*z into x*(y+z)

44

Problem 2: null productions

-

-

S—Aab
A—ale

~

e FIRST(S)={a}
e FIRST(A)={a, ¢}

FOLLOW(S) ={}
FOLLOW(A)={a}

e FIRST/FOLLOW conflict

Solution: substitution

e N
S—Aab

A—ale
. y,

¥ Substitute A in S

[S%aablab J

'.' Left factoring

[Seaafter_A J
after A—ab|b

46

Problem 3: left recursion

(")

E— E-term | term
g J

e |eft recursion cannot be handled with a
bounded lookahead

e \What can we do?

Left recursion removal

a) ~)
- N — BN’
\ _J _ _/
e L(Gy)=B, Ba, Baa, Baaa, ... Can be done algorithmically.
e L(G,)=same Problem: grammar becomes
2 mangled beyond recognition

= For our 3™ example:

4 ™ 4 ™
E—E-term | » E— term TE | term

term TE— -term TE | ¢
- V), - Y,

48

Bottom-up parsing

Bottom-up parsing:
LR(k) Grammars

e A grammar isin the class LR(K) when it can be
derived via:

— Bottom-up derivation

— Scanning the input from left to right (L)
— Producing the rightmost derivation (R)
— With lookahead of k tokens (k)

e A languageis said to be LR(k) if it has an LR(k)
grammar

e Thesimplestcase is LR(0), which we will discuss

50

Terminology: Reductions & Handles

e The opposite of derivation is called
reduction

— Let A =» a be a productionrule
— Derivation: BAU = Bapl
— Reduction: Bou = BAL

e A handle is the reduced substring

— ais the handles for Bap

How does the parser know what to do?

e Astate will keep the info gathered on handle(s)
— A state in the “control” of the PDA

— Also (part of) the stack alpha bet
\[Set of LR(0) items

e A table will tell it “what to do” based on current
state and next token

— The transition function of the PDA
e Astack will records the “nesting level”
— Prefixes of handles

52

Constructing an LR parsing table

e Construct a (determinized) transition
diagram from LR items

e |f there are conflicts — stop
e Fill table entries from diagram

LR item

Already matched To be matched

Input

N — o°*f

Hypothesis about af being a possible handle, so far we’'ve matched
a, expecting to see 3 "

Types of LR(0) items

N — o®B Shift Item

N — O[3® Reduceltem

LR(0) automaton example

shift state

Z i

Jdo

Z— *ES
E—oT

-J, reduce state

E—E+T (
<)
T — *(E) |

E

LR(O) conflicts

E—E+T

T—(E)

T —i[E]

v

ﬁ

ds
T—je

Shift/reduce conflict

57

LR(O) conflicts

E—E

+T

T—
\(

E)

ds
T—ie
V—ije

reduce/reduce conflict

58

LR(O) conflicts

e Any grammar with an ¢-rule cannot be LR(0)

e |Inherent shift/reduce conflict
— A — ¢g®* —reduceitem
— P — a*AB —shift item
— A — ¢* can always be predicted from P — a*AfB

59

LR variants

LR(0) — what we’ve seen so far
SLR(0)

— Removes infeasible reduce actions via FOLLOW
set reasoning

LR(1)
— LR(0) with one lookahead token in items
LALR(O)

— LR(1) with merging of states with same LR(0)
component

Semantic Analysis

Abstract Syntax Tree

e AST is a simplification of the parse tree

e Can be built by traversing the parse tree
— E.g., using visitors

e Can be built directly during parsing
— Add an action to perform on each production rule
— Similarly to the way a parse tree is constructed

62

Abstract Syntax Tree

e Theinterface between the parser and the rest of
the compiler

— Separation of concerns
— Reusable, modular and extensible

e The AST is defined by a context free grammar

— The grammar of the AST can be ambiguous!
e E2>E+E
e |s this a problem?

e Keep syntacticinformation
— Why?

63

What we want

Potato potato;
Carrot carrot;
X = tomato + potato + carrot

...<id,tomato>,<PLUS>,<id,potato>,<PLUS>,<id,carrot>,EOF

- = e = e = e e = e e e e e e e e e mm e e e e e e e e e e e = = = - e e e e = e e e e = e

symbol kind type properties
X var ?

tomato var ?

potato var Potato

carrot var Carrot

__

e e

64

Context Analysis

e Check properties contexts of in which
constructs occur

— Properties that cannot be formulated via CFG
e Type checking

e Declare before use
— ldentifying the same word “w” re-appearing — wbw

e |nitialization

— Properties that are hard to formulate via CFG

e “break” iny appears inside a |00p

e Processing of the AST

65

Context Analysis

e |dentification

— Gather information about each named item in
the program

— e.g., what is the declaration for each usage

e Context checking
— Type checking

— e.g., the conditionin an if-statementis a
Boolean

66

Scopes

Typically stack structured scopes

Scope entry

— push new empty scope element

Scope exit

— pop scope element and discard its content
ldentifier declaration

— identifier created inside top scope

ldentifier Lookup
— Search for identifier top-down in scope stack

67

Scope and symbol table

e Scope x ldentifier -> properties
— Expensivelookup

e A better solution
— hash table over identifiers

Types

What is a type?

— Simplest answer: a set of values + allowed operations
— Integers, real numbers, booleans, ...

Why do we care?
— Code generation: $1 := 51+ 52
— Safety
e Guaranteethatcertain errors cannot occur at runtime

— Abstraction
e Hide implementationdetails

— Documentation
— Optimization

Typing Rules

If E1 has type int and E2 has type int,
then E1 + E2 has type int

El:iInt E2 : int
El + E2 : int

70

Syntax Directed Translation

e Semantic attributes
— Attributes attached to grammar symbols

e Semantic actions
— How to update the attributes

e Attribute grammars

Attribute grammars

o Attributes

— Every grammar symbol has attached attributes
e Example: Expr.type

e Semantic actions

— Every production rule can define how to assign
values to attributes

e Example:

Expr =2 Expr + Term
Expr.type = Exprl.type when (Exprl.type == Term.type)
Error otherwise

72

D>TL L.in = T.type

T =2 int T.type = integer

T - float T.type = float

L-> L1, id L1.in = L.in
addType(id.entry,L.in)

L->id addType(id.entry,L.in)

73

Attribute Evaluation

e Build the AST

o Fill attributes of terminals with values derived
from their representation

e Executeevaluation rules of the nodes to
assign values until no new values can be
assigned

— In the right order such that

e No attribute value is used before its available
e Each attribute will get a value only once

74

Dependencies

e A semantic equation a=Dbl,....bm
requires computation of bl,...,bm to
determine the value of a

e The value of a dependson bl,...,bm
— We write a =2 bi

Example

float x,y,z

]

_

float

float

10 float

float

~

ent1

e e @

9 float

ol Gy

4
- ent3 /

76

Inherited vs. Synthesized Attributes

e Synthesized attributes
— Computed from children of a node

e |Inherited attributes
— Computed from parents and siblings of a node

e Attributes of tokens are technically considered as
synthesized attributes

example

[float x,y,z]
D>TL L.in = T.type
T int T.type = integer

T - float T.type = float

L->L1,id L1.in = L.in
addType(id.entry,L.in)

L - id addType(id.entry,L.in)

inherited
—> synthesized

S-attributed Grammars

Special class of attribute grammars
Only uses synthesized attributes (S-attributed)
No use of inherited attributes

Can be computed by any bottom-up parser
during parsing

Attributes can be stored on the parsing stack

Reduce operation computesthe (synthesized)
attribute from attributes of children

L-attributed grammars

e |-attributed attribute grammar when every
attribute in a production A 2 X1...Xn is

— A synthesized attribute, or

— An inherited attribute of Xj, 1 <=j <=n that only
dependson
e Attributes of X1...Xj-1 to the left of Xj, or
e Inherited attributes of A

80

Intermediate Representation

81

Com |Iers
WD 4 :md

Three-Address Code IR

Chapter 8

e A popular form of IR

e High-level assembly where instructions
have at most three operands

82

Variable assignments

var = constant;

var, =var,;

var, =var, op vars;

var, = constant op var, ;

var, = var, op constant;

var = constant, op constant, ;

In the impl. varis
replaced by a pointer

to the symbol table

-
A compiler-generated

temporary can be

used instead of a var

Permitted operatorsare +, -, *, /, %

83

Control flow instructions

Label introduction
_l abe l_name :

Indicates a pointin the code that can be jumped to

Unconditional jump: go to instruction followinglabel L
Goto L;

Conditional jump: test condition variablet;

if 0, jump to label L
IfZ t Goto L;

Similarly : test condition variable t;

if not zero, jump to label L
IfNZ t Goto L;

84

Procedures / Functions

e A procedurecall instruction pushes arguments to
stack and jumps to the function label
A statementx=f (al, ..,an) ; lookslike
Push al; .. Push an;
Call f£;

Pop x; //pop returned value, and copy to it

e Returninga valueis done by pushing it to the
stack (return x;)

Push x;

e Return control to caller (and roll up stack)
Return;

85

TAC generation

e At this stage in compilation, we have
— an AST
— annotated with scope information
— and annotated with type information
e Togenerate TAC for the program, we do
recursive tree traversal

— Generate TAC for any subexpressions or
substatements

— Using the result, generate TAC for the overall
expression

86

cgen for binary operators

cgen(e,+ e,) ={
Choose a new temporary t
Let t; = cgen(e,)
Let t, = cgen(e,)
Emit(t=t, +t,)
Return t

cgen for if-then-else

cgen(if (e) s, else s,)

Let t =cgen(e)

Let L;,. be a new label
Let Lt be a new label
Let L., be @ new label
Emit(IfZ _t Goto L,)
cgen(s,)

Emit(Goto L g,)
Emit(Leyee:)

cgen(s,)

Emit(Goto L g.;)
Emit(Lger:)

88

IR Optimization

Optimize

Optimization points

source Front Code target
—> —> |R ———> —>
code end , generator code
| | :
i | |
User Compiler Compiler
profile program intraprocedural IR register allocation
change algorithm Interprocedural IR instruction selection
IR optimizations peephole transformations

90

now

Overview of IR optimization

Formalisms and Terminology

— Control-flow graphs

— Basic blocks

Local optimizations

— Speeding up small pieces of a procedure
Global optimizations

— Speeding up procedure as a whole

The dataflow framework

— Defining and implementing a wide class of
optimizations

91

Visualizing IR

start

_tmp0 = Call ReadInteger;

tmpl = Call ReadInteger;

3
w
]
o
I
i

_tmp2;

3
'S
]
o

_tmp5 = tmp3 == tmp4;
IfZ tmp5 Goto Ll1;
c = a;
a =Db;
_tmp6 = c % a;
b = tmp6;
Goto LO;
_L1:
Push a;
Call _PrintInt;

Push a;
Call _PrintInt

end

Control-Flow Graphs

A control-flow graph (CFG) is a graph of the
basic blocks in a function

The term CFG is overloaded — from here on
out, we'll mean “control-flow graph” and not
“context free grammar”

Each edge from one basic block to another
indicates that control can flow from the end of
the first block to the start of the second block

There is a dedicated node for the start and
end of a function

93

Common Subexpression Elimination

e |f we have two variable assignments
vi=aopb

§é=aopb

e and the values of v1, a, and b have not changed
between the assignments, rewrite the code as
vi=aopb

v2 =vl
e Eliminates useless recalculation
e Paves the way for later optimizations

94

Common Subexpression Elimination

If we have two variable assignments
vi=aopb [or: vl=a]

.\}.2=aopb [or: v2=a]

and the values of v1, a, and b have not changed
between the assignments, rewrite the code as
vi=aopb [or: vl=a]

v2 =vl
Eliminates useless recalculation
Paves the way for later optimizations

95

Copy Propagation

e |f we have a variable assignment
vl =v2
then as long as vl and v2 are not
reassigned, we can rewrite expressions of
the form

a=..vl..
as
a=..Vv2..

provided that such a rewrite is legal

96

Dead Code Elimination

e An assignment to a variable v is called dead
if the value of that assignment is never
read anywhere

e Dead code elimination removes dead
assignments from IR

e Determining whether an assignment is
dead depends on what variable is being
assigned to and when it's being assigned

Live variables

e The analysis corresponding to dead code
elimination is called liveness analysis

e Avariableis live at a pointin a program if
ater in the program its value will be read
pefore it is written to again

e Dead code elimination works by computing
iveness for each variable, then eliminating
assignments to dead variables

98

Local vs. global optimizations

e An optimization is local if it works on just a
single basic block

e An optimization is global if it works on an
entire control-flow graph of a procedure

e An optimization is interprocedural if it
works across the control-flow graphs of
multiple procedure

— We won't talk about this in this course

99

Abstract Interpretation

e Theoretical foundations of program
analysis

e Cousot and Cousot 1977

e Abstract meaning of programs
— Executed at compile time

100

Join semilattices and ordering

{a, b, c}

el B

{a, b}

{a, c}

{a}

| >

{b, c}

{b}

W

{c}

{}

Greater

Lower

A semilattice for constant propagation

e One possible semilattice for this analysis is
shown here (for each variable):

Not—-a-constant

-2 -1 0 2

Undefined

!

The lattice 1s infinitely wide

Monotone transfer functions

A transfer function f is monotone iff
if x CZy, then f(x) = f(y)

Intuitively, if you know less information about a
program point, you can't “gain back” more
information about that program point

Many transfer functions are monotone, including
those for liveness and constant propagation

Note: Monotonicity does not mean that
X C f(x)

— (This is a different property called extensivity)

103

The grand result

e Theorem: A dataflow analysis with a finite-
height semilattice and family of monotone
transfer functions always terminates

e Proof sketch:
— The join operator can only bring values up

— Transfer functions can never lower values back
down below where they were in the past
(monotonicity)

— Values cannot increase indefinitely (finite height)

104

Code Generation

From TAC IR to Assembly

e Shown in project & recitation

Instruction’s AST: Pattern Tree

result

T e Load_Const cst, R // cost=1
cst

constant operand

R
| e Load Mem a, R // cost=3
9 memory location operand
R
|
+ e Add Mem a, R // cost=3
[\
R a
R1
[\
R1 I*\ e Add_Scaled Reg cst, R1, R2 // cost=4

cst R2 register operand 107

Instruction’s AST: Pattern Tree

H1 o+
[\
RL * #7.1

/\
cst R2

e |Load Const cst, R

e Load Mem a, R

e Add Mem a, R

e Add Scaled Reg cst, R1, R2

// cost=1

// cost=3

// cost=3

// cost=4

108

Example — Naive rewrite

Input tree Naive Rewrite

+ + #4

i VRN

x %6

b x ‘ R
e AN
s - ‘ $2 b R * #6
L\ | N\
= S i
- | |
#1 8 #2 a
Rn
Rfl
| |
*
R, R, #4 + #6
#1 | #2 7N\ 7N
cst mem R, Ry R, R, 109

Top-Down Rewrite Algorithm

aka Maximal Munch
Based on tiling

Start from the root

Choose largest tile
— (covers largest number of nodes)

e Break ties arbitrarily

Continue recursivelv

110

InputtreP dOWn IargeSt flt rewrlte

TDLF-Rewrite

1 N
i LN

2 #2 x #5
7 / \
| . . a
#1 8
Rn
" .o
R % /7 N\
Rn 7 #5 Rn « #7.1
#1 | #2 N P
cst mem Rn mem cst R,

Instruction Selection with
Dynamic Programming

e Cost of sub-tree is sum of
— The cost of the operator
— The costs of the operands

e |dea: Compute the cost while detecting the
patterns

e Label: Label=> Location @ cost
— E.g.,#52reg @ 3

Example

cost cost
Rn Rn
#1 1 | 4
cst #6 *
2 /7 \
n R, R,
"3
mem Rn
|
Tn 1 - 4
P . 3 R, e #7.1
/7 N\ /.
Rn mem cst R,
R, Tn
|
#4 / + \1 #8 * 5
R R, R, « #8.1
/7 \
Rn cst Rm
6
#5 * total cost 7
/7 \
Rn mem

total cost 8

+ #4->reqg @13 ¥V

A

* #8->reqg @9 V

->mem @0
vV #2->reg @3

#5->reg @7
4 * $#7.1
->cst @O0 \iifl 4
(74 #l->reg @1
8 a
vV —>cst @0 —>mem @0
#1->reqg @1 $2->req @3 V

Linearize code

e Standard AST—>Code procedure
— E.g., create the register-heavy code first

Load Mem a,R1 ; 3 units
Load Const 4,R2 ; 1 unit
Mult_Scaled_Reg 8,R1,R2 ; 5 units
Load Mem b,R1 ; 3 units
Add_Reg R2,R1 ;1 unit

Total = 13 units

114

Code generation for procedure calls

e Compile time generation of code for
procedure invocations

e Activation Records (aka Stack Frames)

Supporting Procedures

Stack: a new computing environment
— e.g., temporary memory for local variables

Passing information into the new
environment

— Parameters
Transfer of control to/from procedure
Handling return values

116

Abstract Activation Record Stack

Stack _
grows this | Main
way Proc,
B Proc,
Proc,
A4
Proc
“ Stack frame for
ProCis — procedure
Procy,,
Prock+1(a1;'--;aN)
Procy,»

Proc,»

117

Abstract Stack Frame

Parameters
(actual
arguments)

Locals and
temporaries

_<

_<

Proc,

Param N

Param N-1

Param 1

t0

_tk

X

Proc,»

Stack frame for
= procedure
Prock+1(a1;'--;aN)

118

Static (lexical) Scoping

main ()
{
~ inta=0;
intb=0;
{
. intb=1;
{_

E inta=2;
5 printf (“%d %d\n”, a, b)

=, i
B

| intb=3;

W=l printf (“%d %d\n”, a, b) ;
)
printf (“%d %d\n”, a, b) ;
}

~ printf (“%d %d\n”, a, b) ;

}

/a name refers to\

its (closest)
enclosing scope

known at

compile time
N /

a=0 BO,B1,B3
b=0 BO

b=1 B1,B2
a=2 B2

b=3 B3

119

Dynamic Scoping

Each identifieris associated with a global stack of
bindings

When entering scope where identifier is declared
— push declaration on identifier stack

When exiting scope where identifier is declared
— pop identifier stack

Evaluating the identifierin any context binds to
the current top of stack

Determined at runtime

120

caller

caller

Call Sequences

Caller push code

Push caller-save registers

Push actual parameters (in reverse order) J

callee

call

push return address (+ other admin info)

Jump to call address

~N

J

Callee push code

(prologue)

Callee pop code

(epilogue)

Push current base-pointer
bp =sp
Push local variables
Push callee-save registers

\

return

Pop callee-save registers
Pop callee activation record
Pop old base-pointer

VAN

Caller pop code

pop return address
Jump to address

Ry INEY

Pop return value + parameters
Pop caller-save registers

121

“To Callee-save or to Caller-save?”

e Callee-saved registers need only be saved
when callee modifies their value

e Some heuristics and conventions are
followed

Nested Procedures

problem: a routine may need to access variables of
another routine that contains it statically

solution: lexical pointer (a.k.a. access link) in the
activationrecord

lexical pointer points to the last activation record of
the nesting level above it

— in our example, lexical pointer of d points to activation
records of ¢

lexical pointers created at runtime

number of links to be traversed is known at compile
time

123

_program p () {

int x;
_ procedure a()
int y;

[procedure b(){ c() };

int z;

b
.. b()

)

{

- procedure c() {

Eprocedure d() {
y := x + z

-od() ..

.a() .. c() ..

L}

L}
a()

Lexical Pointers

-

_

Possible call sequence:

p-a—»a—->c—>b->c->d

.

-

~

124

Register allocation

Register allocation

e Number of registers is limited

e Need to allocate them in a clever way
— Using registers intelligentlyis a critical step in
any compiler

e A good register allocator can generate code orders
of magnitude better than a bad register allocator

Sethi-Ullman translation

e Algorithm by Ravi Sethi and Jeffrey D. Ullman
to emit optimal TAC

— Minimizes number of temporaries

e Main data structure in algorithm is a stack of
temporaries
— Stack corresponds to recursive invocations of _t = cgen(e)
— All the temporaries on the stack are live
e Live = contain a value that is needed later on

127

Example

10 = cgen(a+(b+(c*d)))
+ and * are commutative operators

left child first right child first
t0 [+ _t0 |+
_t0]a _t1]+ tl|a 10 | +
t1 (b 12 | * t1|b _t0 | *
t2|c | t3 “tl|c|_to|d

4 temporaries 2 temporary

128

AST for a Basic Block

S |
V2 N NN
NN S NN
b/ *
/N

[
FANEEFAN
AN AN
b/*
n/\n
]

Dependency graph

|
FANRYVAN
/N N
J

n :=a + 1;

.5~ 7| Dependency Graph

n :=n +

Simplified Data

b
NIVAN

7N\, \\,
)

a/+\l

Pseudo Register Target Code

Load Mem
Add Const
Load Reg

Load Reg
Mult Reg
Add Mem
Add Mem
Store Reg

Load Reg
Add Const
Mult Mem
Store Reg

a,R1
1,R1
R1,X1

X1,R1
X1,R1
b,R1
c,R1
R1l,x

X1,R1
1,R1
d,R1
R1l,vy

“Global” Register Allocation

e |[nput:
— Sequence of machineinstructions (“assembly”)

e Unbounded number of temporary variables

— aka symbolic registers
— “machine description”
e # of registers, restrictions
e Output

— Sequence of machineinstructions using machine
registers (assembly)

— Some MOV instructions removed

Variable Liveness

e Astatementx=y+z

— defines x
— uses y and z

e Avariable x is live at a program point if its
value (at this point) is used at a later point

(y =42
z=173
X=Y+2
print(x);

_

~

J

x undef, y live, z undef
x undef, y live, z live
X is live, y dead, z dead

X is dead, y dead, z dead

(showing state after the statement)

Main idea

For every node n in CFG, we have out[n]
— Set of temporaries live out of n

Two variables interfere if they appear in the
same out[n] of any node n

— Cannot be allocated to the same register

Conversely, if two variables do not interfere
with each other, they can be assigned the
same register

— We say they have disjoint live ranges
How to assign registers to variables?

Interference graph

Nodes of the graph = variables

Edges connect variables that interfere with
one another

Nodes will be assigned a color
corresponding to the register assigned to
the variable

Two colors can’t be next to one another in
the graph

Graph coloring

e This problemis equivalent to graph-
coloring, which is NP-hard if there are at
least three registers

e No good polynomial-time algorithms (or
even good approximations!) are known for
this problem

— We have to be content with a heuristic that is
good enough for RIGs that arise in practice

Coloring by simplification [Kempe 1879]

e How to find a k-coloring of a graph

e |Intuition:

— Suppose we are trying to k-color a graph and
find a node with fewer than k edges

— If we delete this node from the graph and color
what remains, we can find a color for this node
if we add it back in

— Reason: fewer than k neighbors — some color
must be left over

Coloring by simplification [Kempe 1879]

e How to find a k-coloring of a graph
e Phase 1: Simplification

— Repeatedly simplify graph _ /_D
— When a variable (i.e., graph node) is simplify

removed, push it on a stack

e Phase 2: Coloring |

— Unwind stack and reconstruct the graph as color
follows: \)

— Pop variable from the stack
— Add it back to the graph

— Color the node for that variable with a
color that it doesn’t interfere with

Handling precolored nodes

e Some variables are pre-assigned to
registers

— Eg: mul on x86/pentium
e uses eax; defines eax, edx

— Eg: call on x86/pentium
e Defines (trashes) caller-save registers eax, ecx, edx
e To properly allocate registers, treat these
register uses as special temporary variables
and enter into interference graph as
precolored nodes

Optimizing move instructions

Code generation produces a lot of extra mov
instructions
mov t5, 19

If we can assign t5 and t9 to same register, we can get
rid of the mov
— effectively, copy elimination at the register allocation level

Idea: if t5 and t9 are not connected in inference graph,

coalesce them into a single variable; the move will be
redundant

Problem: coalescing nodes can make a graph
un-colorable

— Conservative coalescing heuristic

Constrained Moves

e Ainstruction T <— Sis constrained
— ifSand T interfere

e May happen after coalescing

0

Y</ /
/

e Constrained MQOVs are not coalesced

Constrained Moves

e Ainstruction T <— Sis constrained
— ifSand T interfere

e May happen after coalescing

X<Y
Y<Z

e Constrained MQOVs are not coalesced

Constrained Moves

e Ainstruction T <— Sis constrained
— ifSand T interfere

e May happen after coalescing

- S

Y<Z

e Constrained MQOVs are not coalesced

Graph Coloring with Coalescing

Build: Construct the interference graph | u Special case:
3 merged node
Simplify: Recursively remove non-MOV nodes with 15 225 Hisr ks
less than K neighbors; Push removed nodes into stack neighbors J
¥
Coalesce: Conservatively merge unconstrained MOV
related nodes with fewer than K “heavy” neighbors
y All non-MOV
Freeze: Give-Up Coalescing on some MOV related related nodes
nodes with low degree of interference edges are “heavy”
¥
Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack
¥
Select: Assign actual registers (from simplify/spill >
stack)
¥
Actual-Spill: Spill some potential spills and repeat the
process

A Complete Example

int flint a, int B)
int d=0;
int e=a;
do {d = d+b;
e = e~1;
} while (e>0);
return d;

{

) v
enter: ¢ <« r3
a <
b L)

d <0

Cur$r a4

v

loop: d «<—d+b
e <—e—1
if e > 0 goto loop

\ 4

Tiess d
g0
return

enter:

loop:

it nle Callee-saved registers
@ St

b < rp Caller-saved registers
d <0

€% @

dit-doh b

e «<—e—1

if e > 0 goto loop

Iy d

Py it

return (r1, r3 live out)

-
.
-
-

-
.
.

/

-« *

A Complete Example

enter: . .¢c <-rs
. @ St
ine o slant @, int By oo b < ry
int d=0; d 0
int e=a; S
do {d = d+b; fety @
by loop: d < d+b
} while (e>0); e «<—e—1
E ; -
} Feturg A if e > 0 goto loop
ri «~—d
P it
return (r1, 3 live out)

Fas C
Node Use.s+Defs U‘ses.+Defs Degine S‘pll‘l = /
outside loop within loop priority r
9 1% 0 2 0.50 3\ 3.-b

a 17 =

b (Y s 1 3 F 4 w7 Iy _e
c € 2 510 0)/t % N 0D 7N

d € 2>40= 2)] & = 530 / \

e (¥ $iiw 3)< 3 = 103 ' .8

rl:"----‘----.a\d

A Complete Example

Spill ¢

)

a&e

r2&Db

(Alt: ae+rl)

A Complete Example

f3\7r2b\\ ae &rl
HAD A ALY (Alt: ...)_
freeze ryae-d
Simplify§
dc

pop d
(Alt: ae+rl) >

C

enter:

loop:

A Complete Example

EL v I3
M{cioc] < c1
<«

<« 1

«~ 0

«~a
~d+b
e «—e—1
if e > 0 goto loop
ri < d

c2 < Mlcioc]
ry {2
return

o Bhint o YR - W -

r3\r

°IW \/ \

CZ\ 1'1

r3C1C2 ~r

c1&r3, c2 &r3 \/ \/\

I'2b

a&e, b&r2 rcic2”

f5-------ae——d

A Complete Example

r3C1C2 / \

« S v d
enter:
enter: M|cloc] < 73
r3 < 0
joop: Dy rntn " ”
ri<«<nrn-—1 Opt

if r1 > 0 goto loop
ry < r3

r3 < M[ciocl
return

=

loop:

ae &rl
Simplify d

)

Pop d

i3 v

M[cioc] <13
= r

g B o v

r3 < 0

ry i

r3 «<r3+nr
rp <r—1
if r1 > 0 goto loop
It v+ -5}

r3 < M[cioc]
ry < rs
return

r3C1C2 I'2b
|
\ r{ac
d
r3C1C2 I'2b
|
\ r{ac
gen code

