Compilation

0368-3133

Lecture 13:

Course summary: Putting it all together

Noam Rinetzky

Course Goals

- What is a compiler
- How does it work
- (Reusable) techniques & tools

Course Goals

- What is a compiler
- How does it work
- (Reusable) techniques & tools
- Programming language implementation
 - runtime systems
- Execution environments
 - Assembly, linkers, loaders, OS

What is a Compiler?

"A compiler is a computer program that transforms source code written in a programming language (source language) into another language (target language).

The most common reason for wanting to transform source code is to create an executable program."

--Wikipedia

Compiler

- A program which transforms programs
- Input a program (P)
- Output an object program (O)
 - For any x, "O(x)" "=" "P(x)"

Interpreter

- A program which executes a program
- Input a program (P) + its input (x)
- Output the computed output (P(x))

Compiler vs. Interpreter

Interpreter vs. Compiler

- Conceptually simpler
 - "define" the prog. lang.
- Can provide more specific error report
- Easier to port

- Faster response time
- [More secure]

- How do we know the translation is correct?
- Can report errors before input is given
- More efficient code
 - Compilation can be expensive
 - move computations to compile-time
- compile-time + execution-time
 interpretation-time is possible

Lexical Analysis

Conceptual Structure of a Compiler

Compiler

Conceptual Structure of a Compiler

Compiler

What does Lexical Analysis do?

- Partitions the input into stream of tokens
 - Numbers
 - Identifiers
 - Keywords
 - Punctuation

- "word" in the source language
- "meaningful" to the syntactical analysis

- Usually represented as (kind, value) pairs
 - (Num, 23)
 - (Op, '*')

Some basic terminology

- Lexeme (aka symbol) a series of letters separated from the rest of the program according to a convention (space, semi-column, comma, etc.)
- Pattern a rule specifying a set of strings.
 Example: "an identifier is a string that starts with a letter and continues with letters and digits"
 - (Usually) a regular expression
- Token a pair of (pattern, attributes)

Regular languages

- Formal languages
 - $-\Sigma$ = finite set of letters
 - Word = sequence of letter
 - Language = set of words

- Regular languages defined equivalently by
 - Regular expressions
 - Finite-state automata

From regular expressions to NFA

 Step 1: assign expression names and obtain pure regular expressions R₁...R_m

Step 2: construct an NFA M_i for each regular expression R_i

• Step 3: combine all M_i into a single NFA

• Ambiguity resolution: prefer longest accepting word

From reg. exp. to automata

- Theorem: there is an algorithm to build an NFA+€ automaton for any regular expression
- Proof: by induction on the structure of the regular expression

Basic constructs

Composition

Repetition

Scanning with DFA

- Run until stuck
 - Remember last accepting state
- Go back to accepting state
- Return token

Ambiguity resolution

- Longest word
- Tie-breaker based on order of rules when words have same length

Creating a Scanner using Flex

Syntax Analysis

Frontend: Scanning & Parsing

From scanning to parsing

Context free grammars (CFG)

$$G = (V,T,P,S)$$

- V non terminals (syntactic variables)
- T terminals (tokens)
- P derivation rules
 - Each rule of the form V → $(T \cup V)^*$
- S start symbol

Pushdown Automata (PDA)

- Nondeterministic PDAs define all CFLs
- Deterministic PDAs model parsers.
 - Most programming languages have a deterministic PDA
 - Efficient implementation

CFG terminology

- Derivation a sequence of replacements of non-terminals using the derivation rules
- Language the set of strings of terminals derivable from the start symbol
- Sentential form the result of a partial derivation
 - May contain non-terminals

Derivations

- Show that a sentence ω is in a grammar G
 - Start with the start symbol
 - Repeatedly replace one of the non-terminals by a right-hand side of a production
 - Stop when the sentence contains only terminals
- Given a sentence $\alpha N\beta$ and rule $N\rightarrow \mu$ $\alpha N\beta => \alpha \mu \beta$
- ω is in L(G) if S =>* ω

Ambiguity

```
x := y+z*w
```

```
S \rightarrow S; S

S \rightarrow id := E \mid ...

E \rightarrow id \mid E + E \mid E * E \mid ...
```


"dangling-else" example

p. 174

Broad kinds of parsers

- Parsers for arbitrary grammars
 - Earley's method, CYK method
 - Usually, not used in practice (though might change)
- Top-down parsers
 - Construct parse tree in a top-down matter
 - Find the leftmost derivation
- Bottom-up parsers
 - Construct parse tree in a bottom-up manner
 - Find the rightmost derivation in a reverse order

Predictive parsing

- Given a grammar G and a word w attempt to derive w using G
- Idea
 - Apply production to leftmost nonterminal
 - Pick production rule based on next input token
- General grammar
 - More than one option for choosing the next production based on a token
- Restricted grammars (LL)
 - Know exactly which single rule to apply
 - May require some lookahead to decide

Top-Down Parsing: Predictive parsing

- Recursive descent
- LL(k) grammars

Recursive descent parsing

- Define a function for every nonterminal
- Every function work as follows
 - Find applicable production rule
 - Terminal function checks match with next input token
 - Nonterminal function calls (recursively) other functions
- If there are several applicable productions for a nonterminal, use lookahead

LL(k) grammars

- A grammar is in the class LL(K) when it can be derived via:
 - Top-down derivation
 - Scanning the input from left to right (L)
 - Producing the leftmost derivation (L)
 - With lookahead of k tokens (k)
- A language is said to be LL(k) when it has an LL(k) grammar

FIRST sets

- FIRST(X) = { t | X \rightarrow * t β } \cup { \mathcal{E} | X \rightarrow * \mathcal{E} }
 - FIRST(X) = all terminals that α can appear as first in some derivation for X
 - + E if can be derived from X

• Example:

- FIRST(LIT) = { true, false }
- FIRST((E OP E)) = { '(' }
- FIRST(not E) = { not }

FIRST sets

- No intersection between FIRST sets => can always pick a single rule
- If the FIRST sets intersect, may need longer lookahead
 - LL(k) = class of grammars in which production rule can be determined using a lookahead of k tokens
 - LL(1) is an important and useful class

LL(1) grammars

- A grammar is in the class LL(K) iff
 - For every two productions A $\rightarrow \alpha$ and A $\rightarrow \beta$ we have
 - FIRST(α) \cap FIRST(β) = {} // including ϵ
 - If $\varepsilon \in FIRST(\alpha)$ then $FIRST(\beta) \cap FOLLOW(A) = {}$
 - If $\varepsilon \in FIRST(\beta)$ then $FIRST(\alpha) \cap FOLLOW(A) = {}$

FOLLOW sets

- What do we do with nullable (ε) productions?
 - $-A \rightarrow BCDB \rightarrow \epsilon C \rightarrow \epsilon$
 - Use what comes afterwards to predict the right production
- For every production rule $A \rightarrow \alpha$
 - FOLLOW(A) = set of tokens that can immediately follow A
- Can predict the alternative A_k for a non-terminal N when the lookahead token is in the set
 - FIRST(A_k) \rightarrow (if A_k is nullable then FOLLOW(N))

FOLLOW sets: Constraints

\$ = FOLLOW(S)

- FIRST(β) { \mathcal{E} } \subseteq FOLLOW(X)
 - For each A $\rightarrow \alpha X \beta$

- $FOLLOW(A) \subseteq FOLLOW(X)$
 - For each A \rightarrow α X β and ε ∈ FIRST(β)

Prediction Table

• $A \rightarrow \alpha$

- $T[A,t] = \alpha$ if $t \in FIRST(\alpha)$
- T[A,t] = α if $\mathcal{E} \subseteq FIRST(\alpha)$ and $t \subseteq FOLLOW(A)$ t can also be \$

• T is not well defined \rightarrow the grammar is not LL(1)

Problem 1: productions with common prefix

```
term → ID | indexed_elem indexed_elem → ID [ expr ]
```

- FIRST(term) = { ID }
- FIRST(indexed_elem) = { ID }

• FIRST/FIRST conflict

Solution: left factoring

Rewrite the grammar to be in LL(1)

```
term → ID | indexed_elem
indexed_elem → ID [ expr ]
```



```
term \rightarrow ID after_ID
After_ID \rightarrow [ expr ] | \epsilon
```

Intuition: just like factoring $x^*y + x^*z$ into $x^*(y+z)$

Problem 2: null productions

```
S \rightarrow A a b

A \rightarrow a \mid \epsilon
```

- FIRST(S) = { a } FOLLOW(S) = { }
- FIRST(A) = $\{a, \epsilon\}$ FOLLOW(A) = $\{a\}$

FIRST/FOLLOW conflict

Solution: substitution

$$S \rightarrow A a b$$

 $A \rightarrow a \mid \epsilon$

Substitute A in S

$$S \rightarrow a a b \mid a b$$

Left factoring

$$S \rightarrow a after_A$$

after_A $\rightarrow a b \mid b$

Problem 3: left recursion

 $E \rightarrow E$ - term | term

 Left recursion cannot be handled with a bounded lookahead

What can we do?

p. 130

Left recursion removal

 G_1

- $L(G_1) = \beta$, $\beta \alpha$, $\beta \alpha \alpha$, $\beta \alpha \alpha \alpha$, ...
- $L(G_2) = same$
- For our 3rd example:

Can be done algorithmically. Problem: grammar becomes mangled beyond recognition

 $E \rightarrow E$ - term | term

E \rightarrow term TE | term TE \rightarrow - term TE | ϵ

Bottom-up parsing

Bottom-up parsing: LR(k) Grammars

- A grammar is in the class LR(K) when it can be derived via:
 - Bottom-up derivation
 - Scanning the input from left to right (L)
 - Producing the rightmost derivation (R)
 - With lookahead of k tokens (k)
- A language is said to be LR(k) if it has an LR(k) grammar
- The simplest case is LR(0), which we will discuss

Terminology: Reductions & Handles

- The opposite of derivation is called reduction
 - Let A \rightarrow α be a production rule
 - Derivation: βAμ → βαμ
 - Reduction: βαμ → βΑμ

- A handle is the reduced substring
 - $-\alpha$ is the handles for $\beta\alpha\mu$

How does the parser know what to do?

- A state will keep the info gathered on handle(s)
 - A state in the "control" of the PDA
 - Also (part of) the stack alpha bet

Set of LR(0) items

- A table will tell it "what to do" based on current state and next token
 - The transition function of the PDA
- A stack will records the "nesting level"
 - Prefixes of handles

Constructing an LR parsing table

- Construct a (determinized) transition diagram from LR items
- If there are conflicts stop
- Fill table entries from diagram

LR item

Hypothesis about $\alpha\beta$ being a possible handle, so far we've matched α , expecting to see β

Types of LR(0) items

 $N \rightarrow \alpha \cdot \beta$ Shift Item

 $N \rightarrow \alpha \beta$ • Reduce Item

LR(0) automaton example

LR(0) conflicts

LR(0) conflicts

LR(0) conflicts

- Any grammar with an ε -rule cannot be LR(0)
- Inherent shift/reduce conflict
 - $-A \rightarrow \epsilon^{\bullet}$ reduce item
 - $-P \rightarrow \alpha \bullet A\beta shift item$
 - $-A \rightarrow \epsilon^{\bullet}$ can always be predicted from $P \rightarrow \alpha^{\bullet}A\beta$

LR variants

- LR(0) what we've seen so far
- SLR(0)
 - Removes infeasible reduce actions via FOLLOW set reasoning
- LR(1)
 - LR(0) with one lookahead token in items
- LALR(0)
 - LR(1) with merging of states with same LR(0) component

Semantic Analysis

Abstract Syntax Tree

AST is a simplification of the parse tree

- Can be built by traversing the parse tree
 - E.g., using visitors

- Can be built directly during parsing
 - Add an action to perform on each production rule
 - Similarly to the way a parse tree is constructed

Abstract Syntax Tree

- The interface between the parser and the rest of the compiler
 - Separation of concerns
 - Reusable, modular and extensible
- The AST is defined by a context free grammar
 - The grammar of the AST can be ambiguous!
 - $E \rightarrow E + E$
 - Is this a problem?
- Keep syntactic information
 - Why?

What we want

Context Analysis

- Check properties contexts of in which constructs occur
 - Properties that cannot be formulated via CFG
 - Type checking
 - Declare before use
 - Identifying the same word "w" re-appearing wbw
 - Initialization
 - ...
 - Properties that are hard to formulate via CFG
 - "break" only appears inside a loop
 - ...
- Processing of the AST

Context Analysis

Identification

- Gather information about each named item in the program
- e.g., what is the declaration for each usage

Context checking

- Type checking
- e.g., the condition in an if-statement is a Boolean

Scopes

- Typically stack structured scopes
- Scope entry
 - push new empty scope element
- Scope exit
 - pop scope element and discard its content
- Identifier declaration
 - identifier created inside top scope
- Identifier Lookup
 - Search for identifier top-down in scope stack

Scope and symbol table

- Scope x Identifier -> properties
 - Expensive lookup

- A better solution
 - hash table over identifiers

Types

- What is a type?
 - Simplest answer: a set of values + allowed operations
 - Integers, real numbers, booleans, ...
- Why do we care?
 - Code generation: \$1 := \$1 + \$2
 - Safety
 - Guarantee that certain errors cannot occur at runtime
 - Abstraction
 - Hide implementation details
 - Documentation
 - Optimization

Typing Rules

If E1 has type int and E2 has type int, then E1 + E2 has type int

```
E1: int E2: int
```

E1 + E2 : int

Syntax Directed Translation

- Semantic attributes
 - Attributes attached to grammar symbols
- Semantic actions
 - How to update the attributes

Attribute grammars

Attribute grammars

- Attributes
 - Every grammar symbol has attached attributes
 - Example: Expr.type
- Semantic actions
 - Every production rule can define how to assign values to attributes
 - Example:

```
Expr + Term

Expr.type = Expr1.type when (Expr1.type == Term.type)

Error otherwise
```

Example

Production	Semantic Rule
$D \rightarrow TL$	L.in = T.type
T → int	T.type = integer
T → float	T.type = float
L → L1, id	L1.in = L.in addType(id.entry,L.in)
L → id	addType(id.entry,L.in)

Attribute Evaluation

- Build the AST
- Fill attributes of terminals with values derived from their representation
- Execute evaluation rules of the nodes to assign values until no new values can be assigned
 - In the right order such that
 - No attribute value is used before its available
 - Each attribute will get a value only once

Dependencies

 A semantic equation a = b1,...,bm requires computation of b1,...,bm to determine the value of a

- The value of a depends on b1,...,bm
 - We write a \rightarrow bi

Example

Inherited vs. Synthesized Attributes

- Synthesized attributes
 - Computed from children of a node
- Inherited attributes
 - Computed from parents and siblings of a node
- Attributes of tokens are technically considered as synthesized attributes

example

Production	Semantic Rule
$D \rightarrow TL$	L.in = T.type
$T \rightarrow int$	T.type = integer
T → float	T.type = float
L → L1, id	L1.in = L.in addType(id.entry,L.in)
L → id	addType(id.entry,L.in)

S-attributed Grammars

- Special class of attribute grammars
- Only uses synthesized attributes (S-attributed)
- No use of inherited attributes
- Can be computed by any bottom-up parser during parsing
- Attributes can be stored on the parsing stack
- Reduce operation computes the (synthesized) attribute from attributes of children

L-attributed grammars

- L-attributed attribute grammar when every attribute in a production A → X1...Xn is
 - A synthesized attribute, or
 - An inherited attribute of Xj, 1 <= j <=n that only depends on
 - Attributes of X1...Xj-1 to the left of Xj, or
 - Inherited attributes of A

Intermediate Representation

Three-Address Code IR

- A popular form of IR
- High-level assembly where instructions have at most three operands

Variable assignments

- var = constant;var₁ = var₂;
- $var_1 = var_2 op var_3$;
- var₁ = constant **op** var₂;
- var₁ = var₂ op constant;
- var = constant₁ op constant₂;
- Permitted operators are +, -, *, /, %

In the impl. var is replaced by a pointer to the symbol table

A compiler-generated temporary can be used instead of a var

Control flow instructions

Label introduction

```
__label__name:
Indicates a point in the code that can be jumped to
```

- Unconditional jump: go to instruction following label L
 Goto L;
- Conditional jump: test condition variable t;
 if 0, jump to label L

```
IfZ t Goto L;
```

Similarly: test condition variable t;
 if not zero, jump to label L
 IfNZ t Goto L;

Procedures / Functions

 A procedure call instruction pushes arguments to stack and jumps to the function label

```
A statement x=f(a1,...,an); looks like

Push a1; ... Push an;

Call f;

Pop x; // pop returned value, and copy to it
```

 Returning a value is done by pushing it to the stack (return x;)

```
Push x;
```

Return control to caller (and roll up stack)
 Return;

TAC generation

- At this stage in compilation, we have
 - an AST
 - annotated with scope information
 - and annotated with type information
- To generate TAC for the program, we do recursive tree traversal
 - Generate TAC for any subexpressions or substatements
 - Using the result, generate TAC for the overall expression

cgen for binary operators

```
cgen(e<sub>1</sub> + e<sub>2</sub>) = {
   Choose a new temporary t
   Let t_1 = cgen(e_1)
   Let t_2 = cgen(e_2)
   Emit(t = t_1 + t_2)
   Return t
}
```

cgen for if-then-else

```
Let _t = cgen(e)
cgen(if (e) s_1 else s_2)
                                                Let L<sub>true</sub> be a new label
                                                Let L<sub>false</sub> be a new label
                                                Let L<sub>after</sub> be a new label
                                                Emit( IfZ _t Goto L<sub>false</sub>; )
                                                cgen(s_1)
                                                Emit( Goto Lafter; )
                                                Emit( L<sub>false</sub>: )
                                                cgen(s_2)
                                                Emit( Goto L<sub>after</sub>;)
                                                Emit( L<sub>after</sub>: )
```

IR Optimization

Optimization points

now

Overview of IR optimization

- Formalisms and Terminology
 - Control-flow graphs
 - Basic blocks
- Local optimizations
 - Speeding up small pieces of a procedure
- Global optimizations
 - Speeding up procedure as a whole
- The dataflow framework
 - Defining and implementing a wide class of optimizations

Visualizing IR

```
main:
   tmp0 = Call ReadInteger;
   a = tmp0;
   _tmp1 = Call _ReadInteger;
   b = tmp1;
L0:
   tmp2 = 0;
   tmp3 = b == tmp2;
   tmp4 = 0;
   tmp5 = tmp3 == tmp4;
   IfZ tmp5 Goto L1;
   c = a;
   a = b;
   tmp6 = c % a;
   b = tmp6;
   Goto L0;
L1:
   Push a;
                                b = tmp6;
   Call PrintInt;
```

```
start
  tmp0 = Call ReadInteger;
  a = tmp0;
  tmp1 = Call ReadInteger;
  b = tmp1;
   tmp2 = 0;
   tmp3 = b == tmp2;
   tmp4 = 0;
   tmp5 = tmp3 == tmp4;
  IfZ tmp5 Goto L1;
                  Push a;
                  Call PrintInt
tmp6 = c % a;
                        end
```

Control-Flow Graphs

- A control-flow graph (CFG) is a graph of the basic blocks in a function
- The term CFG is overloaded from here on out, we'll mean "control-flow graph" and not "context free grammar"
- Each edge from one basic block to another indicates that control can flow from the end of the first block to the start of the second block
- There is a dedicated node for the start and end of a function

Common Subexpression Elimination

If we have two variable assignments
 v1 = a op b

• • •

v2 = a op b

 and the values of v1, a, and b have not changed between the assignments, rewrite the code as v1 = a op b

. . .

v2 = v1

- Eliminates useless recalculation
- Paves the way for later optimizations

Common Subexpression Elimination

If we have two variable assignments v1 = a op b [or: v1 = a]
...
v2 = a op b [or: v2 = a]

and the values of v1, a, and b have not changed between the assignments, rewrite the code as v1 = a op b [or: v1 = a]
 ...

v2 = v1

- Eliminates useless recalculation
- Paves the way for later optimizations

Copy Propagation

 If we have a variable assignment v1 = v2then as long as v1 and v2 are not reassigned, we can rewrite expressions of the form a = ... v1 ... as a = ... v2 ... provided that such a rewrite is legal

Dead Code Elimination

- An assignment to a variable v is called dead if the value of that assignment is never read anywhere
- Dead code elimination removes dead assignments from IR
- Determining whether an assignment is dead depends on what variable is being assigned to and when it's being assigned

Live variables

- The analysis corresponding to dead code elimination is called liveness analysis
- A variable is live at a point in a program if later in the program its value will be read before it is written to again
- Dead code elimination works by computing liveness for each variable, then eliminating assignments to dead variables

Local vs. global optimizations

- An optimization is local if it works on just a single basic block
- An optimization is global if it works on an entire control-flow graph of a procedure
- An optimization is interprocedural if it works across the control-flow graphs of multiple procedure
 - We won't talk about this in this course

Abstract Interpretation

Theoretical foundations of program analysis

Cousot and Cousot 1977

- Abstract meaning of programs
 - Executed at compile time

Join semilattices and ordering

A semilattice for constant propagation

 One possible semilattice for this analysis is shown here (for each variable):

The lattice is infinitely wide

Monotone transfer functions

- A transfer function f is monotone iff if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$
- Intuitively, if you know less information about a program point, you can't "gain back" more information about that program point
- Many transfer functions are monotone, including those for liveness and constant propagation
- Note: Monotonicity does **not** mean that $x \sqsubseteq f(x)$
 - (This is a different property called extensivity)

The grand result

- Theorem: A dataflow analysis with a finiteheight semilattice and family of monotone transfer functions always terminates
- Proof sketch:
 - The join operator can only bring values up
 - Transfer functions can never lower values back down below where they were in the past (monotonicity)
 - Values cannot increase indefinitely (finite height)

Code Generation

From TAC IR to Assembly

Shown in project & recitation

Instruction's AST: Pattern Tree

```
result
                Load Const cst, R
                                                   // cost=1
  cst
    constant operand
                                                   // cost=3
              Load_Mem a, R
    memory location operand
              Add_Mem a, R
                                                   // cost=3
  R1
R1
                                                   // cost=4

    Add Scaled Reg cst, R1, R2

        register operand
```

Instruction's AST: Pattern Tree

```
#1
    R
               • Load_Const cst, R
                                                   // cost=1
#2
    R
               • Load_Mem a, R
                                                   // cost=3
#3
               Add_Mem a, R
                                                   // cost=3
    R1
#7

    Add_Scaled_Reg cst, R1, R2

                                                   // cost=4
       #7.1
```

Example – Naïve rewrite Naïve Rewrite

Top-Down Rewrite Algorithm

aka Maximal Munch

Based on tiling

- Start from the root
- Choose largest tile
 - (covers largest number of nodes)
 - Break ties arbitrarily
- Continue recursively

Top-down largest fit rewrite

111

Instruction Selection with Dynamic Programming

- Cost of sub-tree is sum of
 - The cost of the operator
 - The costs of the operands

Idea: Compute the cost while detecting the patterns

- Label: Label → Location @ cost
 - $E.g., #5 \rightarrow reg @ 3$

Example

total cost 8

Linearize code

- Standard AST

 Code procedure
 - E.g., create the register-heavy code first

```
Load_Mem a,R1 ; 3 units
Load_Const 4,R2 ; 1 unit
Mult_Scaled_Reg 8,R1,R2 ; 5 units
Load_Mem b,R1 ; 3 units
Add_Reg R2,R1 ; 1 unit
Total = 13 units
```

Code generation for procedure calls

Compile time generation of code for procedure invocations

Activation Records (aka Stack Frames)

Supporting Procedures

- Stack: a new computing environment
 - e.g., temporary memory for local variables
- Passing information into the new environment
 - Parameters
- Transfer of control to/from procedure
- Handling return values

Abstract Activation Record Stack

Stack frame for procedure $Proc_{k+1}(a_1,...,a_N)$

117

Abstract Stack Frame

Static (lexical) Scoping

```
main ()
    int a = 0;
    int b = 0;
        int b = 1;
             int a = 2;
             printf ("%d %d\n", a, b)
B_0
             int b = 3;
             printf ("%d %d\n", a, b);
        printf ("%d %d\n", a, b);
    printf ("%d %d\n", a, b);
```

a name refers to its (closest)enclosing scope

known at compile time

Declaration	Scopes
a=0	B0,B1,B3
b=0	B0
b=1	B1,B2
a=2	B2
b=3	B3

Dynamic Scoping

- Each identifier is associated with a global stack of bindings
- When entering scope where identifier is declared
 - push declaration on identifier stack
- When exiting scope where identifier is declared
 - pop identifier stack
- Evaluating the identifier in any context binds to the current top of stack
- Determined at runtime

Call Sequences

Push caller-save registers Н Le Push actual parameters (in reverse order) al Caller push code push return address (+ other admin info) Jump to call address call Push current base-pointer Callee push code bp = sp0 (prologue) Push local variables 0 Push callee-save registers Q Callee pop code Pop callee-save registers (epilogue) Pop callee activation record Pop old base-pointer return pop return address Jump to address Caller pop code (P) Pop return value + parameters Pop caller-save registers

"To Callee-save or to Caller-save?"

- Callee-saved registers need only be saved when callee modifies their value
- Some heuristics and conventions are followed

Nested Procedures

- problem: a routine may need to access variables of another routine that contains it statically
- solution: lexical pointer (a.k.a. access link) in the activation record
- lexical pointer points to the last activation record of the nesting level above it
 - in our example, lexical pointer of d points to activation records of c
- lexical pointers created at runtime
- number of links to be traversed is known at compile time

Lexical Pointers

```
program p() {
   int x;
                                        Possible call sequence:
  procedure a(){
                                       p \rightarrow a \rightarrow a \rightarrow c \rightarrow b \rightarrow c \rightarrow d
     int y;
    procedure b() { c() };
      procedure c(){
         int z;
        procedure d() {
           y := x + z
         ... b() ... d() ...
     ... a() ... c() ...
  a()
```

Register allocation

Register allocation

• Number of registers is limited

- Need to allocate them in a clever way
 - Using registers intelligently is a critical step in any compiler
 - A good register allocator can generate code orders of magnitude better than a bad register allocator

Sethi-Ullman translation

- Algorithm by Ravi Sethi and Jeffrey D. Ullman to emit optimal TAC
 - Minimizes number of temporaries
- Main data structure in algorithm is a stack of temporaries
 - Stack corresponds to recursive invocations of _t = cgen(e)
 - All the temporaries on the stack are live
 - Live = contain a value that is needed later on

Example

AST for a Basic Block

```
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;
                                        х
                                                                 \mathbf{n}
              \mathbf{n}
                                           \mathbf{n}
                                n
```

```
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;
}
```

Dependency graph


```
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;
}
```

Simplified Data Dependency Graph

Pseudo Register Target Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1,X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	c,R1
Store_Reg	R1,x
Load_Reg	X1,R1
Add_Const	1,R1
Mult_Mem	d,R1
Store_Reg	R1,y

"Global" Register Allocation

• Input:

- Sequence of machine instructions ("assembly")
 - Unbounded number of temporary variables
 - aka symbolic registers
- "machine description"
 - # of registers, restrictions

Output

- Sequence of machine instructions using machine registers (assembly)
- Some MOV instructions removed

Variable Liveness

- A statement x = y + z
 - defines x
 - uses y and z
- A variable x is live at a program point if its value (at this point) is used at a later point

```
y = 42

z = 73

x undef, y live, z undef

x undef, y live, z live

x = y + z

print(x);

x is live, y dead, z dead

x is dead, y dead, z dead
```

(showing state after the statement)

Main idea

- For every node n in CFG, we have out[n]
 - Set of temporaries live out of n
- Two variables interfere if they appear in the same out[n] of any node n
 - Cannot be allocated to the same register
- Conversely, if two variables do not interfere with each other, they can be assigned the same register
 - We say they have disjoint live ranges
- How to assign registers to variables?

Interference graph

- Nodes of the graph = variables
- Edges connect variables that interfere with one another
- Nodes will be assigned a color corresponding to the register assigned to the variable
- Two colors can't be next to one another in the graph

Graph coloring

- This problem is equivalent to graphcoloring, which is NP-hard if there are at least three registers
- No good polynomial-time algorithms (or even good approximations!) are known for this problem
 - We have to be content with a heuristic that is good enough for RIGs that arise in practice

Coloring by simplification [Kempe 1879]

- How to find a k-coloring of a graph
- Intuition:
 - Suppose we are trying to k-color a graph and find a node with fewer than k edges
 - If we delete this node from the graph and color what remains, we can find a color for this node if we add it back in
 - Reason: fewer than k neighbors → some color must be left over

Coloring by simplification [Kempe 1879]

- How to find a k-coloring of a graph
- Phase 1: Simplification
 - Repeatedly simplify graph
 - When a variable (i.e., graph node) is removed, push it on a stack
- Phase 2: Coloring
 - Unwind stack and reconstruct the graph as follows:
 - Pop variable from the stack
 - Add it back to the graph
 - Color the node for that variable with a color that it doesn't interfere with

Handling precolored nodes

- Some variables are pre-assigned to registers
 - Eg: mul on x86/pentium
 - uses eax; defines eax, edx
 - Eg: call on x86/pentium
 - Defines (trashes) caller-save registers eax, ecx, edx
- To properly allocate registers, treat these register uses as special temporary variables and enter into interference graph as precolored nodes

Optimizing move instructions

Code generation produces a lot of extra movinstructions

mov t5, t9

- If we can assign t5 and t9 to same register, we can get rid of the mov
 - effectively, copy elimination at the register allocation level
- Idea: if t5 and t9 are not connected in inference graph, coalesce them into a single variable; the move will be redundant
- Problem: coalescing nodes can make a graph un-colorable
 - Conservative coalescing heuristic

Constrained Moves

- A instruction T ← S is constrained
 - if S and T interfere
- May happen after coalescing

Constrained MOVs are not coalesced

Constrained Moves

- A instruction T ← S is constrained
 - if S and T interfere
- May happen after coalescing

Constrained MOVs are not coalesced

Constrained Moves

- A instruction T ← S is constrained
 - if S and T interfere
- May happen after coalescing

Constrained MOVs are not coalesced

Graph Coloring with Coalescing

Build: Construct the interference graph

Simplify: Recursively remove non-MOV nodes with less than K neighbors; Push removed nodes into stack

Special case: merged node has less than k neighbors

Coalesce: Conservatively merge unconstrained MOV related nodes with fewer than K "heavy" neighbors

Freeze: Give-Up Coalescing on some MOV related nodes with low degree of *interference* edges

All non-MOV related nodes are "heavy"

Potential-Spill: Spill some nodes and remove nodes Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

Actual-Spill: Spill some potential spills and repeat the process

```
int d=0;
 int e=a;
 do \{d = d+b;
  e = e-1;
 } while (e>0);
 return d;
     enter:
     b \leftarrow r_2
        d \leftarrow 0
       e \leftarrow a
     loop: d \leftarrow d + b
     e \leftarrow e - 1
      if e > 0 goto loop
              r_1 \leftarrow d
              r_3 \leftarrow c
              return
```

```
enter:
                                       c \leftarrow r_3 Callee-saved registers
                   Month at the common a \leftarrow r_1
int f(int a, int b) { b \leftarrow r_2 Caller-saved registers
                               d \leftarrow 0
                    only some a box e \leftarrow a
                    loop: d \leftarrow d + b
                     e \leftarrow e - 1
                      if e > 0 goto loop
                     the old two days r_1 \leftarrow d the fine r_2 \leftarrow d
                          r_3 \leftarrow c
                                       return (r_1, r_3 \ live \ out)
```



```
int f(int a, int b) { b \leftarrow r_2
 int d=0;
  int e=a;
  do \{d = d+b;
  e = e-1;
  } while (e>0);
  return d;
```

```
enter:
                c \leftarrow r_3
denote the common a \leftarrow r_1
 d \leftarrow 0
 and spain a bas a specific e \leftarrow a
 loop: d \leftarrow d + b
e \leftarrow e - 1
 if e > 0 goto loop
 r_1 \leftarrow d
     when states on r_3 \leftarrow c
               return (r_1, r_3 \ live \ out)
```


enter: $c_1 \leftarrow r_3$ $M[c_{loc}] \leftarrow c_1$ $a \leftarrow r_1$ $b \leftarrow r_2$ $d \leftarrow 0$ $e \leftarrow a$ loop: $d \leftarrow d + b$ $e \leftarrow e - 1$ if e > 0 goto loop $r_1 \leftarrow d$ $c_2 \leftarrow M[c_{loc}]$ $r_3 \leftarrow c_2$ return

enter: $r_3 \leftarrow r_3$

 $M[c_{loc}] \leftarrow r_3$ enter: $r_3 \leftarrow 0$ $r_3 \leftarrow r_3 + r_2$ loop: $r_1 \leftarrow r_1 - 1$ if $r_1 > 0$ goto loop $r_1 \leftarrow r_3$ $r_3 \leftarrow M[c_{loc}]$

return

"opt"

return

