Program Analysis
and Verification

0368-4479

Noam Rinetzky

Lecture 2: Operational Semantics

Slides credit: Tom Ball, Dawson Engler, Roman Manevich, Erik Poll,
Mooly Sagiv, Jean Souyris, Eran Tromer, Avishai Wool, Eran Yahav

Verification by over-approximation

Exact set of

Over . :
configurations/
Approximation el
Under

kuniverse |

Approximation

Program semantics

/ Exact set of

configurations/
behaviors

\unive rse /

Program analysis & verification

y=7?;,Xx=7;
X=y *?2

if (x% 2==0){
y =42;

} else {

y =73,
foo();

}
assert (y == 42); ?

What does P do?

y=7?;,Xx=7;
X=y*2

if (x% 2==0){
y =42,

} else {

y =73;
foo();

}
assert (y ==42); ?

What does P mean?

if (x% 2==0){
y=42;

} else { —— v
y =73,
foo();

}
assert (y ==42);

syntax semantics

Program semantics

State-transformer
— Set-of-states transformer
— Trace transformer

Predicate-transformer
Functions

Cat-transformer

Program semantics & verification

Operational Semantics

http://www.daimi.au.dk/~bra8130/Wiley book/wiley.html

; ‘ A Formal Introduction

’

‘A .l .

: '
|
|
'

:
’
.l ’n .

AR B B B B B O)
,

|

» » »

5 .n .\ .
’ y)

Hanne Riis Nielson
and Flemming Nielson

10

A simple imperative language: While

Abstract syntax:
az=n|xl|a+a,|axa,| a-—-a,
b:= true | false

| a,=a, | a,<a, [b] b, Ab,
S:=x:=a | Skip | S15 SQ

if O then §, else S§,

while 6do §

11

Concrete syntax vs. abstract syntax

Z:=X, X:=Yy,; Y:.:=2

12

Exercise: draw an AST

y:=1; while - (x=1) do (y:=y*x; x:=x-1)

S

PN

S ; S

13

Syntactic categories

7€ Num
x € Var

a € Aexp
b € Bexp
S e Stm

numerals

program variables
arithmetic expressions
boolean expressions
statements

14

Semantic categories

Z
T
State

Example state:
Lookup:
Update:

Integers {0, 1, -1, 2, -2, ...}
Truth values {{f, tt}
Var — Z

s=[x~5, y»7, z—~0]
sx=5
s[x—6] = [x—6, y—7, z—0]

15

Example state manipulations

x—1, y—7, z2+—16] v =
x—1, y—7, z—16] t =

x—1, y—7, z—16][x+—5]

x—1, y—7, z—16][x—5] x =

x—1, y—7, z—16][x—5] v =

16

Semantics of arithmetic expressions

Arithmetic expressions are side-effect free
Semantic function ‘A | Aexp || : State — Z

Defined by induction on the syntax tree
[n]s=n

[x [s=sx

[a,+a, [s=A[a,;]s + Al a, | s
[a,-a, s=A[a,]s-Ala,]s

[a, *a, [s=AJa,]sxAfa, |s
[(a;) Js=A[a;]s -—-notneeded
[-a]s=0-Ala,]s

Compositional

SSEPSER IR SIS SRR

Properties can be proved by structural induction

17

Arithmetic expression exercise

Supposes x=3
Evaluate A [x+1] s

18

Semantics of boolean expressions

* Boolean expressions are side-effect free
* Semantic function B || Bexp | : State = T

 Defined by induction on the syntax tree
B[true] s=tt

[false] s =ff

[a,=0a,]s=

[a,<a,]s=

[by Ab,]s=

[-b]s=

B R B8R K

Operational semantics

* Concerned with how to execute programs
— How statements modify state
— Define transition relation between configurations

e Two flavors

— Natural semantics: describes how the overall
results of executions are obtained
* So-called “big-step” semantics

— Structural operational semantics: describes how
the individual steps of a computations take place

* So-called “small-step” semantics

20

Natural operating semantics (NS)

21

Natural operating semantics (NS)

e aka “Large-step semantics”

(S,s) — ¢’

all steps

22

Natural operating semantics

* Developed by Gilles Kahn [STACS 1987]
e Configurations

(S, s) Statement S is about to execute on state s
S Terminal (final) state

* Transitions

(S,s) — s’ Execution of S from s will terminate
with the result state s’

— lgnores non-terminating computations

23

Natural operating semantics

« — defined by rules of the form

side condition

premise & /
(S1,51) — 1) e s (S Sp) — S,

f...
(S,5) > ¢ |

conclusion

* The meaning of compound statements is
defined using the meaning immediate
constituent statements

24

Natural semantics for While

[ass,] (x:=a,s)—s[x—Ala]s]
[skip,J] (skip, s)—s

(S1,5) —5,(S,,) — 5"
(Sy; S,,5) —=s”

[comp,]

(S1,5) — ¢’

[iftt] . ,
(if bthenS;elseS,, s)—s

if B[b]s=tt

(S,,5) —

[ifffns] ')
(if bthen S else S, s)—s

if B[b]s=*F

25

Natural semantics for While

[whilef]

[whilett]

(while bdoS,s)—s

if Bb]s="ff

Non-compositional

(S,s) = s, (while bdoS,s)—s"
(while bdoS,s)y—s”

if B[b]s=tt

26

Example

* Lets, be the state which assigns zero to all
program variables

(x:=x+1, 55) — Solx—1]
(skip, Sp) — S,

(skip, So) = Sp, (x:=%x+1,) — So[x—~1]
(skip; x:=x+1, sp5) — So[x—1]

(x:=x+1,s7) — So[x—1]

(if x=0 then x:=x+1 else skip,s,) — So[x~1]

27

Derivation trees

* Using axioms and rules to derive a transition
(S, s) — s’ gives a derivation tree
— Root: (S, s) — ¢’
— Leaves: axioms
— Internal nodes: conclusions of rules

* Immediate children: matchingrule premises

28

Derivation tree example 1

* Assume s,=[x~5, y—7, z=0]
s,=[x~5, y=7, z-5]
S,=[x~7, y=7, 2-5
s;=[x—7, y»5, z-5

[ass,] [ass,]
<Z - — X, So> — 51 <X =Y, 51> — 52

[comp,] [ass,]

((z:=x; x:=Y), S) =S, (Y:=2,) —=s;

[comp,]
((z:=x; x:=y); V:i=2%, S5 —S;

29

Derivation tree example 1

e Assume

[ass,]

So=[x~5, y»7, z~0]
s,=[x~5, y=7, z-5]
S,=[x~7, y=7, 2-5

s;=[x—7, y»5, z-5

[ass,]

<Z . —X, So> — 51

(x:=y, 1) =5,

:corAE;;T\\\\\\////////,

{(z:=x; x:=Y), So) =S,

ass,.]

<y - =Z, 52> — 53

:COmM

((z:=x; xX:=y); Vi=2% S5 —S;

30

Top-down evaluation via derivation trees

* Given a statementS and an input states
find an output state s’ such that (S, s)—s’

Start with the root and repeatedly apply rules
until the axioms are reached

— Inspect different alternatives in order

* |[n While s’ and the derivation tree is unique

31

Top-down evaluation example

e Factorial program with s x =2

 Shorthand: w=wniie - (x=1) do (y:=y*x; x:=x-1)

[aSS] E

<y:=y*x,$[y 1] > — s[y~2] <x:=x—1,5[y 2] > — s[y »2][x~1]

:Compns] \/[Whileffns]

(yi=y*x; x:=x-1,s[y~1]) — s[y »2][x~1] (W, s[y »2][x~1]) = sly~2, x =1]

[ass,] [whitett

(y:=1,s) = sly~1] (W, sy »1]) = s[y~2, x 1]

[comN

<y:=l; while = (x=1) do (y:=y*x; x:=x—1),s>% sly »2][x~1]

32

Program termination

* Given a statementS and input s
— S terminates on s if there exists a state s’ such that
(S,s) — ¢’
— S loops on s if there is no state s’ such that
(S,s) — s’
* Given a statement$S

— S always terminates if
for every input state s, S terminateson s

— S always loops if
for every input state s, Sloopson's

33

Semantic equivalence

* S, and S, are semantically equivalent if
forallsand s’

(§;,s) — s’ ifand only if (S,,s) — '
* Simple example
while bdo S

is semantically equivalent to:
if bthen (S, whilebdoS)else skip

— Read proof in pages 26-27

34

Properties of natural semantics

e Equivalence of program constructs
— skip; skipis semantically equivalentto skip

— ((S1; S,); S3) is semantically equivalent to
(S1; (S25 S3))

— (x:=5; y:=x%*8) is semantically equivalent to
(x:=5; y:=40)

35

Equivalence of (Sy; S,); Sz and Sy; (S,; S;)

36

Equivalence of (Sy; S,); Sz and Sy; (S,; S;)
Assume((S;; S,); S3, s) — s’ then the following unique derivation tree exists:

<Sll 5> — 59, <52' 51> — 513

((S1;'S5), 8) = S35, (S3,515) = S
((S1;S,); S3,8) = &

Using the rule applications above, we can construct the followingderivation tree:

(Sz,51) = $12,(S3, S12) — S’

(S1,8) = 54, ((Sy; S3), 515) = &
(S1; (52 S3,8) — &

And vice versa.
37

Deterministic semantics for While

* Theorem: for all statements S and states s, s,
if (S, s) — s, and (S, s) — s, then s;=s,

* The proof uses induction on the shape of

derivation trees (pages 29-30) J snee

— Prove that the property holds for all simple
derivation trees by showing it holds for axioms

— Prove that the property holds for all composite

trees: | #nodes>1

* For each rule assume that the property holds for its
premises (induction hypothesis) and prove it holds for
the conclusion of the rule

38

The semantic function S,

 The meaning of a statementS is defined as a
partial function from State to State

S..: Stm — (State — State)

undefined otherwise

Sas 1S]] s = { s if (S, 5) = ¢

* Examples:

Sps |

Sns
Sns

[skip]s=s
[x:=1]s=s[x~1]
[while true do skip]s=undefined

39

Structural operating semantics (SOS)

40

Structural operating semantics (SOS)

e aka “Small-step semantics”

(S, sy = (S, s’)

<

first step

41

Structural operational semantics

* Developed by Gordon Plotkin

* Configurations:y has one of two forms:
(S, s) Statement S is about to execute on state s
S Terminal (final) state

/ first step

* Transitions (S, s) =¥y
y =(§’,s’) Execution of S from s is not completed and

remaining computation proceeds from intermediate
configurationy

y =¢ Execution of S from s has terminated and the final
state is s’

e (S, s)is stuckif thereis noy such that (S, s) =y

42

Structural semantics for While

[ass...] {x:=a, s) => s[x—>A]a]s]

[skipsos] (skip, s)=>s

1 (§1,5) =(S/,s")
[comp sos] <Sl; S5, 5> — <Sll; S, S’>
When does
[cOomp?] (S, 5) =5 ° °
sos

(Si; S0 8) = (52 5")
[if%s] (if bthen S elseS, s)=(S,s) ifB[b]s=tt
(i) (if bthen S elseS,, s)=(S, sy ifB[b]s=ff

43

Structural semantics for While

(while bdoS,s)=
(1f b then
[while] S;while bdoS)
else
skip, s)

44

Derivation sequences

A derivation sequence of a statement S starting in state s is
either

A finite sequence vy, Y1, Y5 ---, Yk such that

1. vo=(S,s)

2. Yi="Yin

3. yis either stuck configurationor a final state
An infinite sequence vg, Y1, ¥, ... such that

1. v=(57s)

2. Vi = Yin
Notations:

— vo =y, Yo derives y, in k steps

— Yo=Y Yo derives yin a finite number of steps

For each step there is a corresponding derivation tree

45

Derivation sequence example

* Assume s,=[x~5, y—~7, z~0]

((z:=x; X:=y); y:=2,Sp)
= (x:=y; y:=2, So[z~5])
= (y:=z, (So[z~5])[x~>7])
=> ((So[z—~5])[x~7])[y—5]

* Derivation tree for first step:

(z:=x, Sog) = Sy[z—5]

(z:=x; x:=vy, Sy) =>(x:=y, So[z—5])

((z:=x; x:=y); y:i=2z,S)=>(x:=y; y:=z, Sy[z—5])

46

Evaluation via derivation sequences

* For any While statement$ and state s it is
always possible to find at least one derivation

sequence from (S, s)

— Apply axioms and rules forever or until a terminal
or stuck configuration is reached

* Proposition: there are no stuck configurations
in While

47

Factorial (n!) example

* Input statessuchthatsx=3

Y .

1; while = (x=1) do (y =y * x; x :=x — 1)

(y:=1;W,s)

= (W, s[y~1])

= (if =(x =1) then ((y := y * x; x := x = 1); W else skip), s[y~1])

= (((y =y * x; x := x=1); W), s[y~1])

= ((x := x—1; W), s[y~3])

= (W, s[y~3][x~2])

= (if =(x =1) then ((y := y * x; x := x = 1); W else skip), s[y~3][x~2])
= ((ly =y * x; x 1= x = 1); W), s[y-=3] [x-2])

= ((x :=x—1; W), s[y~6] [x~2])

= (W, s[y~6][x~1])

= (if =(x =1) then ((y := y * x; x := x— 1); W else skip, s[y~6][x~1])
=> (skip, s[y~6][x—1])

=> s[y~6][x~1]

48

Program termination

* Given a statementS and input s

— S terminates on s if there exists a finite derivation
sequence starting at (S, s)

— S terminates successfully on s if there exists a
finite derivation sequence starting at (S, s) leading
to a final state

— S loops on s if there exists an infinite derivation
sequence starting at (S, s)

49

Properties of structural operational semantics

* S, and S, are semantically equivalent if:

— for all s and y which is either final or stuck,
(S;,sy="vyif and only if (S,, s) =" y
— for all s, there is an infinite derivation sequence

starting at (S;, s) if and only if there is an infinite
derivation sequence starting at (S,, s)

* Theorem: While is deterministic:

—1f (S, s) =" s, and (S, s) =" s, then s;=s,

50

Sequential composition

* Lemma: If (5., S,, s) =Ks" then
there exists s” and k=m+n such that
(S, s)="s"and (S,, s") ="s"
* The proof (pages 37-38) uses induction on the
length of derivation sequences
— Prove that the property holds for all derivation
sequences of length O

— Prove that the property holds for all other derivation

segquences.

* Show thatthe property holds for sequences of length k+1
using the fact it holds on all sequences of length k (induction

hypothesis)

51

The semantic function S,

 The meaning of a statementS is defined as a
partial function from State to State
S.... Stm — (State — State)

SOS*

s lsls= | ¢ £(5,5) =* &
undefined else

* Examples:
S [skip]s=s
Seoc [x:=1]s=5[x1]
S, [while true do skip]s=undefined

52

An equivalence result

* For every statementin While
Sns [[S:[I = SSOS [I:S:[I
* Proof in pages 40-43

53

Language Extensions

abort statement(like C’s exit w/o return value)
Non-determinism
Parallelism

' ocal Variables

Procedures

— Static Scope
— Dynamic scope

While + abort

Abstract syntax
Su:=x:=a| skip | §; 3,
if 6 then §, else §,

while bdo §
abort

Abort terminates the execution

— In “skip; S”thestatementS executes
— In“abort; S”the statementS should never execute

Natural semantics rules: ...?
Structural semantics rules: ...?

55

Comparing semantics

Natural Structural
semantics semantics

abort

abort; S

skip; S

while true do skip

if x = 0 then abort else y =y + x

Conclusions

* Thenaturalsemantics cannotdistinguish between looping and
abnormaltermination

— Unless we add a special error state

* |Inthe structural operational semantics loopingis reflected by

infinite derivationsand abnormal termination is reflected by stuck
configuration

56

While + non-determinism

* Abstract syntax
Su:=x:=a| skip | §; S,
if O then §, else S§,

while 6do §
S, or §,

* Either S, is executed or S, is executed
e Example: x:=1 or (x:=2; xX:=x+2)

— Possible outcomes for x: 1 and 4

57

While + non-determinism:

natural semantics

. (S,,5) =
[or] (S;0r S,,5) =5
for?,] 528 =5

ns

(S;0r S,,s) —=¢

58

While + non-determinism:
structural semantics

[ort,..] ?

[or?,..] ?

59

While + non-determinism

 What about the definitions of the semantic
functions?
—S..[S,0rS8,]s
— S [S, 0rS,]s

60

Comparing semantics

Natural Structural
semantics semantics

X:=1 or (xX:=2; X:=X+2)

(while true do skip) or (x:=2; x:=xt2)

Conclusions

* |n the natural semantics non-determinism will suppress
non-termination (looping) if possible

* |n the structural operational semantics non-determinism
does not suppress non-terminating statements

61

While + parallelism

Abstract syntax
S:=x:=a| skip | §; 3,
if O then §, else S§,

while bdo §
Sl || SQ

* All the interleaving of S; and S, are executed

e Example: x:=1 || (x:=2; x:=x+2)

— Possible outcomes for x: 1, 3, 4

62

While + parallelism:
structural semantics

<51, 5> = <51', 5'>
arl
e O
S,S)y=5s
[par,,] Sy ,
P <51 |S,, 5> = <52: S >
(52, 5> = (52', 5’>
ar3
Pl TS s, = (5117, %)
[part,,) 529 =5

<Sll|521 S> = <Sll S,>

63

While + parallelism:

natural semantics

Q

Challenge problem:

isin fact impossible.

Idea: try to proveon a
restricted version of While
without loops/conditions

Give a formal proof that this

_/

64

Example: derivation sequences
of a parallel statement

(x:=1 || (x:=2; x:=x+2),s)=>

65

Conclusion

* In the structural operational semantics we
concentrate on small steps so interleaving of
computations can be easily expressed

* |n the natural semantics immediate
constituentis an atomic entity so we cannot
express interleaving of computations

66

While + memory

Abstract syntax
S:=x:=a| skip | §; 3,

if O then §, else S§,
while 6do §
r:=malloc(a)
x:= [y]
[x] =y
State'><e Z State : Stack x Heap
Stack : Var — 7

Heap:Z—/

Integers as memory
addresses

67

From states to traces

Trace semantics

Low-level (conceptual) semantics
Add program counter (pc) with states
— Y = State + pc

The meaning of a program is a relation
TC) xStm x >

Execution is a finite/infinite sequence of states

A useful conceptin defining static analysis as
we will see later

69

Example

vy = 1;

while 2:

- (x=1) do

y * X;

x = 1

(

70

Traces

Set of traces is infinite therefore trace
4: x 1= x — 1 semantics is incomputable in general

({x~>2,y~3}L,1) [y : =11{{x~2,y~1},2) [~ (x=1)] ({x~>2,y~1})3 [y:=y*x]
({Xl—>2,yl—>2},>4 [x:=x-1] ({Xl—>1,yl—>2},>2[- (x=1)] <{Xl—>1,yl—>2},>5

({x~3,y~3}L1) [y : =1]{{x~3,y~1},2) [~ (x=1)] ({x~3,y~1})3 [y:=y*x]
({x~3,y~3})4 [x:=%x-1] ({x>2,y~3},)2[~ (x=1)] {{x~2,y~3})3
[y:=y*x] ({x~>2,y~6})4 [x:=x-1] ({x~>1,y~6},)2[~ (x=1)]
({x~1,y~6})5

71

Operational semantics summary

SOS is powerful enough to describe imperative
programs

— Can define the set of traces
— Can represent program counter implicitly

— Handle goto statements and other non-trivial control
constructs (e.g., exceptions)

Natural operational semantics is an abstraction

Different semantics may be used to justify
different behaviors

Thinking in concrete semantics is essential for a
analysis writer

72

The End

