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Program analysis & verification

y=7?;,Xx=7;
X=y *?2

if (x% 2==0){
y =42;

} else {

y =73,
foo();

}
assert (y == 42); ?



What does P do?

y=7?;,Xx=7;
X=y*2

if (x% 2==0){
y =42,

} else {

y =73;
foo();

}
assert (y ==42); ?



What does P mean?

if (x% 2==0){
y=42;

} else { —— v
y =73,
foo();

}
assert (y ==42);

syntax semantics



Program semantics

State-transformer
— Set-of-states transformer
— Trace transformer

Predicate-transformer
Functions

Cat-transformer
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Operational Semantics



http://www.daimi.au.dk/~bra8130/Wiley book/wiley.html
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A simple imperative language: While

Abstract syntax:
az=n|xl|a+a,|axa,| a-—-a,
b:= true | false

| a,=a, | a,<a, [ b ] b, Ab,
S:=x:=a | Skip | S15 SQ

if O then §, else S§,

while 6do §
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Concrete syntax vs. abstract syntax

Z:=X, X:=Yy,; Y:.:=2
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Exercise: draw an AST

y:=1; while - (x=1) do (y:=y*x; x:=x-1)

S

PN

S ; S
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Syntactic categories

7€ Num
x € Var

a € Aexp
b € Bexp
S e Stm

numerals

program variables
arithmetic expressions
boolean expressions
statements
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Semantic categories

Z
T
State

Example state:
Lookup:
Update:

Integers {0, 1, -1, 2, -2, ...}
Truth values {{f, tt}
Var — Z

s=[x~5, y»7, z—~0]
sx=5
s[x—6] = [x—6, y—7, z—0]
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Example state manipulations

x—1, y—7, z2+—16] v =
x—1, y—7, z—16] t =

x—1, y—7, z—16][x+—5]

x—1, y—7, z—16][x—5] x =

x—1, y—7, z—16][x—5] v =
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Semantics of arithmetic expressions

Arithmetic expressions are side-effect free
Semantic function ‘A | Aexp || : State — Z

Defined by induction on the syntax tree
[n]s=n

[x [s=sx

[a,+a, [s=A[a,;]s + Al a, | s
[a,-a, s=A[a,]s-Ala, ]s

[a, *a, [s=AJa,]sxAfa, |s
[(a;) Js=A[a;]s -—-notneeded
[-a]s=0-Ala,]s

Compositional

SSEPSER IR SIS SRR

Properties can be proved by structural induction
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Arithmetic expression exercise

Supposes x=3
Evaluate A [x+1] s
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Semantics of boolean expressions

* Boolean expressions are side-effect free
* Semantic function B || Bexp | : State = T

 Defined by induction on the syntax tree
B[ true] s=tt

[ false ] s =ff

[a,=0a,]s=

[a,<a,]s=

[ by Ab,]s=

[-b]s=

B R B8R K



Operational semantics

* Concerned with how to execute programs
— How statements modify state
— Define transition relation between configurations

e Two flavors

— Natural semantics: describes how the overall
results of executions are obtained
* So-called “big-step” semantics

— Structural operational semantics: describes how
the individual steps of a computations take place

* So-called “small-step” semantics
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Natural operating semantics (NS)
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Natural operating semantics (NS)

e aka “Large-step semantics”

(S,s) — ¢’

all steps
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Natural operating semantics

* Developed by Gilles Kahn [STACS 1987]
e Configurations

(S, s) Statement S is about to execute on state s
S Terminal (final) state

* Transitions

(S,s) — s’ Execution of S from s will terminate
with the result state s’

— lgnores non-terminating computations
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Natural operating semantics

« — defined by rules of the form

side condition

premise & /
(S1,51) — 1) e s (S Sp) — S,

f...
(S,5) > ¢ |

conclusion

* The meaning of compound statements is
defined using the meaning immediate
constituent statements
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Natural semantics for While

[ass,] (x:=a,s)—s[x—Ala]s]
[skip,J] (skip, s)—s

(S1,5) —5,(S,, ) — 5"
(Sy; S,,5) —=s”

[comp,]

(S1,5) — ¢’

[iftt ] . ,
(if bthenS;elseS,, s)—s

if B[b]s=tt

(S,,5) —

[ifffns] ' )
(if bthen S else S, s)—s

if B[b]s=*F
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Natural semantics for While

[whilef ]

[whilett ]

(while bdoS,s)—s

if Bb]s="ff

Non-compositional

(S,s) = s, (while bdoS,s)—s"
(while bdoS,s)y—s”

if B[b]s=tt
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Example

* Lets, be the state which assigns zero to all
program variables

(x:=x+1, 55) — Solx—1]
(skip, Sp) — S,

(skip, So) = Sp, (x:=%x+1, ) — So[x—~1]
(skip; x:=x+1, sp5) — So[x—1]

( x:=x+1,s7) — So[x—1]

(if x=0 then x:=x+1 else skip,s,) — So[x~1]
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Derivation trees

* Using axioms and rules to derive a transition
(S, s) — s’ gives a derivation tree
— Root: (S, s) — ¢’
— Leaves: axioms
— Internal nodes: conclusions of rules

* Immediate children: matchingrule premises

28



Derivation tree example 1

* Assume s,=[x~5, y—7, z=0]
s,=[x~5, y=7, z-5]
S,=[x~7, y=7, 2-5
s;=[x—7, y»5, z-5

[ass, ] [ass,]
<Z - — X, So> — 51 <X =Y, 51> — 52

[comp,] [ass, ]

((z:=x; x:=Y), S) =S, (Y:=2, ) —=s;

[comp,]
((z:=x; x:=y); V:i=2%, S5 —S;
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Derivation tree example 1

e Assume

[ass, ]

So=[x~5, y»7, z~0]
s,=[x~5, y=7, z-5]
S,=[x~7, y=7, 2-5

s;=[x—7, y»5, z-5

[ass,]

<Z . —X, So> — 51

(x:=y, 1) =5,

:corAE;;T\\\\\\////////,

{(z:=x; x:=Y), So) =S,

ass,.]

<y - =Z, 52> — 53

:COmM

((z:=x; xX:=y); Vi=2% S5 —S;
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Top-down evaluation via derivation trees

* Given a statementS and an input states
find an output state s’ such that (S, s)—s’

Start with the root and repeatedly apply rules
until the axioms are reached

— Inspect different alternatives in order

* |[n While s’ and the derivation tree is unique
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Top-down evaluation example

e Factorial program with s x =2

 Shorthand: w=wniie - (x=1) do (y:=y*x; x:=x-1)

[aSS ] E

<y:=y*x,$[y 1] > — s[y~2] <x:=x—1,5[y 2] > — s[y »2][x~1]

:Compns] \/[Whileffns]

(yi=y*x; x:=x-1,s[y~1] ) — s[y »2][x~1] (W, s[y »2][x~1]) = sly~2, x =1]

[ass, ] [whitett

(y:=1,s) = sly~1] (W, sy »1]) = s[y~2, x 1]

[comN

<y:=l; while = (x=1) do (y:=y*x; x:=x—1),s>% sly »2][x~1]
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Program termination

* Given a statementS and input s
— S terminates on s if there exists a state s’ such that
(S,s) — ¢’
— S loops on s if there is no state s’ such that
(S,s) — s’
* Given a statement$S

— S always terminates if
for every input state s, S terminateson s

— S always loops if
for every input state s, Sloopson's
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Semantic equivalence

* S, and S, are semantically equivalent if
forallsand s’

(§;,s) — s’ ifand only if (S,,s) — '
* Simple example
while bdo S

is semantically equivalent to:
if bthen (S, whilebdoS)else skip

— Read proof in pages 26-27
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Properties of natural semantics

e Equivalence of program constructs
— skip; skipis semantically equivalentto skip

— ((S1; S,); S3) is semantically equivalent to
(S1; (S25 S3))

— (x:=5; y:=x%*8) is semantically equivalent to
(x:=5; y:=40)
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Equivalence of (Sy; S,); Sz and Sy; (S,; S;)
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Equivalence of (Sy; S,); Sz and Sy; (S,; S;)
Assume((S;; S,); S3, s) — s’ then the following unique derivation tree exists:

<Sll 5> — 59, <52' 51> — 513

((S1;'S5), 8) = S35, (S3,515) = S
((S1;S,); S3,8) = &

Using the rule applications above, we can construct the followingderivation tree:

(Sz,51) = $12,(S3, S12) — S’

(S1,8) = 54, ((Sy; S3), 515) = &
(S1; (52 S3,8) — &

And vice versa.
37



Deterministic semantics for While

* Theorem: for all statements S and states s, s,
if (S, s) — s, and (S, s) — s, then s;=s,

* The proof uses induction on the shape of

derivation trees (pages 29-30) J snee

— Prove that the property holds for all simple
derivation trees by showing it holds for axioms

— Prove that the property holds for all composite

trees: | #nodes>1

* For each rule assume that the property holds for its
premises (induction hypothesis) and prove it holds for
the conclusion of the rule
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The semantic function S,

 The meaning of a statementS is defined as a
partial function from State to State

S..: Stm — (State — State)

undefined otherwise

Sas 1S]] s = { s if (S, 5) = ¢

* Examples:

Sps |

Sns
Sns

[skip]s=s
[x:=1]s=s[x~1]
[while true do skip]s=undefined
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Structural operating semantics (SOS)
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Structural operating semantics (SOS)

e aka “Small-step semantics”

(S, sy = (S, s’)

<

first step

41



Structural operational semantics

* Developed by Gordon Plotkin

* Configurations:y has one of two forms:
(S, s) Statement S is about to execute on state s
S Terminal (final) state

/ first step

* Transitions (S, s) =¥y
y =(§’,s’) Execution of S from s is not completed and

remaining computation proceeds from intermediate
configurationy

y =¢ Execution of S from s has terminated and the final
state is s’

e (S, s)is stuckif thereis noy such that (S, s) =y
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Structural semantics for While

[ass...] {x:=a, s) => s[x—>A]a]s]

[skipsos] (skip, s)=>s

1 (§1,5) =(S/,s")
[comp sos] <Sl; S5, 5> — <Sll; S, S’>
When does
[cOomp? ] (S, 5) =5 ° °
sos

(Si; S0 8) = (52 5")
[if%s]  (if bthen S elseS, s)=(S,s) ifB[b]s=tt
(i) (if bthen S elseS,, s)=(S, sy ifB[b]s=ff
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Structural semantics for While

(while bdoS,s)=
(1f b then
[while ] S;while bdoS)
else
skip, s)
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Derivation sequences

A derivation sequence of a statement S starting in state s is
either

A finite sequence vy, Y1, Y5 ---, Yk such that

1. vo=(S,s)

2. Yi="Yin

3. yis either stuck configurationor a final state
An infinite sequence vg, Y1, ¥, ... such that

1. v=(57s)

2. Vi = Yin
Notations:

— vo =y, Yo derives y, in k steps

— Yo=Y Yo derives yin a finite number of steps

For each step there is a corresponding derivation tree
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Derivation sequence example

* Assume s,=[x~5, y—~7, z~0]

((z:=x; X:=y); y:=2,Sp)
= (x:=y; y:=2, So[z~5])
= (y:=z, (So[z~5])[x~>7])
=> ((So[z—~5])[x~7])[y—5]

* Derivation tree for first step:

(z:=x, Sog) = Sy[z—5]

(z:=x; x:=vy, Sy) =>(x:=y, So[z—5])

((z:=x; x:=y); y:i=2z,S)=>(x:=y; y:=z, Sy[z—5])
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Evaluation via derivation sequences

* For any While statement$ and state s it is
always possible to find at least one derivation

sequence from (S, s)

— Apply axioms and rules forever or until a terminal
or stuck configuration is reached

* Proposition: there are no stuck configurations
in While
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Factorial (n!) example

* Input statessuchthatsx=3

Y .

1; while = (x=1) do (y =y * x; x :=x — 1)

(y:=1;W,s)

= (W, s[y~1])

= (if =(x =1) then ((y := y * x; x := x = 1); W else skip), s[y~1])

= (((y =y * x; x := x=1); W), s[y~1])

= ((x := x—1; W), s[y~3])

= (W, s[y~3][x~2])

= (if =(x =1) then ((y := y * x; x := x = 1); W else skip), s[y~3][x~2])
= ((ly =y * x; x 1= x = 1); W), s[y-=3] [x-2])

= ((x :=x—1; W), s[y~6] [x~2])

= (W, s[y~6][x~1])

= (if =(x =1) then ((y := y * x; x := x— 1); W else skip, s[y~6][x~1])
=> (skip, s[y~6][x—1])

=> s[y~6][x~1]
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Program termination

* Given a statementS and input s

— S terminates on s if there exists a finite derivation
sequence starting at (S, s)

— S terminates successfully on s if there exists a
finite derivation sequence starting at (S, s) leading
to a final state

— S loops on s if there exists an infinite derivation
sequence starting at (S, s)
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Properties of structural operational semantics

* S, and S, are semantically equivalent if:

— for all s and y which is either final or stuck,
(S;,sy="vyif and only if (S,, s) =" y
— for all s, there is an infinite derivation sequence

starting at (S;, s) if and only if there is an infinite
derivation sequence starting at (S,, s)

* Theorem: While is deterministic:

—1f (S, s) =" s, and (S, s) =" s, then s;=s,
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Sequential composition

* Lemma: If (5., S,, s) =Ks" then
there exists s” and k=m+n such that
(S, s)="s"and (S,, s") ="s"
* The proof (pages 37-38) uses induction on the
length of derivation sequences
— Prove that the property holds for all derivation
sequences of length O

— Prove that the property holds for all other derivation

segquences.

* Show thatthe property holds for sequences of length k+1
using the fact it holds on all sequences of length k (induction

hypothesis)
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The semantic function S,

 The meaning of a statementS is defined as a
partial function from State to State
S.... Stm — (State — State)

SOS*

s lsls= | ¢ £(5,5) =* &
undefined else

* Examples:
S [skip]s=s
Seoc [x:=1]s=5[x1]
S, [while true do skip]s=undefined
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An equivalence result

* For every statementin While
Sns [[S:[I = SSOS [I:S:[I
* Proof in pages 40-43
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Language Extensions

abort statement(like C’s exit w/o return value)
Non-determinism
Parallelism

' ocal Variables

Procedures

— Static Scope
— Dynamic scope



While + abort

Abstract syntax
Su:=x:=a| skip | §; 3,
if 6 then §, else §,

while bdo §
abort

Abort terminates the execution

— In “skip; S”thestatementS executes
— In“abort; S”the statementS should never execute

Natural semantics rules: ...?
Structural semantics rules: ...?
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Comparing semantics

Natural Structural
semantics semantics

abort

abort; S

skip; S

while true do skip

if x = 0 then abort else y =y + x

Conclusions

* Thenaturalsemantics cannotdistinguish between looping and
abnormaltermination

— Unless we add a special error state

* |Inthe structural operational semantics loopingis reflected by

infinite derivationsand abnormal termination is reflected by stuck
configuration
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While + non-determinism

* Abstract syntax
Su:=x:=a| skip | §; S,
if O then §, else S§,

while 6do §
S, or §,

* Either S, is executed or S, is executed
e Example: x:=1 or (x:=2; xX:=x+2)

— Possible outcomes for x: 1 and 4
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While + non-determinism:

natural semantics

. (S,,5) =
[or] (S;0r S,,5) =5
for?,] 528 =5

ns

(S;0r S,,s) —=¢
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While + non-determinism:
structural semantics

[ort,..] ?

[or?,..] ?
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While + non-determinism

 What about the definitions of the semantic
functions?
—S..[S,0rS8,]s
— S [ S, 0rS,]s
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Comparing semantics

Natural Structural
semantics semantics

X:=1 or (xX:=2; X:=X+2)

(while true do skip) or (x:=2; x:=xt2)

Conclusions

* |n the natural semantics non-determinism will suppress
non-termination (looping) if possible

* |n the structural operational semantics non-determinism
does not suppress non-terminating statements
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While + parallelism

Abstract syntax
S:=x:=a| skip | §; 3,
if O then §, else S§,

while bdo §
Sl || SQ

* All the interleaving of S; and S, are executed

e Example: x:=1 || (x:=2; x:=x+2)

— Possible outcomes for x: 1, 3, 4
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While + parallelism:
structural semantics

<51, 5> = <51', 5'>
arl
e O
S,S)y=5s
[par,, ] Sy ,
P <51 |S,, 5> = <52: S >
(52, 5> = (52', 5’>
ar3
Pl TS s, = (5117, %)
[part,,) 529 =5

<Sll|521 S> = <Sll S,>
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While + parallelism:

natural semantics

Q

Challenge problem:

isin fact impossible.

Idea: try to proveon a
restricted version of While
without loops/conditions

Give a formal proof that this

_/
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Example: derivation sequences
of a parallel statement

(x:=1 || (x:=2; x:=x+2),s)=>
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Conclusion

* In the structural operational semantics we
concentrate on small steps so interleaving of
computations can be easily expressed

* |n the natural semantics immediate
constituentis an atomic entity so we cannot
express interleaving of computations
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While + memory

Abstract syntax
S:=x:=a| skip | §; 3,

if O then §, else S§,
while 6do §
r:=malloc(a)
x:= [y]
[x] =y
State'><e Z State : Stack x Heap
Stack : Var — 7

Heap:Z—/

Integers as memory
addresses
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From states to traces



Trace semantics

Low-level (conceptual) semantics
Add program counter (pc) with states
— Y = State + pc

The meaning of a program is a relation
TC ) xStm x >

Execution is a finite/infinite sequence of states

A useful conceptin defining static analysis as
we will see later
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Example

vy = 1;

while 2:

- (x=1) do

y * X;

x = 1

(
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Traces

Set of traces is infinite therefore trace
4: x 1= x — 1 semantics is incomputable in general

({x~>2,y~3}L,1) [y : =11{{x~2,y~1},2) [~ (x=1) ] ({x~>2,y~1})3 [y:=y*x]
({Xl—>2,yl—>2},>4 [x:=x-1] ({Xl—>1,yl—>2},>2[- (x=1) ] <{Xl—>1,yl—>2},>5

({x~3,y~3}L1) [y : =1]{{x~3,y~1},2) [~ (x=1) ] ({x~3,y~1})3 [y:=y*x]
({x~3,y~3})4 [x:=%x-1] ({x>2,y~3},)2[~ (x=1) ] {{x~2,y~3})3
[y:=y*x] ({x~>2,y~6})4 [x:=x-1] ({x~>1,y~6},)2[~ (x=1) ]
({x~1,y~6})5
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Operational semantics summary

SOS is powerful enough to describe imperative
programs

— Can define the set of traces
— Can represent program counter implicitly

— Handle goto statements and other non-trivial control
constructs (e.g., exceptions)

Natural operational semantics is an abstraction

Different semantics may be used to justify
different behaviors

Thinking in concrete semantics is essential for a
analysis writer
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The End



