Program Analysis
and Verification

0368-4479

Noam Rinetzky

Lecture 3: Axiomatic Semantics

Slides credit: Tom Ball, Dawson Engler, Roman Manevich, Erik Poll,
Mooly Sagiv, Jean Souyris, Eran Tromer, Avishai Wool, Eran Yahav

Natural operating semantics

« — defined by rules of the form

side condition

premise & /
(S1,51) — 1) e s (S Sp) — S,

f...
(S,5) > ¢ |

conclusion

* The meaning of compound statements is
defined using the meaning immediate
constituent statements

Natural semantics for While

[ass,] (x:=a,s)—s[x—Ala]s]
[skip,J] (skip, s)—s

(S1,5) —5,(S,,) — 5"

[COmpns] <51’ 52’ S> — 5”

[ift] | (Sp,5)— ¢ _ it B[b]s=tt
(if bthenS;elseS,, s)—s

[iff] (52,8) =& it B[b]s=ff

(if bthen S else S, s)—s

Natural semantics for While

[whileff..]] (while bdoS,s)—s if B[b]s =ff

Non-compositional

(S,s) = s, (while bdoS,s)—s"

while®
| | (while bdoS,s)—s”

if B[b]s=tt

Verification by over-approximation

Exact set of

Over . :
configurations/
Approximation el
Under

kuniverse |

Approximation

Axiomatic Semantics

Edsger W. Dijkstra Robert W. Floyd C.A.R. Hoare

8

Axiomatic Semantics

Edsger W. Dijkstra Robert W. Floyd C.A.R. Hoare

AW

BTW, what do all these people have in common?

Axiomatic Semantics

Edsger W. Dijkstra Robert W. Floyd C.A.R. Hoare

1972 1978 1980

For fundamental contributions to For having a clear influence on For his fundamental contributions to the
programming as a high, intellectual methodologies for the creation of definition and design of programming
challenge; for eloquent insistence and efficient and reliable software, and for languages.

practical demonstration that programs helping to found the following important

should be composed correctly, not just subfields of computer science: the theory

debugged into correctness; for of parsing, the semantics of programming

illuminating perception of problems at the languages, automatic program

foundations of program design. verification, automatic program synthesis,

and analysis of algorithms.

http://amturing.acm.org/

Proving program correctness

* Why prove correctness?
* What is correctness?
* How?
— Reasoning at the operational semantics level

e Tedious
* Error prone

— Formal reasoning using “axiomatic” semantics

* Syntactic technique (“game of tokens”)

* Mechanically checkable
— Sometimes automatically derivable

A simple imperative language: While

Abstract syntax:
az=n|xl|a+a,|axa,| a-—-a,
b:= true | false

| a,=a, | a,<a, [b] b, Ab,
S:=x:=a | Skip | S15 SQ

if O then §, else S§,

while 6do §

10

Progra m correctness concepts

* Property = a certain relationship between initial

state and final state <o 6 Gmer notions of
properties exist

e Partial correctness = properties that hold

if program terminates ., , Voutly focus m
this course

 Termination = program always terminates
— i.e., for every input state

partial correctness +termination = total correctness
o

Other correctness concepts exist:
resource usage, linearizability, ...

11

SfacE Y - 1;

* <Sfac ’ S>

Factorial example
while - (x=1) do (y := y*x; x

’

— 5 implies sy =(sx)!

= x—-1)

12

Factorial example

St,,=y = 1; while = (x=1) do (y := y*x;, x := x-1)
* (St,c,) — S implies s’ y=(sx)!

* Factorial partial correctness property =

— if the statement terminates then the final value of
y Will be the factorial of the initial value of x

e What ifsx<0?

13

Natural semantics for While

[ass,]

[skip]

[comp,.]
[iftt]
[iff]

[whileff_]

[whilett]

(x:=a,s) — s[x~»Ala]s]

(skip, s)— s

(S1,5) —5,(S,, ') —s”

(S1; 55, 8) — 57

(5y5) =8 it B[b]s=tt

(if bthenS;elsesS,,s)—s

(Sy 8) —8 if Bb]s="ff

(if bthen S else S, s)—s
(while bdoS,s)—s
(S,s) —=s’,(while bdoS,s’)—s"

(while bdoS,s)—s”

if Bb]s =*ff

if B[b]s=tt

14

Staged proof

The proof proceeds in three stages:

Stage 1: We prove that the body of the while loop satisfies:
if (y :=y*x; x:=x—1,s) > s"and s" x>0 *)
then (s y) x (s x)! = (s" y) » (s" x)! and s x >0

Stage 2: We prove that the while loop satisfies:
if (while ~(x=1) do (y := y*x; x := x—1), 5) = s" (%)
then (s y) x (s x)! =s"yand s" x=1and s x > 0

Stage 3: We prove the partial correctness property for the complete program:
if (y := 1; while ~(x=1) do (y := y*x; x := x—1), s) = &' ey
then s y = (s x)! and s x> 0

In each of the three stages the derivation tree of the given transition is inspected
in order to prove the property.

15

First stage

Stage 1: We prove that the body of the while loop satisfies:

if (y :=yxx; x:=x%x—-1,s) = s"and s" x > 0)

then (s y) x (s x)! = (8" y) x (s" x)! and s x > 0

In the first stage we consider the transition
(y == y*xx; x := x—1, 5) = 5"
According to [comp,s| there will be transitions
(y := y*x, 5) — s’ and (x := x—1, ') — 5"

for some s’. From the axiom [ass,s| we then get that s’ = s[y—.A[yxx]s] and that
s" = s'[x—A[x—1]s']. Combining these results we have

s" = s[y—(s y)x(s x)|[x—(s x)—1]
Assuming that s” x > 0 we can then calculate

(5" 3) % (s" D) = (s 7) * (s 3)) % (s)=1)! = (5 y) * (s x)

and since s x = (s” x) + 1 this shows that (*) does indeed hold.

16

Second stage

Stage 2: We prove that the while loop satisfies:
if (while —(x=1) do (y := y*x; x := x—1), 5) — "

(**)

then (s y) x (s x)! =s"yand s" x=1and sx >0

In the second stage we proceed by induction on the shape of the derivation tree
for

!

(while ~(x=1) do (y := y*x; x :=x—1),) = s

17

(while = (x=1) do (y := y*x; x := x-1),5)—¢

One of two axioms and rules could have been used to construct this derivation.
If [while®] has been used then s’ = s and B[-(x=1)]s = ff. This means that
s’ x =1 and since 1! = 1 we get the required (s y) x (s x)! = s y and s x > 0.
This proves (**).

Next assume that [While;ts] is used to construct the derivation. Then it must
be the case that B[-(x=1)]s = tt and

(y == yxx; x ;== x—1, s) = §"
and
(while —(x=1) do (y := y*x; x := x—1), s") = &

for some state s”. The induction hypothesis applied to the latter derivation gives
that

(s"y)x (s"x)! =s"yand ' x=1and s" x>0
From (*) we get that

(sy)x(sx)! =(s"y) x(s" x)! and sx > 0
Putting these results together we get

(sy)x(sx)! =s'yands'x=1and s x>0

This proves (**) and thereby the second stage of the proof is completed. 18

Third stage

Stage 3: We prove the partial correctness property for the complete program:

if (y := 1; while ~(x=1) do (y := y*x; x := x—1), 5) = &'
then s y = (s x)! and s x > 0

(¥F*)

Finally, consider the third stage of the proof and the derivation
(y := 1; while —(x=1) do (y = y*X; X := x—1), 5) = &
According to [compys| there will be a state s” such that
(y=1,s) —s"
and
(while —(x=1) do (y := y*X; x := x—1), s") — &

From axiom [ass;s| we see that s” = s[y+>1] and from (**) we get that s” x > 0
and therefore s x > 0. Hence (s x)! = (5" y) x (s” x)! holds and using (**) we get

sx)!=("y)x("x)! =5y

as required. This proves the partial correctness of the factorial statement.

19

How easy was that?

* Proof is very laborious

— Need to connect all transitions and argues about
relationships between their states

— Reason: too closely connected to semantics of
programming language

* |s the proof correct?

* How did we know to find this proof?
— Is there a methodology?

20

Axiomatic verification approach

What do we need in order to prove that the
program does what it supposedto do?

Specify the required behavior

Compare the behavior with the one obtained by the
operational semantics

Develop a proof system for showing that the program
satisfies a requirement

Mechanically use the proof system to show correctness

The meaning of a program is a set of verification rules

21

Axiomatic Verification: Spec

St,,=y = 1; while = (x=1) do (y := y*x;, x := x-1)
* (St,c,) — S implies s’ y=(sx)!

* {Xx=N}S,ly=N!}

— {Pre-condition (s)} Command (S;,.) {post-state(s’)}
— Not {true} S¢,.{y = x!}

22

Partial vs. Total Correctness

St,,=y = 1; while = (x=1) do (y := y*x;, x := x-1)
* (St,c,) — S implies s’ y=(sx)!

* {Xx=N}S,ly=N!}

— {Pre-condition (s)} Command (S;,.) {post-state(s’)}
— Not {true} S¢,.{y = x!}

° = = NI
[X = NJ] Sgsc [y = N1 @e Triples J

23

Verification: Assertion-Based [Floyd, ‘67]

e Assertion: invariant at specific program point
— E.g., assert(e)

e use assertions as foundation for static
correctness proofs

e specify assertions at every program point

e correctnessreduced to reasoning about
individual statements

24

Annotated Flow Programs

Reduction: Program
(START) verification is reduced
————————n&dJ" (J7 is the set of positive integers) to claims about the

subject of discourse

Qi1 J

e —neJ Ni=1
S0
l e e e €J T A= IAS =0
—— S

t—1
e reeeneJTAIEJ AL ER+HIAS = 2 g
J=1

-1 n
———nEJ At=n+1AS=) a;ie, S= 2} a
J=1 J=1

t—1
e e ——n€J TANIEITAISRAS =) g
J=1

Straightline code:
claims are determined

S8 +a i by construction
e ———nE€JTAIEITAISRAS =) qj
\ =1
Pe—i4 1 O
————————— neJ ANEJTA2ZIsn+1AS = g
J=1

FIGURE 1. Flowchart of program to compute S = 2 /-1 a; (n = 0)

25

Annotated Flow Programs

Reduction: Program
(START) verification is reduced
—————————— ne&dJ" (J7 is the set of positive integers) to claims about the

subject of discourse

t—1 /

Cut points ﬂ ~———REJAi=1
S0
l e —nE€J A= LAS =0
._.__.._—) -1

Straightline code:
claims are
determined “by
construction”

e eeeneJTAIEI AL ER+HIAS = 2 g

Jj=1

-1 n
—~——nEJ At=n+1AS=) a;ie, S= 2} a
J=1 J=1

t—1

e —ngdtAIEIT A SAAS = T g

J=1

S8 +aq;

t
e ———neJdTAIEJT AL SRAS = L g

J=1

FIGURE 1. Flowchart of program to compute S = 2 /-1 a; (n = 0)

1~1
———————— ned AIEJTA2Zisn+1IAS=) g
J=1

26

Assertion-Based Verification [Floyd, ‘67]

e Assertion: invariant at specific program point
— E.g., assert(e)

* Proof reduced to logical claims

— Considering the effect of statements
— But, not reusable

* Challenge: Finding invariants at cut points in
loops

27

Floyd-Hoare Logic 1969

* Use Floyd’s ideas to define axiomatic
semantics
— Structured programming
* No gotos
 Modular (reusable claims)
— Hoare triples
 {P}C{Q}
e [P] C[Q] (often <P>C<Q>)

— Define the programming language semantics as a
proof system

28

Assertions, a.k.a Hoare triples

_picia).

statement
precondition 3 k.a command postcondition

 Pand Q are state predicates
— Example: x>0

* If P holdsin the initial state, and
if execution of C terminates on that state,
then Q will hold in the state in which C halts

* Cis notrequired to always terminate
{true} while true do skip {false}

29

Total correctness assertions

[P]C[Q]

* If P holds in the initial state,
execution of C must terminate on that state,
and Q will hold in the state in which C halts

30

Y -

Factorial example

17}

1, while - (x=1) do (y

12}

= y*x;

X .

x-1)

31

First attempt

We need away to
“remember” value of
X before execution

Oo,
{ x>0}

:= 1; while - (x=1) do (y := y*x; x :=

{y=x!}

x-1)

Holds only for value of x at
state after execution finishes

32

Y -

Fixed assertion

A logical variable, must not
appear in statement - immutable

“
{ x=n

1, while - (x=1) do (y := y*x;

{y=n!An>0}

X .

x-1)

33

The proof outline

{x=n}
y :=1;
{x>0 = y*x!=nl An>x}
while - (x=1l) do
{x-1>0= (y*x) *(x-1) !=n! A n>(x-1) }
Yy = y*x;
{x-1>0= y*(x-1) !=n! A n>(x-1) }
x = x-1
{y*x!=nl An>0 A x=1}

34

Factorial example

St,,=y = 1; while = (x=1) do (y := y*x;, x := x-1)

e Factorial partial correctness property = if the
statementterminates then the final value of y
will be the factorial of the initial value of x

— What if sx<0°?

* Formally, using natural semantics:
(Stac, S) — " implies s’ y = (s x)!

35

Staged proof

The proof proceeds in three stages:

Stage 1: We prove that the body of the while loop satisfies:
if (y :=y*x; x:=x—1,s) > s"and s" x>0 *)
then (s y) x (s x)! = (s" y) » (s" x)! and s x >0

Stage 2: We prove that the while loop satisfies:
if (while ~(x=1) do (y := y*x; x := x—1), 5) = s" (%)
then (s y) x (s x)! =s"yand s" x=1and s x > 0

Stage 3: We prove the partial correctness property for the complete program:
if (y := 1; while ~(x=1) do (y := y*x; x := x—1), s) = &' ey
then s y = (s x)! and s x> 0

In each of the three stages the derivation tree of the given transition is inspected
in order to prove the property.

36

Sy-(sx)!=s"y-(s" x)IAs”"x=1Asx>0
-

while - (x=1) do (y

S

J—

Stages

sy-(sx)!=s"y:-(s"" x)I Asx>0

/ \\I

S y = y*x; x = x-1 S

1244

T

= y*x;

X = x-1) S"

sSSy=(sx)!Asx>0

T

s Ly

l; while - (x=1) do (y :=

y*x; x = x-1) S

37

sy - (s x)!
S (y :=

Inductive proof over iterations

__—— N

y*x; x := x-1) S’”

S"’ while - (x=1) do (y := y*x; x := x-1) S"
//\

S while = (x=1) do (y := y*x; x := x-1) S"

\ //4

sy-(sx)!::s"y-(s" x)!>\s"x=1/\sx>0

38

Assertions, a.k.a Hoare triples

{PicCc{Q}

* Pand Q are state predicates
— Example: x>0

* If P holds in the initial state, and
if execution of C terminates on that state,
then Q will hold in the statein which C halts

* Cis not required to always terminate
{true} while true do skip {false}

39

Total correctness assertions

[P]C[Q]

* If P holds in the initial state,
execution of C must terminate on that state,
and Q will hold in the state in which C halts

40

Y -

Factorial assertion

A logical variable, must not
appear in statement - immutable

{x=n)

1, while - (x=1) do (y := y*x;

{y=n!An>0}

X .

x-1)

41

Factorial partial correctness proof

{x=n}
y :=1;
{x>0 = y*x!=nl An>x}
while - (x=1l) do
{x-1>0= (y*x) *(x-1) !=n! A n>(x-1) }

y = y*x;
{x-1>0= y*(x-1) !=n! A n>(x-1) }
x = x-1

{y*x!=nl An>0 A x=1}

42

Formalizing partial correctness

2
*SEP

— P holds in state s P

* X2 — program states
1 —undefined

4

oIds{® FC9s

1 else

Formalizing partial correctness

*sEP Q

— P holds in state s

P
* 2. — program states e‘rg
1 —undefined
. (P}C{Q) N

—Vs,s' €. (sEP A(C, s)—s') = s’E=Q
alternatively

—VseX. (sePAS.C]s#L) = S. [C] =Q
— Convention: L =P forall P)

0
Vse . SIZP — Sns[[C]] S IZQ Why did we choose
natural semantics?

44

Formalizing partial correctness

*sEP Q

— P holds in state s

P
* 2. — program states e‘rg
1 —undefined
. (P}c{Q) N

— Vs, s €X. (sEP A(C, s)=*s') = s’E=Q
alternatively

—VseX.(sePAS.J[C] s+1) = S, [C] =Q

— Convention: L =P forall P
VseX.s=P=S._J[C] s =Q

45

How do we express predicates?

* Extensional approach

— Abstract mathematical functions
P:State— T

* Intensional approach

— Via language of formulae

46

An assertion language

* Bexp is not expressive enough to express
predicates needed for many proofs

— Extend Bexp

* Allow guantifications
- Vz. ..
—dz. ...
e dz. z = kxn
* Import well known mathematical concepts
—nl=nx(n-1)x--2x1

47

An assertion language

Either a program variables or a
logical variable

SV

a:=n|lx|a +a,| aka,| a —a,

A= true | false
|y =ay | a,Say | ~d | A NA, | AV 4,
| A, = A, | Vz. 4| dz. 4

48

First Order Logic Reminder

49

Free/bound variables

* A variable is said to be bound in a formula
when it occurs in the scope of a quantifier.
Otherwise it is said to be free
— di. k=ixm
— (i+100<77)AVi. j+1=i+3)

 FV(A)=the free variables of A

* Defined inductively on the abstract syntax tree
of A

50

Free variables

V(a,+a,) =FV(a, kxa,) = FV(a,-a,) = FV(a,) U FV(a,)

FV(false) {}

51

Su bStItUtIOn Whatif tis not pure?

* An expressiontis pure (a term) if it does not
contain quantifiers

* A[t/z] denotes the assertion A’ which is the
same as A, except that all instances of the free
variable z are replaced by t

e A=di. k=ixm
A[5/k] =
A[5/i] =

52

Calculating substitutions

n(t/z] = n
x[t/z] = x
x[t/x] =t

(a, + a,)[t/z] =a,[t/z] + a,[t/Z]
(a, % a,)[t/z] =a,[t/z] % a,[t/Z]
(a1 -a))[t/z] = a4[t/z] - a,[t/Z]

Calculating substitutions

true(t/x] = true

false[t/x] = false

(a; = @,))[t/z] = a,[t/z] = a,[t/z]
(a1 < a,)[t/z]= a4[t/z] < a,[t/Z]
(-A)[t/z] =~(A[t/Z])

(A A\ At/ 2] = A, [t/z] A A,lt/z]
(AL V A)[t/z] = A, [t/z] V A,[t/z]
(A, = A,)[t/zZ] =A,[t/z] = A,[t/Z]

(Vz. A)[t/z] =Vz. A
(Vz. A)t/y] = Vz. Alt/y]
(3z. A)t/z]=Tz A
(3 z. A)t/y] = 3 z. Alt/y]

Proof Rules

55

Axiomatic semantics for While
lass,] {Pla/x]}x=a{P}
[skip,] {P}skip{P)

{P}1s;{Q}, {Q}S{R}
[comp,) ° {P}S;; S5{R}

Notice similarity
to natural
semantics rules

e 1bAPYS (A} {-bAPES,{Q}
[it,) {P}if bthenS,else S, {Q}

. {bAP}S{P}
whileo] 5y hiTe baoS{bAPT
{P}s{qQ} . ,
[cons,)] PrsiQ) if PP and Q'=Q

56

Assignment rule

[ass,] {Pla/x]}x:=a{P}

A “backwards” rule \

x := a always finishes s[x~>Afals] =P

Why is this true?

— Recall operational semantics:

[ass..] (x:=a,s)— s[x~Ala]s]

Example: {y*z<9} x:=y*z {x<9}
What about {y*z<9Aw=5} x:=y*z {w=5}"

57

skip rule

[skip,] {P}skip{P}

[skip,s] (skip,s)—s

58

Composition rule

— {P}S; {Q}, {Q}S,{R}
P {P}S;; 5, {R}

(S, 5) — 5,(S,, ') — 5"
[Coman] <Sl; 52, S> — S”

* Holds when S, terminates in every state where P

holds and then Q holds
and S, terminates in every state where Q holds

and then R holds

59

Condition rule

if] {bAP}S {Q}, {-bAP}S, {Q]}
i {P}if bthenS,elseS, {Q}

(§,5) — ¢’

(1] . ;
(1f bthen S else S, s)—s

if B[b]s=tt

(S,,5) — ¢

. it B [b]s = ff
(1f bthen S else S, s)—s

[ifff]

60

Loop rule

- {bAP}S{P}
while] TpYwhile bdoS{bAP)

[whileff,] (while bdoS,s)—s if B[b]s =ff

(S,s) =, (while bdoS,s’)—s"

whilett
| ! (while bdoS,s)y—s”

if Bb]s=tt

 Here P is called an invariant for the loop

— Holds before and after each loop iteration
— Findingloop invariants — most challenging part of proofs

 When loop finishes, b is false

61

Rule of consequence

{P}S{Q}
{P}s{Q}

[cons] if PP’ and Q'=Q

* Allows strengthening the precondition and
weakening the postcondition

 The only rule that is not sensitive to the form
of the statement

62

Rule of consequence

{P}s{Q}
{P}s{Q}

[cons] if PP’ and Q'=Q

* Why do we need it?

* Allows the following
{y*z<9} x:=y*z {x<9}
{y*z<9AwW=5} x:=y*z {x<10}

63

Axiomatic semantics for While

primitive statement

[Axiom for every

every composed

[Inference rule for

statement

[ass,] {Pla/x]}x:=a{P}
[skip,] {P}skip{P}

{P15:.1Q} 1Q}S51{R}
[compy] {P}S;; SH{R}

e 1bAPYS (A} {-bAPES,{Q}
[it,) {P}if bthenS,else S, {Q}

. {bAP}S{P}
whileo] 5y hiTe baoS{bAPT
{P}s{qQ} . ,
[cons,)] PrsiQ) if PP and Q'=Q

64

Inference trees

Similar to derivation trees of natural semantics
_eaves are ...
nternal nodes correspond to ...

nference tree is called
— Simple if tree is only an axiom
— Composite otherwise

Similar to derivation trees of natural semantics

— Reasoning about immediate constituent

65

Factorial proof

Goal: {x=n}y:=1; while (x=1) do (y:=y*x; x:=x-1) {y=n!An>0}

W=while (x#1l) do (y:=y*x; x:=x-1)

INV=x>0=(y-x!=nlAn>x)

{INV[x-1/x][y*x/y] } y:=y*x {INV[x-1/x]} {INV[x-1/x]}x:=x-1 {INV}

[comp]
{INV[x-1/x][y*x/y] } y:=y*x; x:=x-1{INV}
[cons]
{x=1 AINV }y:=y*x; x:=x-1{INV}
[while]
(INVII/V]) y:i=1 {INV} {INV }W {x=1 AINV }
[cons] [cons]
{x=n} y:=1 {INV} {INV}IW {y=n! An>0}
[comp]

{x=n}while (x%x=1) do (y:=y*x; x:=x-1) {y=n!An>0}

66

Factorial proof

Goal: {x=n}y:=1; while (x=1) do (y:=y*x; x:=x-1) {y=n!An>0}

W=while (x#1l) do (y:=y*x; x:=x-1)

INV=x>0=>(y-x!=nlAn>x)

{INV[x-1/x][y*x/y] } y:=y*x {INV[x-1/x]} {INV[x-1/x]}x:=x-1 {INV}

[comp]
{INV[x-1/x][y*x/y] } y:=y*x; x:=x-1{INV}
[cons]
{bAP}S{P} {x=1 AINV }y:=y*x; x:=x-1{INV}
{P}while bdoS{-bAP} [while]
(INVIAA] Y yi=1 {INV) {INV}W {x=1 AINV }
[cons] [cons]
{x=n} y:=1 {INV} {INVIW {y=n! An>0}

[comp]

{x=n}while (x%x=1) do (y:=y*x; x:=x-1) {y=n!An>0}

67

Factorial proof

Goal: {x=n}y:=1; while (x=1) do (y:=y*x; x:=x-1) {y=n!An>0}

W=while (x#1l) do (y:=y*x; x:=x-1)

INV=x>0=>(y-x!=nlAn>x)

{INV[x-1/x][y*x/y] } y:=y*x {INV[x-1/x]} {INV[x-1/x]}x:=x-1 {INV}

[comp]
{INV[x-1/x][y*x/y] } y:=y*x; x:=x-1{INV}
[cons]
{P/,D}Ss{g} if PP and Q'=Q [while] e Ay 2y e e (V)
(INV[I/V]) yi=1 {INV} {INV }W {x=1 AINV }
[cons] [cons]
{x=n} y:=1 {INV} {INV }W {y=n! An>0}
[comp]

{x=n}while (x%x=1) do (y:=y*x; x:=x-1) {y=n!An>0}

68

Provability

 We say that an assertion{ P} C{Q }is provable
if there exists an inference tree

— Writtenas -, {P}C{Q]}

69

Annotated programs

* A streamlined version of inference trees
— Inline inference trees into programs

— A kind of “proof carrying code”

— Going from annotated program to prooftree is a
linear time translation

70

Annotating composition

 We can inline inference trees into programs

* Using proof equivalence of S; (S,; S3) and (S4; S,); S5
instead writing deep trees, e.g.,

{PYS {P} {P}S, {P"} {P"}S;{P”} {P""}S,{P”}
{P}(S4; S,) {P”} {P"}(S3; S,){Q}
{P}(S1; S,); (S35 Sa){Q)

* We can annotate a compositionS;; S,;...; S,, by
{Pl} 51 {PZ} 52 {Pn-l} Sn-l {Pn}

71

Annotating conditions

1bAP}IS1Q) 1bAPLS,1Q]

[if,] {P}if bthenS;elseS,{Q}

{P}

if b then
{bAP}
51

else
5,

{Q}

72

Annotating conditions

1bAP}IS1Q) 1bAPLS,1Q]

[if,] {P}if bthenS;elseS,{Q}

{P}
if bthen
{bAP}
51 Usually Q is the result of using
{ Ql } the consequence rule, so a more
e]lge explicit annotation is
5
{Q,}
{Q}

73

Annotating loops

- {bAP}S{P}
while] TpYwhile bdoS{bAP)

{P}
while bdo

{bAP}
S
b AP}

74

Annotating loops

{bAP}S{P}
{P}while bdoS{-bAP}

[while]

{P}
while bdo

{bAP} P’ implies P
S
{p %—.b/\Pimplies Q

+-bAPH Q]

75

Annotated factorial program

{x=n}
y :=1;
{x>0 = y*x!=n! An>x}
while - (x=1) do
{x-1>0= (y*x) *(x-1) !=n! A n>(x-1) }
y = y*x;
{x-1>0= y*(x-1) !=n! A n>(x-1) }
x = x-1
{y*x!=n! An>0}

* Contrast with proof via natural semantics
 Where did the inductiveargument over loop iterations go?

76

Properties of the semantics

Equivalence

— What is the analog of program
equivalence in axiomatic verification?

Soundness

— Can we prove incorrect properties?

Completeness

— Is there something we can’t prove?

77

Provability

 We say that an assertion{ P} C{Q }is provable
if there exists an inference tree

— Writtenas -, { P} C{Q}
— Are inference trees unique?
{true} x:=1; x:=x+5 {x>0}
* Proofs of properties of axiomatic semantics use
induction on the shape of the inference tree

— Example: provet, { P} C{ true }forany Pand C

78

Provable equivalence

* We say that C, and G, are provably equivalent
if for all Pand Q

H{PrC {Q}ifandonlyif - {P}C,{Q}
 Examples:

— S; skipand$

— 515 (S35 S3) and (S35 S,); S5

79

Valid assertions

e Wesaythat{P}C{Q}isvalid if
for all statess, if s=P and (C, s)—s’ then s’

* Denotedby~,{P}C{Q}

ORNe)

80

Logical implication and equivalence

 We write A = B if for all statess
if s=Athens =B
—{s|sEA}C{s|sEB}
— For every predicate A: false > A = true
* Wewrite A =BifA=BandB=A

— false <= 5=7

* |n writing Hoare-style proofs, we will often
replace a predicate A with A’ suchthat A < A’

and A’ is “simpler”

81

Soundness and completeness

 The inference system is sound:
- {P}C{Q}implies=,{P}C{Q}

* The inference system is complete:
-, {P}C{Q}implies -, {P}C{Q}

82

Hoare logic is sound
and (relatively) complete

e Soundness:
FH{P}C{Q} implies =, {P}C{Q}

* (Relative) completeness:
= {P}C{Q} impliesr,{P}C{Q]}

— Provided we can prove any implication R=R’

83

Hoare logic is sound
and (relatively) complete

e Soundness:
FH{P}C{Q} implies =, {P}C{Q}

* (Relative) completeness:
F,{P}C{Q} implies,{P}C{Q}

— Provided we can prove any implication R=R’

* FYl, nobodytellsushowto find a proof...

84

Is there an Algorithm?

{x=n}
y :=1;
{x>0 = y*x!=n! A n>x }
while - (x=1) do
{x-1>0= (y*x) *(x-1) !=n! A n>(x-1) }
y = y*x;
{x-1>0= y*(x-1) !=n! A n>(x-1) }
x = x-1
{y*x!=n! An>0}

a compact representation of
inference trees

Annotated programs provides

85

86

Predicate Transformers

87

Weakest liberal precondition

* A backward-going predicate transformer

 The weakest liberal precondition for Q is
s = wlp(C, Q)

if and only if for all statess’

if (C, s)—s" thens’ =Q

Propositions:

1. =, {wlp(C,Q)}c{Q}
2. If =, {P}C{Q}then P= wip(C, Q)

88

Strongest postcondition

* A forward-going predicate transformer
* The strongest postconditionfor P is

s’ = sp(P, C)

if and only if there exists s such that
if (C,s)—s"andsEP

1. E

f

o 1P1Cisp(P, ()}

=, {P}1C{Q}thensp(P,C) = Q

89

Predicate transformer semantics

* wlp and sp can be seen functions that transform
predicates to other predicates

— wlp[C] : Predicate — Predicate
{P}c{Q}ifandonlyif wip[C] Q=P

— sp[[C] : Predicate — Predicate
{P}c{Q}ifandonlyifsp[C] P=Q

90

