Program Analysis
and Verification

0368-4479

Noam Rinetzky

Lecture 5: Rely/Guarantee Reasoning

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

While + Concurrency
Abstract syntax:

az=n|x|a +a,|ax*xa,| a-—a,
b::= true | false

| a,=a, | a <a,|=b]| b Ab,
S:=x:=a | skip | §; S,
if 6 then §, else §,
while /do §

S1..1S.

While + concurrency:
structural semantics

(Siys) > (S, s™))
CCSallee 11Sar 8Y =20 CSall ISl 11Sn, 87 =

(Siys) >)s”)

. I=1..n
({5, TS, 5) >y (S, [done[l.TS,, 5"}

Proofs

1P} 5,1Q;} 1Py} 5,1Q;}

{P,AP,} S, 15,{Q,\NQ,}

Interference

Axiomatic Semantics (Hoare Logic)

* Disjoint parallelism

 Global invariant

{P} S, 15,{Q}
* Owicky — Gries [PhD. 76]

* Rely/Guarantee [Jones.]

Rely / Guarantee

e Aka assume Guarantee
e Cliff Jones

* Main idea: Modular capture of interference
— Compositional proofs

Commands as relations

* |tis convenient to view the meaning of
commands as relations between pre-states
and post-states

* In{P}C{Q}
— P is a one state predicate
— Q is a two-state predicate
e Recall auxiliary variables
* Example
—{true} x :=x+1{x=x+1}

Intuition: Rely Guarantee

e Thread-view

() () (o) (Cer) (Cw2) (Cua) (Crsa) (cn)
SO : Sl : see : Sk+1 : Sk+2 : Sk+3 : Sk+3 z Sk+4... : S

n+1

@ . ® | - ® e ® .| O
snbe (11 et 1l
e [L AN L [
e ® ® (¥ ® ®
e () e ® O [
[e [® e ®
® o o ® ® e ® ®

Intuition: Rely Guarantee

e Thread-view

(Co) (cy) (c) (Crs1) (Crs2) (Cre3) (Cis3) (cn)
SO : Sl : see z Sk+1 : Sk+2 : Sk+3 : Sk+3 z Sk+4... : Sn+1

G RRG G RG R

@ o @ ® e ® .| O
enbe (1] e S]
® ® ® Vv 0] ®
® ® ® (¥ ® ®
® e e ® O [
® ® ® ® ® ®
® ® ® ® ® ® ® ®

Intuition: Rely Guarantee

e Thread-view

(Co) (cy) (c) (Crs1) (Crs2) (Cre3) (Cis3) (cn)
SO : Sl : see z Sk+1 : Sk+2 : Sk+3 : Sk+3 z Sk+4... : S

n+1

G RRRR G G R (G RRRR
@ . ® - o L ® .| O
e | O Ol | e ® ®
)
o ® e (¥ ® ®
L L L O e
o o o o o o
o o o o o o o o

Intuition (again)

C
—
Hoare:{P} S{Q}~ {P}=>>=>=={Q}
C
A
' \
R/G:R,GH{P}S{Q}~ {P}=>======{Q}

Relational Post-Conditions

* meaning of commands a relations between
pre-states and post-states

- {P}C{Q}
— P is a one state predicate
— Q is a two-state predicate

 Example
—{true} x :=x+1{x=x+1}

Goal: Parallel Composition

RvG, GHP}S, {Q}

RvG,G,HPIS, {Q} (PAR)

R,G,VvG,H{P}SIS,{Q}

Relational Post-Conditions

* meaning of commands a relations between
pre-states and post-states

e Option I: {P} C{Q}
— P is a one state predicate
— Q is a two-state predicate

 Example
—{true} x :=x+1{x=x+1}

From one- to two-state relations

p(c, o) =p(o)

p(o, o) =p(c)

* Asingle state predicate p is preserved by a
two-state relation R if

—pPAR=p
— Vg, o: p(c) AR(g,) =p(o)

Operations on Relations

* (P;Q)(o, o)=3d1:P(g, 1) AQ(T, ©)
* ID(g, o)=(o=0)
 R*=IDVR V(R;R) V(R;R;R) V... v

Formulas

* ID(x) = (x =x)

* ID(p) =(p =p)
* Preserve (p)=p =p

Informal Semantics

* c=(p,R G, Q)

— For every state ¢ such that ¢ =p:

* Every execution of c on state ¢ with (potential) interventions
which satisfy R results in a state o such that (g, o) EQ

* The execution of every atomic sub-command of c on any possible
intermediate state satisfies G

Informal Semantics

* c=(p,R G, Q)

— For every state ¢ such that ¢ =p:

* Every execution of c on state ¢ with (potential) interventions
which satisfy R results in a state o such that (g, o) EQ

* The execution of every atomic sub-command of c on any possible
intermediate state satisfies G

* cE=[p,R, G, Q]

— For every state ¢ such that o =p:

* Every execution of c on state ¢ with (potential) interventions
which satisfy R must terminate in a state ¢ such that (o,) EQ

* The execution of every atomic sub-command of c on any possible
intermediate state satisfies G

A Formal Semantics

Let [C]I® denotes the set of quadruples <6, 6,, G5, G, > s.t. that
when c executes on ¢, with potential interferences by R it yields an

intermediate state o, followed by an intermediate state 6; and a

final state o,
— as usual 6,=1L when c does not terminate

IC]R = {<o,, 5,, O, 6,>: 36:<0l, 6> =R A
(<C,6>=%0,A0,=03=0,V
1o ,C :<C, o>=*<C',c >
/\((02 01VGZ—G)/\(G3—GVG3G)/\G4—J_)
V <G, 6, 03,0,>¢c [C [R)

ck=(p, R G,Q)
— For every <o,, 6,, 65, 6, > € [C]R such that 5, =p
* <0, 0>EG
s Ifocd#1:<061,04>EQ

Simple Examples

o X:=X+1E (true, X=X, X =X+1vX=X, X =X+1)
e X:=X+1E(X>0,X>X, X>0 vX=X, X>0)
e X:=X+1;Y:=Y+1E(X20AY>0,X>XAY2Y, G, X>0 AY>0)

Inference Rules

 Definect+ (p, R, G, Q) by structural induction
onc

e Soundness
—Ifcr(p, R, G, Q) thencE(p, R, G, Q)

Atomic Command

{p}c{Q} ,
(Atomic)

atomic {c} + (p, preserve(p), QvID, Q)

Conditional Critical Section

{pAb}c{Q} N
(Critical)

await b then c (p, preserve(p), QvID, Q)

Sequential Composition

C1 I_(pll R; G; Q1)
CZ |_(p21 R; GI QZ)
Q; = p,

c,; ¢ H(py, R G, (Qy; R Q)

(SEQ)

Conditionals

¢, Hpab, R, G, Q) pAbAR'= b,
¢, Hpab, R, G Q) pA=bAR*=b,

(IF)

if atomic {b} thenc,elsec,(p, R, G, Q)

Loops

cH(jAb, R, G,j) jAbAR = b,
R = Preserve(j)

(WHILE)

while atomic {b} do c + (j, R, G, —=b A))

Refinement

cH(p, R, G, Q)
p’ :p Q:Q’
R =R G=G

c-(p',R,G,Q")

(REFINE)

Parallel Composition

¢, Hpy Ry, Gy, Q)
¢, HPy Ry Gy, Q)
G, =R,
G, = R;
(PAR)

C1 | | C2 - (pl/\ plr (Rl /\RZ)I (Gl VGZ)) Q)

where Q= (Ql ; (R1/\R2)*} Qz) Vv (Qz ; (Rl/\Rz)*; Ql)

Issues in R/G

Total correctness is trickier
Restrict the structure of the proofs

— Sometimes global proofs are preferable

Many design choices
— Transitivity and Reflexivity of Rely/Guarantee
— No standard set of rules

Suitable for designs

Example: the FINDP algorithm

Problem:
given an array v[1..n] and a predicate P,
find the smallest r such that P(v[r]) holds.

A sequential specification in Hoare logic:

{vi.P(v[i])) is defined }
findp
{r=n+1AVi."PNV[H])V@<r <nAPVIr]) AVi<r.=P(V[i]))

Guarantee: this thread can
An R/G specification of the findp algorithm: modify the state arbitrarily.

findp=(pre,v=v Ar=r, True, post)

where pre and post are as above.

Rely: other threads

cannot modify v or r.

Example: a concurrent FINDP algorithm

Idea:
® partition the array,
® multiple processes search concurrently, one process per partition.

Simple way: even and odd processes.

Naive concurrency. each process searches a partition, calculates the final result
as the minimum of the result of the even and odd processes.

Problem: can perform worse than sequential (why?)

Example: a concurrent FINDP algorithm

Idea:
® partition the array,
® multiple processes search concurrently, one process per partition.

Simple way: even and odd processes.

Naive concurrency:. each process searches a partition, calculates the final result
as the minimum of the result of the even and odd processes.

Problem: can perform worse than sequential (why?)

Communicating processes:

® introduce a (shared) variable top that records the lowest index that satisifies P
found so far;

® cach thread checks at each iteration that it did not go past top.

Example: specification of concurrent FINDP

FindpWorker =

pre: v i € partition . P(v[i])) is defined Rely: other threads cannot modify
v and can only decrement top.
rely:v = v A top < top

guar: top = top v top < top A P(v[top])

post: v i e partition, i < top = —P(v[i])\

Guarantee: the other threads are
guaranteed that, if this thread
updates top, the new value is

smaller than the older and is such

that P(v[top])holds.

It is then possible to prove that two
FindpWorkers, running in parallel, satisfy
the specificationof Findp described two
slides ago.

(modulo setting up the partitions appropriately
and copying the final value from top to r)

