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While + Concurrency
Abstract syntax:

a ::= n | x | a1 + a2 | a1  a2 | a1 – a2

b ::= true | false

| a1 = a2 | a1  a2 | b | b1  b2

S ::= x := a | skip | S1; S2

| if b then S1 else S2

| while b do S

| S1‖ …‖Sn



While + concurrency:
structural semantics
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⟨Si, s⟩→ ⟨Si’, s’ ⟩
 ⟨S1… Sn, s⟩→ ⟨ S1… S’i…Sn, s’⟩

i=1..n

⟨Si, s⟩→ s’ 
 ⟨S1… Sn, s⟩→ ⟨ S1… done…Sn, s’⟩

i=1..n



Proofs

{P1 Λ P2 } S1 ‖ S2 { Q1 Λ Q2 }

{ P1 } S1 { Q2 } { P2 } S2 { Q2 }

… …

…

Challenge: 
Interference



Axiomatic Semantics (Hoare Logic)

• Disjoint parallelism

• Global invariant

• Owicky – Gries [PhD. ‘76]

• Rely/Guarantee [Jones. ]

{ P }  S1 ‖ S2 { Q }

… …



Rely / Guarantee

• Aka assume Guarantee

• Cliff Jones 

• Main idea: Modular capture of interference

– Compositional proofs



Commands as relations

• It is convenient to view the meaning of 
commands as relations between pre-states 
and post-states

• In {P} C {Q}
– P is a one state predicate

– Q is a two-state predicate
• Recall auxiliary variables

• Example
– {true} x := x + 1 {x= x + 1} 



Intuition: Rely Guarantee

• Thread-view

⟨S0, s0⟩⇒ s1 ⇒ … ⇒ sk+1 ⇒ sk+2 ⇒ sk+3 ⇒ sk+3 ⇒ sk+4… ⇒ sn+1

⟨c0⟩ ⟨c1⟩ ⟨ck⟩ ⟨ck+1⟩ ⟨ck+2⟩ ⟨ck+3⟩ ⟨ck+3⟩ ⟨cn⟩

⇒

…

⇒

…



Intuition: Rely Guarantee

• Thread-view

⟨S0, s0⟩⇒ s1 ⇒ … ⇒ sk+1 ⇒ sk+2 ⇒ sk+3 ⇒ sk+3 ⇒ sk+4… ⇒ sn+1

⟨c0⟩ ⟨c1⟩ ⟨ck⟩ ⟨ck+1⟩ ⟨ck+2⟩ ⟨ck+3⟩ ⟨ck+3⟩ ⟨cn⟩

⇒

…

⇒

…

G G G GR* R*R*
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Intuition (again)
C

G

Hoare: { P } S { Q } ~  {P} ⇒⇒⇒⇒{Q}

C

R/G: R,G⊢{ P } S { Q } ~  {P} ⇒⇒⇒⇒⇒⇒⇒{Q}
GR R R G G



Relational Post-Conditions

• meaning of commands a relations between 
pre-states and post-states

• {P} C {Q}
– P is a one state predicate

– Q is a two-state predicate

• Example
– {true} x := x + 1 {x= x + 1} 



Goal: Parallel Composition

R  G2, G1⊢{ P } S1 { Q } 

R, G1G2⊢{ P } S1‖S2 { Q } 

(PAR)
R  G1, G2⊢{ P } S2 { Q } 



Relational Post-Conditions

• meaning of commands a relations between 
pre-states and post-states

• Option I: {P} C {Q}
– P is a one state predicate

– Q is a two-state predicate

• Example
– {true} x := x + 1 {x= x + 1} 



From one- to two-state relations

• p(, ) =p()

• p(, ) =p()

• A single state predicate p is preserved by a 
two-state relation R if

– p R p

– , : p() R(, ) p()



Operations on Relations

• (P;Q)(, )=:P(, ) Q(, )

• ID(, )= (=)

• R*=IDR (R;R) (R;R;R) … 



Formulas

• ID(x) = (x = x)

• ID(p) =(p p)

• Preserve (p)= p p



Informal Semantics

• c  (p, R, G, Q)
– For every state  such that  p:

• Every execution of c on state  with (potential) interventions 
which satisfy R results in a state  such that (, )  Q

• The execution of every atomic sub-command of c on any possible 
intermediate state satisfies G



Informal Semantics

• c  (p, R, G, Q)
– For every state  such that  p:

• Every execution of c on state  with (potential) interventions 
which satisfy R results in a state  such that (, )  Q

• The execution of every atomic sub-command of c on any possible 
intermediate state satisfies G

• c  [p, R, G, Q]
– For every state  such that  p:

• Every execution of c on state  with (potential) interventions 
which satisfy R must terminate in a state  such that (, )  Q

• The execution of every atomic sub-command of c on any possible 
intermediate state satisfies G 



A Formal Semantics

• Let CR denotes the set of quadruples <1, 2, 3, 4 > s.t. that 
when c executes on 1 with potential interferences by R it yields an 
intermediate state 2 followed by an intermediate state 3 and a 
final state 4

– as usual 4= when c does not terminate

• CR = {<1, 2, 3, 4> :   : <1, >  R 
( <C, > * 2  2 = 3= 4 
 ’, C’: <C,  >* <C’, ’ > 
 ( (2= 1  2 = )  (3 =   3=’)  4= )

 <’, 2, 3, 4 >  C’R )

• c  (p, R, G, Q) 
– For every <1, 2, 3 , 4 >  CR such that 1 p

• < 2, 3>  G
• If 4 : <1, 4 >  Q



Simple Examples

• X := X + 1  (true, X=X,  X =X+1X=X, X =X+1)

• X := X + 1  (X 0, X X,  X>0 X=X, X>0)

• X := X + 1 ; Y := Y + 1  (X 0Y 0, X X  Y Y,  G, X>0 Y>0)



Inference Rules

• Define c  (p, R, G, Q) by structural induction 
on c

• Soundness

– If c  (p, R, G, Q)  then c  (p, R, G, Q) 



Atomic Command

{p} c {Q}

atomic {c}  (p, preserve(p), QID, Q)

(Atomic)



Conditional Critical Section

{pb} c {Q}

await b then c  (p, preserve(p), QID, Q)

(Critical)



Sequential Composition

c1 (p1, R, G, Q1)

c1 ; c2  (p1, R, G, (Q1; R*; Q2))

(SEQ)

c2 (p2, R, G, Q2)

Q1  p2



Conditionals

c1 (p b1, R, G, Q)  p  b  R* b1

if  atomic {b}  then c1 else c2  (p, R, G, Q)

(IF)

c2 (p b2, R, G, Q)  p  b  R* b2



Loops

c (j b1, R, G, j)  j  b  R* b1

while atomic {b} do c  (j, R, G, b j)

(WHILE)

R  Preserve(j)



Refinement

c (p, R, G, Q)

c  (p’, R’, G’, Q’)

(REFINE)

p’ p Q Q’

R’ R  G  G’



Parallel Composition

c1 (p1, R1, G1, Q1)

c1 || c2  (p1 p1, (R1 R2), (G1 G2), Q)

where Q= (Q1 ; (R1R2)*; Q2)  (Q2 ; (R1R2)*; Q1)

(PAR)

c2 (p2, R2, G2, Q2)

G1  R2

G2  R1



Issues in R/G

• Total correctness is trickier

• Restrict the structure of the proofs

– Sometimes global proofs are preferable

• Many design choices

– Transitivity and Reflexivity of Rely/Guarantee

– No standard set of rules

• Suitable for designs
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