
Program Analysis
and Verification

0368-4479

Noam Rinetzky

Lecture 5: Rely/Guarantee Reasoning

1

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

While + Concurrency
Abstract syntax:

a ::= n | x | a1 + a2 | a1 a2 | a1 – a2

b ::= true | false

| a1 = a2 | a1 a2 | b | b1 b2

S ::= x := a | skip | S1; S2

| if b then S1 else S2

| while b do S

| S1‖ …‖Sn

While + concurrency:
structural semantics

3

⟨Si, s⟩→ ⟨Si’, s’ ⟩
 ⟨S1… Sn, s⟩→ ⟨ S1… S’i…Sn, s’⟩

i=1..n

⟨Si, s⟩→ s’
 ⟨S1… Sn, s⟩→ ⟨ S1… done…Sn, s’⟩

i=1..n

Proofs

{P1 Λ P2 } S1 ‖ S2 { Q1 Λ Q2 }

{ P1 } S1 { Q2 } { P2 } S2 { Q2 }

… …

…

Challenge:
Interference

Axiomatic Semantics (Hoare Logic)

• Disjoint parallelism

• Global invariant

• Owicky – Gries [PhD. ‘76]

• Rely/Guarantee [Jones.]

{ P } S1 ‖ S2 { Q }

… …

Rely / Guarantee

• Aka assume Guarantee

• Cliff Jones

• Main idea: Modular capture of interference

– Compositional proofs

Commands as relations

• It is convenient to view the meaning of
commands as relations between pre-states
and post-states

• In {P} C {Q}
– P is a one state predicate

– Q is a two-state predicate
• Recall auxiliary variables

• Example
– {true} x := x + 1 {x= x + 1}

Intuition: Rely Guarantee

• Thread-view

⟨S0, s0⟩⇒ s1 ⇒ … ⇒ sk+1 ⇒ sk+2 ⇒ sk+3 ⇒ sk+3 ⇒ sk+4… ⇒ sn+1

⟨c0⟩ ⟨c1⟩ ⟨ck⟩ ⟨ck+1⟩ ⟨ck+2⟩ ⟨ck+3⟩ ⟨ck+3⟩ ⟨cn⟩

⇒

…

⇒

…

Intuition: Rely Guarantee

• Thread-view

⟨S0, s0⟩⇒ s1 ⇒ … ⇒ sk+1 ⇒ sk+2 ⇒ sk+3 ⇒ sk+3 ⇒ sk+4… ⇒ sn+1

⟨c0⟩ ⟨c1⟩ ⟨ck⟩ ⟨ck+1⟩ ⟨ck+2⟩ ⟨ck+3⟩ ⟨ck+3⟩ ⟨cn⟩

⇒

…

⇒

…

G G G GR* R*R*

Intuition: Rely Guarantee

• Thread-view

⟨S0, s0⟩⇒ s1 ⇒ … ⇒ sk+1 ⇒ sk+2 ⇒ sk+3 ⇒ sk+3 ⇒ sk+4… ⇒ sn+1

⟨c0⟩ ⟨c1⟩ ⟨ck⟩ ⟨ck+1⟩ ⟨ck+2⟩ ⟨ck+3⟩ ⟨ck+3⟩ ⟨cn⟩

⇒

…

⇒

…

G G G GRRRR RRRRR

Intuition (again)
C

G

Hoare: { P } S { Q } ~ {P} ⇒⇒⇒⇒{Q}

C

R/G: R,G⊢{ P } S { Q } ~ {P} ⇒⇒⇒⇒⇒⇒⇒{Q}
GR R R G G

Relational Post-Conditions

• meaning of commands a relations between
pre-states and post-states

• {P} C {Q}
– P is a one state predicate

– Q is a two-state predicate

• Example
– {true} x := x + 1 {x= x + 1}

Goal: Parallel Composition

R G2, G1⊢{ P } S1 { Q }

R, G1G2⊢{ P } S1‖S2 { Q }

(PAR)
R G1, G2⊢{ P } S2 { Q }

Relational Post-Conditions

• meaning of commands a relations between
pre-states and post-states

• Option I: {P} C {Q}
– P is a one state predicate

– Q is a two-state predicate

• Example
– {true} x := x + 1 {x= x + 1}

From one- to two-state relations

• p(,) =p()

• p(,) =p()

• A single state predicate p is preserved by a
two-state relation R if

– p R p

– , : p() R(,) p()

Operations on Relations

• (P;Q)(,)=:P(,) Q(,)

• ID(,)= (=)

• R*=IDR (R;R) (R;R;R) …

Formulas

• ID(x) = (x = x)

• ID(p) =(p p)

• Preserve (p)= p p

Informal Semantics

• c (p, R, G, Q)
– For every state such that p:

• Every execution of c on state with (potential) interventions
which satisfy R results in a state such that (,) Q

• The execution of every atomic sub-command of c on any possible
intermediate state satisfies G

Informal Semantics

• c (p, R, G, Q)
– For every state such that p:

• Every execution of c on state with (potential) interventions
which satisfy R results in a state such that (,) Q

• The execution of every atomic sub-command of c on any possible
intermediate state satisfies G

• c [p, R, G, Q]
– For every state such that p:

• Every execution of c on state with (potential) interventions
which satisfy R must terminate in a state such that (,) Q

• The execution of every atomic sub-command of c on any possible
intermediate state satisfies G

A Formal Semantics

• Let CR denotes the set of quadruples <1, 2, 3, 4 > s.t. that
when c executes on 1 with potential interferences by R it yields an
intermediate state 2 followed by an intermediate state 3 and a
final state 4

– as usual 4= when c does not terminate

• CR = {<1, 2, 3, 4> : : <1, > R
(<C, > * 2 2 = 3= 4
 ’, C’: <C, >* <C’, ’ >
 ((2= 1 2 =) (3 = 3=’) 4=)

 <’, 2, 3, 4 > C’R)

• c (p, R, G, Q)
– For every <1, 2, 3 , 4 > CR such that 1 p

• < 2, 3> G
• If 4 : <1, 4 > Q

Simple Examples

• X := X + 1 (true, X=X, X =X+1X=X, X =X+1)

• X := X + 1 (X 0, X X, X>0 X=X, X>0)

• X := X + 1 ; Y := Y + 1 (X 0Y 0, X X Y Y, G, X>0 Y>0)

Inference Rules

• Define c (p, R, G, Q) by structural induction
on c

• Soundness

– If c (p, R, G, Q) then c (p, R, G, Q)

Atomic Command

{p} c {Q}

atomic {c} (p, preserve(p), QID, Q)

(Atomic)

Conditional Critical Section

{pb} c {Q}

await b then c (p, preserve(p), QID, Q)

(Critical)

Sequential Composition

c1 (p1, R, G, Q1)

c1 ; c2 (p1, R, G, (Q1; R*; Q2))

(SEQ)

c2 (p2, R, G, Q2)

Q1 p2

Conditionals

c1 (p b1, R, G, Q) p b R* b1

if atomic {b} then c1 else c2 (p, R, G, Q)

(IF)

c2 (p b2, R, G, Q) p b R* b2

Loops

c (j b1, R, G, j) j b R* b1

while atomic {b} do c (j, R, G, b j)

(WHILE)

R Preserve(j)

Refinement

c (p, R, G, Q)

c (p’, R’, G’, Q’)

(REFINE)

p’ p Q Q’

R’ R G G’

Parallel Composition

c1 (p1, R1, G1, Q1)

c1 || c2 (p1 p1, (R1 R2), (G1 G2), Q)

where Q= (Q1 ; (R1R2)*; Q2) (Q2 ; (R1R2)*; Q1)

(PAR)

c2 (p2, R2, G2, Q2)

G1 R2

G2 R1

Issues in R/G

• Total correctness is trickier

• Restrict the structure of the proofs

– Sometimes global proofs are preferable

• Many design choices

– Transitivity and Reflexivity of Rely/Guarantee

– No standard set of rules

• Suitable for designs

32

33

34

35

