Program Analysis and Verification 0368-4479

Noam Rinetzky

Lecture 8: Abstract Interpretation

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

Abstract Interpretation [Cousot’77]

- Mathematical framework for approximating semantics (aka abstraction)
- Allows designing sound static analysis algorithms
- Usually compute by iterating to a fixed-point
- Computes (loop) invariants
- Can be interpreted as axiomatic verification assertions
- Generalizes Hoare Logic \& WP / SP calculus

Required knowledge

\checkmark Domain theory
\checkmark Collecting semantics
\checkmark Abstract semantics (over lattices)
\checkmark Algorithm to compute abstract semantics (chaotic iteration)

- Connection between collecting semantics and abstract semantics
- Abstract transformers

Recap

Posets

- Poset: A set (D, \sqsubseteq) equipped with a partial order
- Poset = Partially-ordered set
- E.g., $\mathrm{D}=2^{S}$, $\sqsubseteq=\subseteq$
- Join: Least upper bound (\sqcup)
-d is an upper bound on $X \subseteq D$ if $\forall d^{\prime} \in X . d^{\prime} \subseteq d$
-d is the LUB on $X \subseteq D$ if
- d is a UB on X
- If $d^{\prime \prime}$ is an UB on X then $d \sqsubseteq d^{\prime \prime}$
- Meet: Greatest lower bound (п)

Chains

- A chain is a countable increasing sequence $\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle=\mathrm{x}_{0} \sqsubseteq \mathrm{x}_{1} \sqsubseteq \ldots$ such that $\mathrm{x}_{\mathrm{i}} \in \mathrm{X}$
- The least upper bound on $\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle$ in X is the LUB in X of its elements

Complete Partial Orders

- Complete partial order (cpo): A partial order L= (D, $\sqsubseteq)$ is complete if every chain in D has a least upper bound also in D
- (Naturals, \leq) is not a CPO
- (Naturals, $\cup\{\infty\}, \leq$) is a CPO
- A cpo with a least ("bottom") element \perp is a pointed сро (рсро)
- L satisfies the ascending chain condition (ACC) if every ascending chain eventually stabilizes:

$$
d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots \sqsubseteq d_{\mathrm{n}}=d_{\mathrm{n}+1}=\ldots
$$

- Hence, L is a CPO

Constructing (P)CPOs

- If D and E are (pointed) cpos, then so is their
- Cartesian product:
$-\mathrm{D} \times \mathrm{E}:(\mathrm{x}, \mathrm{y}) \sqsubseteq_{\mathrm{D} \times \mathrm{E}}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$ iff $\mathrm{x} \sqsubseteq_{\mathrm{D}} \mathrm{x}^{\prime}$ and $\mathrm{y} \sqsubseteq_{\mathrm{E}} \mathrm{y}^{\prime}$
- Finite maps:
$-D \rightarrow E: f \sqsubseteq f^{\prime}$ iff $\forall d \in D: f(d) \sqsubseteq_{E} f^{\prime}(d)$

Complete Lattices

- Let (D, \sqsubseteq) be a partial order
- (D, $\sqsubseteq)$ is a complete lattice if every subset has
- greatest lower bound
- least upper bound
- Recall: A CPO has a LUB for every chain
- $L=(D, \sqsubseteq, \sqcup, \sqcap, \perp, T)$

Constructing Complete Lattices

- For two complete lattices
$L_{1}=\left(D_{1}, \sqsubseteq_{1}, \sqcup_{1}, \Pi_{1}, \perp_{1}, T_{1}\right)$ and $L_{2}=\left(D_{2}, \sqsubseteq_{2}, \sqcup_{2}, \Pi_{2}, \perp_{2}, T_{2}\right)$
- Cartesian product: $L_{\text {cart }}=\operatorname{Cart}\left(L_{1}, L_{2}\right)=\left(D_{1} \times D_{2}, \sqsubseteq_{\text {cart, }} \sqcup_{\text {cart }}, \Pi_{\text {cart }} \perp_{\text {cart }} \top_{\text {cart }}\right)$
- $\left(x_{1}, x_{2}\right) \sqsubseteq_{\text {cart }}\left(y_{1}, y_{2}\right)$ iff $x_{1} \sqsubseteq_{1} y_{1} x_{2} \sqsubseteq_{2} y_{2}$
- Finite maps: $L_{V \rightarrow L}=\operatorname{Map}(V, L)=\left(V \rightarrow D, \sqsubseteq_{V \rightarrow L} \sqcup_{V \rightarrow L}, \Pi_{V \rightarrow L^{\prime}} \perp_{V \rightarrow L^{L}} T_{V \rightarrow L}\right)$
$-f_{1} \sqsubseteq_{V \rightarrow L} f_{2} \Leftrightarrow \forall v \in V . f_{1}(v) \sqsubseteq f_{2}(v)$
- Disjunctive completion (Powerset): $L_{V}=\operatorname{Disj}\left(L_{1}\right)=\left(2^{D_{1}}, \sqsubseteq_{V}, \sqcup_{V}, \sqcap_{V}, \perp_{V}, T_{V}\right)$
$-\mathrm{X} \sqsubseteq_{V} \mathrm{Y}$ iff $\forall x \in X . \exists y \in Y . x \sqsubseteq_{1} y$
- Relational product: $L_{\text {rel }}=\left(2^{D 1 \times D 2}, \sqsubseteq_{\text {rel }}, \sqcup_{\text {rel }}, \Pi_{\text {rel }} \perp_{\text {rel }}, T_{\text {rel }}\right)$
$-L_{\text {rel }}=\operatorname{Disj}\left(\operatorname{Cart}\left(L_{1}, L_{2}\right)\right.$

Monotone functions

- Let $L_{1}=\left(D_{1}, \sqsubseteq\right)$ and $L_{2}=\left(D_{2}, \sqsubseteq\right)$ be two posets
- A function $f: D_{1} \rightarrow D_{2}$ is monotone if for every pair $x, y \in D_{1}$

$$
x \sqsubseteq y \text { implies } f(x) \sqsubseteq f(y)
$$

- A special case: $L_{1}=L_{2}=(D, \sqsubseteq)$

$$
f: D \rightarrow D
$$

Knaster-Tarski Theorem

- Let $\mathrm{f}: \mathrm{L} \rightarrow \mathrm{L}$ be a monotonic function on a complete lattice L
- The least fixed point lfp(f) exists

Extensive/reductive functions

- Let $L=(D, \sqsubseteq)$ be a poset
- A function $f: D \rightarrow D$ is extensive if for every $x \in D$, we have that $x \sqsubseteq f(x)$
- A function $f: D \rightarrow D$ is reductive if for every $x \in D$, we have that $x \sqsubseteq f(x)$

Fixed-points

- $L=(D, \sqsubseteq, \sqcup, \sqcap, \perp, T)$
- $f: D \rightarrow D$ monotone
- $\operatorname{Fix}(f)=\{d \mid f(d)=d\}$
- $\operatorname{Red}(f)=\{d \mid f(d) \sqsubseteq d\}$
- $\operatorname{Ext}(f)=\{d \mid d \sqsubseteq f(d)\}$
- Theorem [Tarski 1955]

$-\operatorname{Ifp}(f)=\sqcap \operatorname{Fix}(f)=\sqcap \operatorname{Red}(f) \in \operatorname{Fix}(f)$
$-\operatorname{gfp}(f)=\sqcup \operatorname{Fix}(f)=\sqcup \operatorname{Ext}(f) \in \operatorname{Fix}(f)$

> 1.Does a solution always exist? Yes
> 2.If so, is it unique? No, but it has least/greatest solutions 3.If so, is it computable? Under some conditions...

Continuous Functions

- Let $L=(D, \sqsubseteq, \sqcup, \perp)$ be a complete partial order - Every ascending chain has an upper bound
- A function f is continuous if for every increasing chain $Y \subseteq D^{*}$,

$$
f(\sqcup Y)=\bigsqcup\{f(y) \mid y \in Y\}
$$

- Lemma: A continuous function is monotonic

Continuity vs. Monotonicity

- A monotonic function maps a chain of inputs into a chain of outputs:
$\mathrm{x}_{0} \sqsubseteq \mathrm{x}_{1} \sqsubseteq \ldots \Rightarrow \mathrm{f}\left(\mathrm{x}_{0}\right) \sqsubseteq \mathrm{f}\left(\mathrm{x}_{1}\right) \sqsubseteq \ldots$
- It is always true that: $\bigsqcup_{\mathrm{i}}<\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)>\sqsubseteq \mathrm{f}\left(\sqcup_{\mathrm{i}}<\mathrm{x}_{\mathrm{i}}>\right)$
- But $f\left(\bigsqcup_{i}<x_{i}>\right) \sqsubseteq \bigsqcup_{i}\left\langle f\left(x_{i}\right)>\right.$ is not always true

Fixed-point theorem [Kleene]

- Let $L=(D, \sqsubseteq, \sqcup, \perp)$ be a complete partial order and a continuous function $f: D \rightarrow D$ then

$$
\operatorname{lfp}(f)=\bigsqcup_{n \in N} f^{n}(\perp)
$$

- Lemma: Monotone functions on posets satisfying ACC are continuous

Resulting algorithm

- Kleene's fixed point theorem gives a constructive method for computing the Ifp

Mathematical definition

$$
\operatorname{Ifp}(f)=\sqcup_{n \in N} f^{n}(\perp)
$$

Algorithm
$d:=\perp$
while $f(d) \neq d$ do $d:=d \sqcup f(d)$ return d

Collecting Semantics

- Fixpoint-based definition of the program semantics
- Think of a program as a CFG

The collecting lattice

- Lattice for a given control-flow node v : $L_{v}=\left(2^{\text {State }}, \subseteq, \cup, \cap, \varnothing\right.$, State $)$
- Lattice for entire control-flow graph with nodes V :

$$
L_{C F G}=\operatorname{Map}\left(V, L_{v}\right)
$$

- We will use this lattice as a baseline for static analysis and define abstractions of its elements

Equational definition of the semantics

- Define variables of type set of states for each control-flow node
- Define constraints between them

Equational definition of the semantics

- $R[2]=R[e n t r y] \cup \llbracket x:=\mathbf{x}-1 \rrbracket R[3]$
- $R[3]=R[2] \cap\{s \mid s(x)>0\}$
- $R[$ exit $]=R[2] \cap\{s \mid s(x) \leq 0\}$
- A system of recursive equations

Fixed point example for program

- $R[0]=\{\mathbf{x} \in \mathbf{Z}\}$
$R[1]=R[0] \cup R[4]$
$R[2]=R[1] \cap\{s \mid s(x)>0\}$
$R[3]=R[1] \cap\{s \mid s(x) \leq 0\}$
$R[4]=\llbracket \mathbf{x}:=\mathbf{x}-1 \rrbracket \mathrm{R}[2]$
d

F(d) : Fixed-point

Equation systems in general

- Let L be a complete lattice ($D, \sqsubseteq, \sqcup, \sqcap, \perp, T$)
- Let R be a vector of variables $\mathrm{R}[0, \ldots, n] \in D \times \ldots \times D$
- Let F be a vector of functions of the type $\mathrm{f}: \mathrm{D} \times \cdots \times \mathrm{D} \rightarrow \mathrm{D}$
- A system of equations
$R[0]=f[0](R[0], \ldots, R[n])$
$R[n]=f[n](R[0], \ldots, R[n])$
- In vector notation $R=F(R)$

$F(R)$ is monotonic

- Special cases of monotonic functions:
- Join: $f(X, Y)=X \sqcup Y$
- For a set X and any function $g: F(X)=\{g(x) \mid x \in X\}$
- The collecting semantics function is defined using
- Join (set union)
- Meet (set intersection)
- Semantic function for atomic statements lifted to sets of states
- $\mathrm{L}_{\mathrm{CFG}}$ is a Lattice, hence has a fixpoint

Abstract Semantics

- Over-approximating the collecting semantics

An abstract semantics

- $\mathrm{R}[2]=\mathrm{R}[$ entry $] \sqcup \llbracket \mathbf{x}:=\mathbf{x}-1]^{\# \mathrm{R}[3] ~ A b s t r a c t ~ r e p r e s e n t a t i o n ~}$
- $R[3]=R[2] \sqcap\{s \mid s(x)>0\}^{\#} \quad$ of $\{s \mid s(x)<0\}$
- $R[e x i t]=R[2] \sqcap\{s \mid s(x) \leq 0\}^{\#}$

R[entry] entry

- A system of recursive equations

Chaotic Iterations

- An algorithm to compute the abstract fixpoint

Resulting algorithm

- Kleene's fixed point theorem gives a constructive method for computing the Ifp

Mathematical definition

$$
\operatorname{Ifp}(f)=\sqcup_{n \in N} f^{n}(\perp)
$$

Algorithm
$d:=\perp$
while $f(d) \neq d$ do

$$
d:=d \sqcup f(d)
$$

return d

Chaotic iteration

- Input:
- A cpo $L=(D, \sqsubseteq, \sqcup, \perp)$ satisfying ACC
- $L^{n}=L \times L \times \ldots \times L$
- A monotone function $f: D^{n} \rightarrow D^{n}$
- A system of equations $\{X[i]|f(X)| 1 \leq i \leq n\}$
- Output: Ifp(f)
- A worklist-based algorithm

```
for i:=1 to n do
    X[i] := \perp
WL = {1,..,n}
while WL }=\varnothing\mathrm{ do
    j := pop WL // choose index non-deterministically
    N:= F[i](X)
    if N\not=X[i] then
        X[i]:=N
        add all the indexes that directly depend on i to WL
        (X[j] depends on X[i] if F[j] contains X[i])
return X
```


Constant propagation example

$$
\begin{aligned}
& \mathrm{x}:=4 ; \\
& \text { while }(y \neq 5) \text { do } \\
& z \quad:=\mathbf{x} ; \\
& x \quad:=4
\end{aligned}
$$

Constant propagation lattice

- For each variable x define L as

- For a set of program variables $\operatorname{Var}=\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ $L^{n}=L \times L \times \ldots \times L$

Write down variables

$$
\begin{aligned}
& \mathrm{x}:=4 ; \\
& \text { while }(y \neq 5) \text { do } \\
& z \quad:=\mathbf{x} ; \\
& x \quad:=4
\end{aligned}
$$

Write down equations

$$
\begin{aligned}
& \mathrm{x}:=4 ; \\
& \text { while }(y \neq 5) \text { do } \\
& z \quad:=\mathbf{x} ; \\
& x \quad:=4
\end{aligned}
$$

Constant propagation equations

$$
\begin{aligned}
& R_{0}=\top \\
& R_{1}=\llbracket \mathbf{x}:=4 \rrbracket^{\#} R_{0} \\
& R_{2}=R_{1} \sqcup R_{5} \\
& R_{3}=\llbracket \text { assume } \mathbf{y} \neq 5 \rrbracket^{\#} \mathrm{R}_{2} \\
& R_{4}=\llbracket \mathbf{z}:=\mathbf{x} \rrbracket^{\#} R_{3} \\
& R_{5}=\llbracket \mathbf{x}:=\mathbf{4} \rrbracket^{\#} R_{4} \\
& R_{6}=\llbracket \text { assume } \mathrm{y}=5 \rrbracket^{\#} R_{2}
\end{aligned}
$$

Abstract operations for CP

$\mathrm{R}_{0}=\mathrm{T} \quad \mathrm{CP}$ lattice for a single variable
$R_{1}=\llbracket \mathbf{x}:=4 \rrbracket^{\#} R_{0}$
$R_{2}=R_{1} \sqcup R_{5}$
$R_{3}=\llbracket$ assume $\left.y \neq 5\right]^{\#} R_{2}$
$\mathrm{R}_{4}=\llbracket \mathbf{z}:=\mathbf{x} \rrbracket^{\#} \mathrm{R}_{3}$
$R_{5}=\llbracket \mathbf{x}:=4 \rrbracket^{\#} R_{4}$
$R_{6}=\llbracket$ assume $y=5 \rrbracket^{\#} R_{2}$

Lattice elements have the form: $\left(\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}\right)$
[x: $=4 \rrbracket^{\#}\left(v_{x}, v_{y}, v_{z}\right)=\left(4, v_{y_{y}}, v_{z}\right)$
$\llbracket \mathbf{z}:=\mathbf{x} \rrbracket^{\#}\left(v_{x}, v_{y}, v_{z}\right)=\left(v_{x}, v_{y}, v_{x}\right)$
【assume $\mathrm{y} \neq 5 \rrbracket^{\#}\left(\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}\right)=$ if $\mathrm{v}_{\mathrm{y}}=5$ then (\perp, \perp, \perp) else $\left(\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}\right)$
【assume $\mathrm{y}=5 \rrbracket^{\#}\left(\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}\right)=$ if $\mathrm{v}_{\mathrm{y}}=k \neq 5$ then (\perp, \perp, \perp) else $\left(\mathrm{v}_{\mathrm{x}}, 5, \mathrm{v}_{\mathrm{z}}\right)$
$k \neq T$
$R_{1} \sqcup R_{5}=\left(a_{1}, b_{1}, c_{1}\right) \sqcup\left(a_{5}, b_{5}, c_{5}\right)=\left(a_{1} \sqcup a_{5}, b_{1} \sqcup b_{5}, c_{1} \sqcup c_{5}\right)$

Chaotic iteration for CP: initialization

$\mathrm{R}_{0}=\mathrm{T}$
$R_{1}=\llbracket \mathbf{x}:=4 \rrbracket^{\#} R_{0}$
$R_{2}=R_{1} \sqcup R_{5}$
$R_{3}=\llbracket$ assume $y \neq 5 \rrbracket^{\#} R_{2}$
$\left.\mathrm{R}_{4}=\llbracket \mathbf{z}:=\mathbf{x}\right]^{\#} \mathrm{R}_{3}$
$R_{5}=\llbracket \mathbf{x}:=4 \rrbracket^{\#} R_{4}$
$R_{6}=\llbracket$ assume $y=5 \rrbracket^{\#} R_{2}$

$$
W L=\left\{R_{0}, R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}\right\}
$$

Chaotic iteration for CP

$$
\begin{aligned}
& R_{0}=T \\
& R_{1}=\llbracket \mathbf{x}:=4 \rrbracket \rrbracket^{\#} R_{0} \\
& R_{2}=R_{1} \sqcup R_{5} \\
& R_{3}=\llbracket \text { assume } y \neq 5 \rrbracket^{\#} R_{2} \\
& R_{4}=\llbracket \mathbf{z}:=\mathbf{x} \rrbracket \rrbracket^{\#} R_{3} \\
& R_{5}=\llbracket \mathbf{x}:=4 \rrbracket \rrbracket^{\#} R_{4} \\
& R_{6}=\llbracket \text { assume } y=5 \rrbracket \rrbracket^{\#} R_{2} \\
& W L=\left\{R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}\right\}
\end{aligned}
$$

Chaotic iteration for CP

$$
\begin{aligned}
& R_{0}=T \\
& R_{1}=\llbracket \mathbf{x}:=4 \rrbracket \rrbracket^{\#} R_{0} \\
& R_{2}=R_{1} \sqcup R_{5} \\
& R_{3}=\llbracket \text { assume } Y \neq 5 \rrbracket^{\#} R_{2} \\
& R_{4}=\llbracket \mathbf{z}:=\mathbf{x} \rrbracket \rrbracket^{\#} R_{3} \\
& R_{5}=\llbracket \mathbf{x}:=4 \rrbracket \rrbracket^{\#} R_{4} \\
& R_{6}=\llbracket \text { assume } y=5 \rrbracket{ }^{\#} R_{2} \\
& W L=\left\{R_{2}, R_{3}, R_{4}, R_{5}, R_{6}\right\}
\end{aligned}
$$

Chaotic iteration for CP

$$
\begin{aligned}
& R_{0}=T \\
& R_{1}=\llbracket \mathbf{x}:=4 \rrbracket \rrbracket^{\#} R_{0} \\
& R_{2}=R_{1} \sqcup R_{5} \\
& R_{3}=\llbracket \text { assume } Y \neq 5 \rrbracket^{\#} R_{2} \\
& R_{4}=\llbracket \mathbf{z}:=\mathbf{x} \rrbracket \rrbracket^{\#} R_{3} \\
& R_{5}=\llbracket \mathbf{x}:=\mathbf{4} \rrbracket \# R_{4} \\
& \left.R_{6}=\llbracket \text { assume } y=5 \rrbracket\right]^{\#} R_{2} \\
& W L=\left\{R_{2}, R_{3}, R_{4}, R_{5}, R_{6}\right\}
\end{aligned}
$$

Chaotic iteration for CP

$$
\begin{aligned}
& R_{0}=T \\
& R_{1}=\llbracket \mathbf{x}:=4 \rrbracket \rrbracket^{\#} R_{0} \\
& R_{2}=R_{1} \sqcup R_{5} \\
& R_{3}=\llbracket \text { assume } Y \neq 5 \rrbracket^{\#} R_{2} \\
& R_{4}=\llbracket \mathbf{z}:=\mathbf{x} \rrbracket \rrbracket^{\#} R_{3} \\
& R_{5}=\llbracket \mathbf{x}:=\mathbf{4} \rrbracket \# R_{4} \\
& R_{6}=\llbracket \text { assume } y=5 \rrbracket^{\#} R_{2} \\
& W L=\left\{R_{2}, R_{3}, R_{4}, R_{5}, R_{6}\right\}
\end{aligned}
$$

Chaotic iteration for CP

$$
\begin{aligned}
& R_{0}=T \\
& R_{1}=\llbracket \mathbf{x}:=4 \rrbracket \rrbracket^{\#} R_{0} \\
& R_{2}=R_{1} \sqcup R_{5} \\
& R_{3}=\llbracket \text { assume } Y \neq 5 \rrbracket^{\#} R_{2} \\
& R_{4}=\llbracket \mathbf{z}:=\mathbf{x} \rrbracket \rrbracket^{\#} R_{3} \\
& R_{5}=\llbracket \mathbf{x}:=4 \rrbracket \rrbracket^{\#} R_{4} \\
& R_{6}=\llbracket \text { assume } y=5 \rrbracket{ }^{\#} R_{2} \\
& W L=\left\{R_{3}, R_{4}, R_{5}, R_{6}\right\}
\end{aligned}
$$

Chaotic iteration for CP

$$
\begin{aligned}
& R_{0}=T \\
& R_{1}=\llbracket \mathbf{x}:=4 \rrbracket \rrbracket^{\#} R_{0} \\
& R_{2}=R_{1} \sqcup R_{5} \\
& R_{3}=\llbracket \text { assume } y \neq 5 \rrbracket^{\#} R_{2} \\
& R_{4}=\llbracket \mathbf{z}:=\mathbf{x} \rrbracket \rrbracket^{\#} R_{3} \\
& R_{5}=\llbracket \mathbf{x}:=4 \rrbracket \rrbracket^{\#} R_{4} \\
& R_{6}=\llbracket \text { assume } y=5 \rrbracket{ }^{\#} R_{2} \\
& W L=\left\{R_{4}, R_{5}, R_{6}\right\}
\end{aligned}
$$

Chaotic iteration for CP

$$
\begin{aligned}
& R_{0}=\mathrm{T} \\
& \mathrm{R}_{1}=\llbracket \mathbf{x}:=4 \rrbracket^{\#} \mathrm{R}_{0} \\
& \mathrm{R}_{2}=\mathrm{R}_{1} \sqcup \mathrm{R}_{5} \\
& \mathrm{R}_{3}=\llbracket \mathrm{assume} \mathbf{y} \neq 5 \rrbracket^{\#} \mathrm{R}_{2} \\
& \mathrm{R}_{4}=\llbracket \mathbf{z}:=\mathbf{x} \rrbracket^{\#} \mathrm{R}_{3} \\
& \mathrm{R}_{5}=\llbracket \mathbf{x}:=\mathbf{4} \rrbracket^{\#} \mathrm{R}_{4} \\
& \mathrm{R}_{6}=\llbracket \text { assume } \mathrm{y}=5 \rrbracket^{\#} \mathrm{R}_{2} \\
& \mathrm{WL}_{2}=\left\{\mathrm{R}_{5}, \mathrm{R}_{6}\right\}
\end{aligned}
$$

Chaotic iteration for CP

Chaotic iteration for CP

$$
\begin{aligned}
& \mathrm{R}_{0}=\mathrm{T} \\
& \mathrm{R}_{1}=\llbracket \mathbf{x}:=\mathbf{4} \rrbracket^{\#} \mathrm{R}_{0} \\
& \mathrm{R}_{2}=\mathrm{R}_{1} \sqcup \mathrm{R}_{5} \\
& \mathrm{R}_{3}=\llbracket \text { assume } \mathbf{y} \neq 5 \rrbracket^{\#} \mathrm{R}_{2} \\
& \mathrm{R}_{4}=\llbracket \mathbf{z}:=\mathbf{x} \rrbracket \rrbracket^{\#} \mathrm{R}_{3} \\
& \mathrm{R}_{5}=\llbracket \mathbf{x}:=4 \rrbracket \rrbracket^{\#} \mathrm{R}_{4} \\
& \mathrm{R}_{6}=\llbracket \text { assume } \mathrm{y}=5 \rrbracket^{\#} \mathrm{R}_{2} \\
& \\
& \mathrm{WL}=\left\{\mathrm{R}_{6}\right\}
\end{aligned}
$$

Chaotic iteration for CP

Chaotic iteration for static analysis

- Specialize chaotic iteration for programs
- Create a CFG for program
- Choose a cpo of properties for the static analysis to infer: $L=(D, \sqsubseteq, \sqcup, \perp)$
- Define variables R[0,...,n] for input/output of each CFG node such that $\mathrm{R}[\mathrm{i}] \in D$
- For each node v let $\mathrm{v}_{\text {out }}$ be the variable at the output of that node:
$v_{\text {out }}=F[v](\sqcup u \mid(u, v)$ is a CFG edge)
- Make sure each $F[v]$ is monotone
- Variable dependence determined by outgoing edges in CFG

Required knowledge

\checkmark Collecting semantics
\checkmark Abstract semantics (over lattices)
\checkmark Algorithm to compute abstract semantics (chaotic iteration)

- Connection between collecting semantics and abstract semantics
- Abstract transformers

Are we sound?

- We defined a reference semantics the collecting semantics
- We defined an abstract semantics for a given lattice and abstract transformers
- We defined an algorithm to compute abstract least fixed-point when transformers are monotone and lattice obeys ACC
- Questions:

1. What is the connection between the two least fixedpoints?
2. Transformer monotonicity is required for termination - what should we require for correctness?

Galois Connection

- Given two complete lattices $C=\left(D^{C}, \sqsubseteq^{C}, \sqcup^{C}, \Pi^{C}, \perp^{C}, T^{C}\right)$ - concrete domain
$A=\left(D^{A}, \sqsubseteq^{A}, \sqcup^{A}, \Pi^{A}, \perp^{A}, T^{A}\right)$ - abstract domain
- A Galois Connection (GC) is quadruple (C, α, γ, A) that relates C and A via the monotone functions
- The abstraction function $\alpha: D^{C} \rightarrow D^{A}$
- The concretization function $\gamma: D^{A} \rightarrow D^{C}$
- for every concrete element $c \in D^{C}$ and abstract element $a \in D^{A}$

$$
\alpha(\gamma(a)) \sqsubseteq a \text { and } c \sqsubseteq \gamma(\alpha(c))
$$

- Alternatively $\alpha(c) \sqsubseteq a$ iff $c \sqsubseteq \gamma(a)$

Galois Connection: $c \sqsubseteq \gamma(\alpha(c))$

Galois Connection: $\alpha(\gamma(a)) \sqsubseteq a$

Example: lattice of equalities

- Concrete lattice:
$C=\left(2^{\text {state }}, \subseteq, \cup, \cap, \varnothing\right.$, State $)$
- Abstract lattice:
$E Q=\{x=y \mid x, y \in \operatorname{Var}\}$
$A=\left(2^{E Q}, \supseteq, \cap, \cup, E Q, \varnothing\right)$
- Treat elements of A as both formulas and sets of constraints
- Useful for copy propagation - a compiler optimization

$$
\begin{aligned}
& -\alpha(X)=? \\
& -\gamma(Y)=?
\end{aligned}
$$

Example: lattice of equalities

- Concrete lattice:
$C=\left(2^{\text {state }}, \subseteq, \cup, \cap, \varnothing\right.$, State $)$
- Abstract lattice:
$E Q=\{x=y \mid x, y \in \operatorname{Var}\}$
$A=\left(2^{E Q}, \supseteq, \cap, \cup, E Q, \varnothing\right)$
- Treat elements of A as both formulas and sets of constraints
- Useful for copy propagation - a compiler optimization
- $\beta(s)=\alpha(\{s\})=\{x=y \mid s x=s y\}$ that is $s \vDash x=y$ $\alpha(X)=\cap\{\beta(s) \mid s \in X\}=\bigsqcup^{A}\{\beta(s) \mid s \in X\}$ $\gamma(\mathrm{Y})=\{s \mid s \vDash \wedge \mathrm{Y}\}=\operatorname{model}(\wedge \mathrm{Y})$

Galois Connection: $c \sqsubseteq \gamma(\alpha(c))$

Most precise abstract representation

$$
\alpha(c)=\sqcap\{a \mid c \sqsubseteq \gamma(a)\}
$$

Most precise abstract representation

$$
\alpha(c)=\sqcap\{a \mid c \sqsubseteq \gamma(a)\}
$$

Galois Connection: $\alpha(\gamma(a)) \sqsubseteq a$

Galois Insertion $\forall a: \alpha(\gamma(a))=a$

Properties of a Galois Connection

- The abstraction and concretization functions uniquely determine each other:

$$
\begin{aligned}
& \gamma(a)=\sqcup\{c \mid \alpha(c) \sqsubseteq a\} \\
& \alpha(c)=\sqcap\{a \mid c \sqsubseteq \gamma(a)\}
\end{aligned}
$$

Abstracting (disjunctive) sets

- It is usually convenient to first define the abstraction of single elements

$$
\beta(s)=\alpha(\{s\})
$$

- Then lift the abstraction to sets of elements

$$
\alpha(X)=\sqcup^{A}\{\beta(s) \mid s \in X\}
$$

