
Program Analysis
and Verification

0368-4479

Noam Rinetzky

Lecture 9: Abstract Interpretation

1

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

Abstract Interpretation [Cousot’77]

• Mathematical framework for approximating
semantics (aka abstraction)

– Allows designing sound static analysis algorithms

• Usually compute by iterating to a fixed-point

– Computes (loop) invariants

• Can be interpreted as axiomatic verification assertions

• Generalizes Hoare Logic & WP / SP calculus

2

Required knowledge

Domain theory

Collecting semantics

Abstract semantics (over lattices)

Algorithm to compute abstract semantics
(chaotic iteration)

Connection between collecting semantics and
abstract semantics

Abstract transformers

3

Galois Connection

• Given two complete lattices
C = (DC, C, C, C, C, C) – concrete domain
A = (DA, A, A, A, A, A) – abstract domain

• A Galois Connection (GC) is quadruple (C, , , A)
that relates C and A via the monotone functions
– The abstraction function : DC DA

– The concretization function : DA DC

• for every concrete element cDC

and abstract element aDA

((a)) a and c ((c))

• Alternatively (c) a iff c (a)

4

Galois Connection: c ((c))

5

1

c
2(c)

3((c))

The most precise
(least) element in
A representing c

C A

Galois Connection: ((a)) a

6

1

3((a))

2(a) a

C AWhat a represents in C
(its meaning)

Example: lattice of equalities

• Concrete lattice:
C = (2State, , , , , State)

• Abstract lattice:
EQ = { x=y | x, y Var}
A = (2EQ, , , , EQ ,)
– Treat elements of A as both formulas and sets of

constraints

• Useful for copy propagation – a compiler
optimization
– (X) = ?
– (Y) = ?

7

Example: lattice of equalities

• Concrete lattice:
C = (2State, , , , , State)

• Abstract lattice:
EQ = { x=y | x, y Var}
A = (2EQ, , , , EQ ,)
– Treat elements of A as both formulas and sets of

constraints

• Useful for copy propagation – a compiler optimization

• (s) = ({s}) = { x=y | s x = s y} that is s x=y
(X) = {(s) | sX} = A {(s) | sX}
(Y) = { s | s Y } = models(Y)

8

Galois Connection: c ((c))

9

1

[x5, y5, z5]

2

x=x, y=y, z=z,
x=y, y=x,
x=z, z=x,
y=z, z=y

3

…
[x6, y6, z6]
[x5, y5, z5]
[x4, y4, z4]

…

4

x=x, y=y, z=z

The most precise
(least) element in
A representing
[x5, y5, z5]

C A

Most precise abstract representation

10

1c

5

C A

4

6

2

7 3
 8

9

(c)

(c) = {a| c (a)}

Most precise abstract representation

11

1c

5

C A

4

6

2

7 3
 8

9

(c)= x=x, y=y, z=z,

x=y, y=x,
x=z, z=x,
y=z, z=y

(c) = {a | c (a)}

[x5, y5, z5]

x=y, y=zx=y, z=y

x=y

Galois Connection: ((a)) a

12

1

3

x=x, y=y, z=z,
x=y, y=x,
x=z, z=x,
y=z, z=y

2

…
[x6, y6, z6]
[x5, y5, z5]
[x4, y4, z4]

…

x=y, y=z

What a represents in C
(its meaning)

is called a
semantic
reduction

C A

Galois Insertion a: ((a))=a

13

1

x=x, y=y, z=z,
x=y, y=x,
x=z, z=x,
y=z, z=y

2

…
[x6, y6, z6]
[x5, y5, z5]
[x4, y4, z4]

…

C A
How can we obtain a Galois Insertion

from a Galois Connection?

All elements
are reduced

Properties of a Galois Connection

• The abstraction and concretization functions
uniquely determine each other:

(a) = {c | (c) a}
(c) = {a | c (a)}

14

Abstracting (disjunctive) sets

• It is usually convenient to first define the
abstraction of single elements

(s) = ({s})

• Then lift the abstraction to sets of elements
(X) = A {(s) | sX}

15

The case of symbolic domains

• An important class of abstract domains are symbolic
domains – domains of formulas

• C = (2State, , , , , State)
A = (DA, A, A, A, A, A)

• If DA is a set of formulas then the abstraction of a state
is defined as

(s) = ({s}) = A{ | s }
the least formula from DA that s satisfies

• The abstraction of a set of states is
(X) = A {(s) | sX}

• The concretization is
() = { s | s } = models()

16

Inducing along the connections

• Assume the complete lattices
C = (DC, C, C, C, C, C)
A = (DA, A, A, A, A, A)
M = (DM, M, M, M, M, M)
and
Galois connections
GCC,A=(C, C,A, A,C, A) and GCA,M=(A, A,M, M,A, M)

• Lemma: both connections induce the
GCC,M= (C, C,M, M,C, M)

defined by C,M = C,A A,M and M,C = M,A A,C

17

Inducing along the connections

18

1 C,A

A,C

c 2 C,A(c)

5

C A

3

M

A,M

4

M,A

c’

a’
=A,M(C,A(c))

Sound abstract transformer

• Given two lattices
C = (DC, C, C, C, C, C)
A = (DA, A, A, A, A, A)
and GCC,A=(C, , , A) with

• A concrete transformer f : DC DC

an abstract transformer f# : DA DA

• We say that f# is a sound transformer (w.r.t. f) if
• c: f(c)=c’ (f#(c)) (c’)

• For every a and a’ such that
(f((a)))A f#(a)

19

Transformer soundness condition 1

20

1 2

C A

f
3

4f#

5

c: f(c)=c’ (f#(c)) (c’)

Transformer soundness condition 2

21

C A

1 2

f#3
5f

4

a: f#(a)=a’ f((a)) (a’)

Best (induced) transformer

22

C A

2

3f

f#(a)= (f((a)))

1 f#

4

Problem:
incomputable directly

Best abstract transformer [CC’77]

• Best in terms of precision
– Most precise abstract transformer
– May be too expensive to compute

• Constructively defined as
f# = f

– Induced by the GC

• Not directly computable because first step is
concretization

• We often compromise for a “good enough”
transformer
– Useful tool: partial concretization

23

Transformer example

• C = (2State, , , , , State)

• EQ = { x=y | x, y Var}
A = (2EQ, , , , EQ ,)

• (s) = ({s}) = { x=y | s x = s y} that is s x=y
(X) = {(s) | sX} = A {(s) | sX}
() = { s | s } = models()

• Concrete: x:=y X = { s[xs y] | sX}

• Abstract: x:=y# X = ?

24

Developing a transformer for EQ - 1

• Input has the form X = {a=b}

• sp(x:=expr,) = v. x=expr[v/x] [v/x]

• sp(x:=y, X) = v. x=y[v/x] {a=b}[v/x] = …

• Let’s define helper notations:
– EQ(X, y) = {y=a, b=y X}

• Subset of equalities containing y

– EQc(X, y) = X \ EQ(X, y)
• Subset of equalities not containing y

25

Developing a transformer for EQ - 2

• sp(x:=y, X) = v. x=y[v/x] {a=b}[v/x] = …

• Two cases
– x is y: sp(x:=y, X) = X
– x is different from y:

sp(x:=y, X) = v. x=y EQ)X, x)[v/x] EQc(X, x)[v/x]
= x=y EQc(X, x) v. EQ)X, x)[v/x]

 x=y EQc(X, x)

• Vanilla transformer: x:=y#1 X = x=y EQc(X, x)

• Example: x:=y#1 {x=p, q=x, m=n} = {x=y, m=n}
Is this the most precise result?

26

Developing a transformer for EQ - 3

• x:=y#1 {x=p, x=q, m=n} = {x=y, m=n}

{x=y, m=n, p=q}
– Where does the information p=q come from?

• sp(x:=y, X) =

x=y EQc(X, x) v. EQ)X, x)[v/x]

• v. EQ)X, x)[v/x] holds possible equalities
between different a’s and b’s – how can we
account for that?

27

Developing a transformer for EQ - 4

• Define a reduction operator:
Explicate(X) = if exist {a=b, b=c}X

but not {a=c} X then
Explicate(X{a=c})

else
X

• Define x:=y#2 = x:=y#1 Explicate

• x:=y#2) {x=p, x=q, m=n}) = {x=y, m=n, p=q}
is this the best transformer?

28

Developing a transformer for EQ - 5

• x:=y#2) {y=z}) = {x=y, y=z} {x=y, y=z, x=z}
• Idea: apply reduction operator again after the

vanilla transformer
• x:=y#3 = Explicate x:=y#1 Explicate
• Observation : after the first time we apply

Explicate, all subsequent values will be in the
image of the abstraction so really we only need
to apply it once to the input

• Finally: x:=y#(X) = Explicate x:=y#1

– Best transformer for reduced elements (elements in
the image of the abstraction)

29

Negative property of best transformers

• Let f# = f

• Best transformer does not compose
(f(f((a)))) f#(f#(a))

30

(f(f((a)))) f#(f#(a))

31

C A

2

3f
1 f#

6

5
4

f

7

f#

8

9

f

Soundness theorem 1

1. Given two complete lattices
C = (DC, C, C, C, C, C)
A = (DA, A, A, A, A, A)
and GCC,A=(C, , , A) with

2. Monotone concrete transformer f : DC DC

3. Monotone abstract transformer f# : DA DA

4. a DA : f((a)) (f#(a))
Then

lfp(f) (lfp(f#))
(lfp(f)) lfp(f#)

32

Soundness theorem 1

33

C A

f

fn …

lpf(f)

f2

f3

f#n

…

lpf(f#)

f#2

f#3

f#

aDA : f((a)) (f#(a)) aDA : fn((a)) (f#n(a))
 aDA : lfp(fn)((a)) (lfp(f#n)(a))
 lfp(f) lfp(f#)

Soundness theorem 2

1. Given two complete lattices
C = (DC, C, C, C, C, C)
A = (DA, A, A, A, A, A)
and GCC,A=(C, , , A) with

2. Monotone concrete transformer f : DC DC

3. Monotone abstract transformer f# : DA DA

4. c DC : (f(c)) f#((c))
Then

(lfp(f)) lfp(f#)
lfp(f) (lfp(f#))

34

Soundness theorem 2

35

C A

f

fn

…

lpf(f)

f2

f3

f#n

…

lpf(f#)

f#2

f#3

f#

c DC : (f(c)) f#((c)) c DC : (fn(c)) f#n((c))
 c DC : (lfp(f)(c)) lfp(f#)((c))
 lfp(f) lfp(f#)

A recipe for a sound static analysis

• Define an “appropriate” operational semantics
• Define “collecting” structural operational

semantics
• Establish a Galois connection between collecting

states and abstract states
• Local correctness: show that the abstract

interpretation of every atomic statement is sound
w.r.t. the collecting semantics

• Global correctness: conclude that the analysis is
sound

36

Completeness

• Local property:
– forward complete: c: (f#(c)) = (f(c))
– backward complete: a: f((a)) = (f#(a))

• A property of domain and the (best) transformer
• Global property:

– (lfp(f)) = lfp(f#)
– lfp(f) = (lfp(f#))

• Very ideal but usually not possible unless we
change the program model (apply strong
abstraction) and/or aim for very simple
properties

37

Forward complete transformer

38

1 2

C A

f
3

4

f#

c: (f#(c)) = (f(c))

Backward complete transformer

39

C A

1 2

f#3
5f

a: f((a)) = (f#(a))

Global (backward) completeness

40

C A

f

fn …

lpf(f)

f2

f3

f#n

…

lpf(f#)

f#2

f#3

f#

a: f((a)) = (f#(a)) a: fn((a)) = (f#n(a))
 aDA : lfp(fn)((a)) = (lfp(f#n)(a))
 lfp(f) = lfp(f#)

Global (forward) completeness

41

C A

f

fn

…

lpf(f)

f2

f3

f#n

…

lpf(f#)

f#2

f#3

f#

c DC : (f(c)) = f#((c)) c DC : (fn(c)) = f#n((c))
 c DC : (lfp(f)(c)) = lfp(f#)((c))
 lfp(f) = lfp(f#)

Example: Pointer Analysis

Plan

• Understand the problem

• Mention some applications

• Simplified problem
– Only variables (no object allocation)

• Reference analysis

• Andersen’s analysis

• Steensgaard’s analysis

• Generalize to handle object allocation

43

Constant propagation example

x = 3;

y = 4;

z = x + 5;

44

Constant propagation example with pointers

x = 3;

*p = 4;

z = x + 5;

Is x always 3 here?

45

p = &y;

x = 3;

*p = 4;

z = x + 5;

Constant propagation example with pointers

x is always 3

p = &x;

x = 3;

*p = 4;

z = x + 5;

if (?)

p = &x;

else

p = &y;

x = 3;

*p = 4;

z = x + 5; x is always 4

x may be 3 or 4
(i.e., x is unknown in our lattice)

pointers affect
most program analyses

46

p = &y;

x = 3;

*p = 4;

z = x + 5;

Constant propagation example with pointers

p = &x;

x = 3;

*p = 4;

z = x + 5;

if (?)

p = &x;

else

p = &y;

x = 3;

*p = 4;

z = x + 5;

p always
points-to y

p always
points-to x

p may point-to x or y
47

Points-to Analysis

• Determine the set of targets a pointer variable
could point-to (at different points in the
program)
– “p points-to x”

• “p stores the value &x”

• “*p denotes the location x”

– targets could be variables or locations in the heap
(dynamic memory allocation)
• p = &x;

• p = new Foo(); or p = malloc (…);

– must-point-to vs. may-point-to

48

Constant propagation example with pointers

*q = 3;

*p = 4;

z = *q + 5;

what values can
this take?

Can *p denote the
same location as *q?

49

More terminology

• *p and *q are said to be aliases (in a given
concrete state) if they represent the same
location

• Alias analysis

– Determine if a given pair of references could be
aliases at a given program point

– *p may-alias *q

– *p must-alias *q

50

Pointer Analysis

• Points-To Analysis

– may-point-to

– must-point-to

• Alias Analysis

– may-alias

– must-alias

51

Applications

• Compiler optimizations
– Method de-virtualization

– Call graph construction

– Allocating objects on stack via escape analysis

• Verification & Bug Finding
– Datarace detection

– Use in preliminary phases

– Use in verification itself

52

Points-to analysis: a simple example

p = &x;

q = &y;

if (?) {

q = p;

}

x = &a;

y = &b;

z = *q;

{p=&x}

{p=&x q=&y}

{p=&x q=&x}

{p=&x (q=&y q=&x)}

{p=&x (q=&y q=&x) x=&a}

{p=&x (q=&y q=&x) x=&a y=&b}

{p=&x (q=&yq=&x) x=&a y=&b (z=xz=y)}

How would you construct an abstract domain to represent these abstract states?

We will usually drop
variable-equality
information

53

Points-to lattice

• Points-to

– PT-factoids[x] = { x=&y | y Var} false
PT[x] = (2PT-factoids, , , , false, PT-factoids[x])
(interpreted disjunctively)

• How should combine them to get the abstract
states in the example?
{p=&x (q=&yq=&x) x=&a y=&b}

54

Points-to lattice

• Points-to

– PT-factoids[x] = { x=&y | y Var} false
PT[x] = (2PT-factoids, , , , false, PT-factoids[x])
(interpreted disjunctively)

• How should combine them to get the abstract
states in the example?
{p=&x (q=&yq=&x) x=&a y=&b}

• D[x] = Disj(VE[x]) Disj(PT[x])

• For all program variables: D = D[x1] … D[xk]

55

Points-to analysis

a = &y

x = &a;

y = &b;

if (?) {

p = &x;

} else {

p = &y;

}

*x = &c;

*p = &c;

How should we
handle this
statement?

Strong update

Weak updateWeak update

{x=&a y=&b (p=&xp=&y) a=&y}

{x=&a y=&b (p=&xp=&y) a=&c}

{(x=&ax=&c) (y=&by=&c) (p=&xp=&y)}

56

Questions

• When is it correct to use a strong update?
A weak update?

• Is this points-to analysis precise?

• What does it mean to say
– p must-point-to x at program point u
– p may-point-to x at program point u
– p must-not-point-to x at program u
– p may-not-point-to x at program u

57

Points-to analysis, formally

• We must formally define what we want to
compute before we can answer many such
questions

58

PWhile syntax

• A primitive statement is of the form

• x := null

• x := y

• x := *y

• x := &y;

• *x := y

• skip

(where x and y are variables in Var)

Omitted (for now)
• Dynamic memory allocation
• Pointer arithmetic
• Structures and fields
• Procedures

59

PWhile operational semantics

• State : (VarZ) (VarVar{null})

• x = y s =

• x = *y s =

• *x = y s =

• x = null s =

• x = &y s =

60

PWhile operational semantics

• State : (VarZ) (VarVar{null})

• x = y s = s[xs(y)]

• x = *y s = s[xs(s(y))]

• *x = y s = s[s(x)s(y)]

• x = null s = s[xnull]

• x = &y s = s[xy]

must say what
happens if null is

dereferenced

61

PWhile collecting semantics

• CS[u] = set of concrete states that can reach
program point u (CFG node)

62

Ideal PT Analysis: formal definition

• Let u denote a node in the CFG

• Define IdealMustPT(u) to be

{ (p,x) | forall s in CS[u]. s(p) = x }

• Define IdealMayPT(u) to be

{ (p,x) | exists s in CS[u]. s(p) = x }

63

May-point-to analysis:
formal Requirement specification

For every vertex u in the CFG,
compute a set R(u) such that

R(u) ⊆ { (p,x) | $sCS[u]. s(p) = x }

Compute R: V -> 2Vars’ such that
R(u)⊇IdealMayPT(u)

May/Must Point-To Analysis

64

may

must

Var’ = Var U {null}

May-point-to analysis:
formal Requirement specification

• An algorithm is said to be correct if the solution R it
computes satisfies

uV. R(u) ⊇ IdealMayPT(u)
• An algorithm is said to be precise if the solution R it

computes satisfies
uV. R(u) = IdealMayPT(u)

• An algorithm that computes a solution R1 is said to be more
precise than one that computes a solution R2 if

uV. R1(u) R2(u)

Compute R: V -> 2Vars’ such that
R(u) ⊇ IdealMayPT(u)

65

(May-point-to analysis)
Algorithm A

• Is this algorithm correct?

• Is this algorithm precise?

• Let’s first completely and formally define the
algorithm

66

Points-to graphs

67

x = &a;

y = &b;

if (?) {

p = &x;

} else {

p = &y;

}

*x = &c;

*p = &c;

{x=&a y=&b (p=&xp=&y)}

{x=&a y=&b (p=&xp=&y) a=&c}

{(x=&ax=&c) (y=&by=&c) (p=&xp=&y) a=&c}

a
x

c

b
y

p

The points-to
set of x

Algorithm A: A formal definition
the “Data Flow Analysis” Recipe

• Define join-semilattice of abstract-values

– PTGraph ::= (Var, VarVar’)

– g1 g2 = ?

– = ?

– = ?

• Define transformers for primitive statements

– stmt# : PTGraph PTGraph

68

Algorithm A: A formal definition
the “Data Flow Analysis” Recipe

• Define join-semilattice of abstract-values

– PTGraph ::= (Var, VarVar’)

– g1 g2 = (Var, E1 E2)

– = (Var, {})

– = (Var, VarVar’)

• Define transformers for primitive statements

– stmt# : PTGraph PTGraph

69

Algorithm A: transformers

• Abstract transformers for primitive statements

– stmt # : PTGraph PTGraph

• x := y # (Var, E) = ?

• x := null # (Var, E) = ?

• x := &y # (Var, E) = ?

• x := *y # (Var, E) = ?

• *x := &y # (Var, E) = ?

70

Algorithm A: transformers

• Abstract transformers for primitive statements

– stmt # : PTGraph PTGraph

• x := y # (Var, E) = (Var, E[succ(x)=succ(y)]

• x := null # (Var, E) = (Var, E[succ(x)={null}]

• x := &y # (Var, E) = (Var, E[succ(x)={y}]

• x := *y # (Var, E) = (Var, E[succ(x)=succ(succ(y))]

• *x := &y # (Var, E) = ???

71

Correctness & precision

• We have a complete & formal definition of the
problem

• We have a complete & formal definition of a
proposed solution

• How do we reason about the correctness &
precision of the proposed solution?

72

Points-to analysis
(abstract interpretation)

(Y) = { (p,x) | exists s in Y. s(p) = x }

CS(u)

2State PTGraph

IdealMayPT(u)

MayPT(u)

IdealMayPT (u) = (CS(u))
73

Concrete transformers

• CS[stmt] : State State
• x = y s = s[xs(y)]
• x = *y s = s[xs(s(y))]
• *x = y s = s[s(x)s(y)]
• x = null s = s[xnull]
• x = &y s = s[xy]

• CS*[stmt] : 2State 2State

• CS*[st] X = { CS[st]s | s X }

74

Abstract transformers
• stmt # : PTGraph PTGraph

• x := y # (Var, E) = (Var, E[succ(x)=succ(y)]

• x := null # (Var, E) = (Var, E[succ(x)={null}]

• x := &y # (Var, E) = (Var, E[succ(x)={y}]

• x := *y # (Var, E) = (Var, E[succ(x)=succ(succ(y))]

• *x := &y # (Var, E) = ???

75

Algorithm A: transformers
Weak/Strong Update

x: {&y} y: {&x,&z} z: {&a}

x: &b y: &x z: &a

x: &y y: &z z: &b
x: {&y,&b} y: {&x,&z} z: {&a,&b}

x: &y y: &x z: &a

x: &y y: &z z: &a

*y = &b;f#*y = &b;f

76

Algorithm A: transformers
Weak/Strong Update

x: {&y} y: {&x,&z} z: {&a}

x: &y y: &b z: &a

x: &y y: &b z: &a
x: {&y} y: {&b} z: {&a}

x: &y y: &x z: &a

x: &y y: &z z: &a

*x := &b;f#*x := &b;f

77

Abstract transformers
• *x := &y # (Var, E) =

if succ(x) = {z} then (Var, E[succ(z)={y}]
else succ(x)={z1,…,zk} where k>1

(Var, E[succ(z1)=succ(z1){y}]
…

[succ(zk)=succ(zk){y}]

78

Some dimensions of pointer analysis

• Intra-procedural / inter-procedural

• Flow-sensitive / flow-insensitive

• Context-sensitive / context-insensitive

• Definiteness
– May vs. Must

• Heap modeling
– Field-sensitive / field-insensitive

• Representation (e.g., Points-to graph)

79

Andersen’s Analysis

• A flow-insensitive analysis
– Computes a single points-to solution valid at all

program points
– Ignores control-flow – treats program as a set of

statements
– Equivalent to merging all vertices into one (and

applying Algorithm A)
– Equivalent to adding an edge between every pair of

vertices (and applying Algorithm A)

– A (conservative) solution R: Vars 2Vars’ such that
R ⊇ IdealMayPT(u) for every vertex u

80

Flow-sensitive analysis
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:

81

x

a yb
z

L1

x

a yb
z

L2

x

a yb
z

L3

x

a yb
z

L4

x

a yb
z

L5

Flow-insensitive analysis
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:

82

x

a yb
z

L1-5

Andersen’s analysis

• Strong updates?

• Initial state?

83

Why flow-insensitive analysis?

• Reduced space requirements
– A single points-to solution

• Reduced time complexity
– No copying

• Individual updates more efficient

– No need for joins
– Number of iterations?
– A cubic-time algorithm

• Scales to millions of lines of code
– Most popular points-to analysis

• Conventionally used as an upper bound for precision
for pointer analysis

84

Andersen’s analysis as set constraints
• x := y # PT[x] PT[y]

• x := null # PT[x] {null}

• x := &y # PT[x] {y}

• x := *y # PT[x] PT[z] for all zPT[y]

• *x := &y # PT[z] PT[y] for all zPT[x]

85

Cycle elimination

• Andersen-style pointer analysis is O(n3) for
number of nodes in graph

– Improve scalability by reducing n

• Important optimization

– Detect strongly-connected components in
PTGraph and collapse to a single node

• Why? In the final result all nodes in SCC have same PT

– How to detect cycles efficiently?

• Some statically, some on-the-fly

86

Steensgaard’s Analysis

• Unification-based analysis

• Inspired by type inference
– An assignment lhs := rhs is interpreted as a

constraint that lhs and rhs have the same type

– The type of a pointer variable is the set of
variables it can point-to

• “Assignment-direction-insensitive”
– Treats lhs := rhs as if it were both lhs := rhs

and rhs := lhs

87

Steensgaard’s Analysis

• An almost-linear time algorithm

– Uses union-find data structure

– Single-pass algorithm; no iteration required

• Sets a lower bound in terms of performance

88

Steensgaard’s analysis initialization
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:

89

x

b

y

a

z

Steensgaard’s analysis x=&a
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:

90

x

b

y

a

z

Steensgaard’s analysis y=x
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:

91

x y

ba

z

Steensgaard’s analysis x=&b
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:

92

x y

ba

z

Automatically
sets y=&b

Steensgaard’s analysis z=x
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:

93

z x y

ba

Automatically sets
z=&a and z=&b

Steensgaard’s analysis final result
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:

94

z x y

ba

Andersen’s analysis final result
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5:

95

x

b

y

a

z

Another example
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5:

96

Andersen’s analysis result = ?
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5:

97

Another example
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5:

98

x

b

y

a

c

Steensgaard’s analysis result = ?
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5:

99

Steensgaard’s analysis result =
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5:

100

x

b

y

a

c

May-points-to analyses

Ideal-May-Point-To

Algorithm A

Andersen’s

Steensgaard’s

more efficient / less precise

???

more efficient / less precise

101

Ideal points-to analysis

• A sequence of states s1s2 … sn is said to be an
execution (of the program) iff

– s1 is the Initial-State

– si | si+1 for 1 <= I < n

• A state s is said to be a reachable state iff there exists
some execution s1s2 … sn is such that sn = s.

• CS(u) = { s | (u,s) is reachable }

• IdealMayPT (u) = { (p,x) | $ s CS(u). s(p) = x }

• IdealMustPT (u) = { (p,x) | s CS(u). s(p) = x }

102

Does Algorithm A compute
the most precise solution?

103

Ideal vs. Algorithm A

• Abstracts away correlations
between variables

– Relational analysis vs.

– Independent attribute (Cartesian)

x: &b y: &x

x: &y y: &z

x: {&y,&b} y: {&x,&z}

x: &y y: &x

x: &b y: &z

x: &y y: &z

x: &b y: &x

104

Does Algorithm A compute
the most precise solution?

105

Is the precise solution computable?

• Claim: The set CS(u) of reachable concrete
states (for our language) is computable

• Note: This is true for any collecting semantics
with a finite state space

106

Computing CS(u)

107

Precise points-to analysis: decidability

• Corollary: Precise may-point-to analysis is computable.

• Corollary: Precise (demand) may-alias analysis is
computable.
– Given ptr-exp1, ptr-exp2, and a program point u, identify if

there exists some reachable state at u where ptr-exp1 and
ptr-exp2 are aliases.

• Ditto for must-point-to and must-alias

• … for our restricted language!

108

Precise Points-To Analysis:
Computational Complexity

• What’s the complexity of the least-fixed point
computation using the collecting semantics?

• The worst-case complexity of computing reachable
states is exponential in the number of variables.
– Can we do better?

• Theorem: Computing precise may-point-to is
PSPACE-hard even if we have only two-level
pointers

109

May-Point-To Analyses

Ideal-May-Point-To

Algorithm A

Andersen’s

Steensgaard’s

more efficient / less precise

more efficient / less precise

more efficient / less precise

110

Precise points-to analysis: caveats

• Theorem: Precise may-alias analysis is
undecidable in the presence of dynamic
memory allocation
– Add “x = new/malloc ()” to language

– State-space becomes infinite

• Digression: Integer variables + conditional-
branching also makes any precise analysis
undecidable

111

High-level classification

Ideal (no Int, no Malloc)

Algorithm A

Andersen’s

Steensgaard’s

Ideal (with Int, with Malloc)

Ideal (with Int) Ideal (with Malloc)

112

Handling memory allocation

• s: x = new () / malloc ()
• Assume, for now, that allocated object stores one

pointer
– s: x = malloc (sizeof(void*))

• Introduce a pseudo-variable Vs to represent objects
allocated at statement s, and use previous algorithm
– Treat s as if it were “x = &Vs”
– Also track possible values of Vs

– Allocation-site based approach

• Key aspect: Vs represents a set of objects (locations),
not a single object
– referred to as a summary object (node)

113

Dynamic memory allocation example

L1: x = new O;

L2: y = x;

L3: *y = &b;

L4: *y = &a;

x

b

L1

y

a
How should we handle
these statements

114

Summary object update

L1: x = new O;

L2: y = x;

L3: *y = &b;

L4: *y = &a;

x

b

L1

y

a

115

Object fields

• Field-insensitive analysis

class Foo {

A* f;

B* g;

}

L1: x = new Foo()

x->f = &b;

x->g = &a;

x

b

L1

a

116

Object fields
• Field-sensitive analysis

class Foo {

A* f;

B* g;

}

L1: x = new Foo()

x->f = &b;

x->g = &a;

x

b

L1

a

f g

117

Other Aspects

• Context-sensitivity

• Indirect (virtual) function calls and call-graph
construction

• Pointer arithmetic

• Object-sensitivity

118

Combining abstract domains

Three example analyses

• Abstract states are conjunctions of constraints

• Variable Equalities
– VE-factoids = { x=y | x, y Var} false

VE = (2VE-factoids, , , , false,)

• Constant Propagation
– CP-factoids = { x=c | x Var, c Z} false

CP = (2CP-factoids, , , , false,)

• Available Expressions
– AE-factoids = { x=y+z | x Var, y,z VarZ} false

A = (2AE-factoids, , , , false,)

120

Lattice combinators reminder

• Cartesian Product
– L1 = (D1, 1, 1, 1, 1, 1)

L2 = (D2, 2, 2, 2, 2, 2)

– Cart(L1, L2) = (D1D2, cart, cart, cart, cart, cart)

• Disjunctive completion
– L = (D, , , , ,)

– Disj(L) = (2D, , , , ,)

• Relational Product
– Rel(L1, L2) = Disj(Cart(L1, L2))

121

Cartesian product of complete lattices

• For two complete lattices
L1 = (D1, 1, 1, 1, 1, 1)
L2 = (D2, 2, 2, 2, 2, 2)

• Define the poset
Lcart = (D1D2, cart, cart, cart, cart, cart)
as follows:
– (x1, x2) cart (y1, y2) iff

x1 1 y1 and
x2 2 y2

– cart = ? cart = ? cart = ? cart = ?

• Lemma: L is a complete lattice
• Define the Cartesian constructor Lcart = Cart(L1, L2)

122

Cartesian product of GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Cartesian Product
GCC,AB = (C, C,AB, AB,C, AB)

– C,AB(X)= ?

– AB,C(Y) = ?

123

Cartesian product of GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Cartesian Product
GCC,AB = (C, C,AB, AB,C, AB)

– C,AB(X) = (C,A(X), C,B(X))

– AB,C(Y) = A,C(X) B,C(X)

• What about transformers?

124

Cartesian product transformers

• GCC,A=(C, C,A, A,C, A) FA[st] : A A
GCC,B=(C, C,B, B,C, B) FB[st] : B B

• Cartesian Product
GCC,AB = (C, C,AB, AB,C, AB)

– C,AB(X) = (C,A(X), C,B(X))

– AB,C(Y) = A,C(X) B,C(X)

• How should we define FAB[st] : AB AB

125

Cartesian product transformers

• GCC,A=(C, C,A, A,C, A) FA[st] : A A
GCC,B=(C, C,B, B,C, B) FB[st] : B B

• Cartesian Product
GCC,AB = (C, C,AB, AB,C, AB)

– C,AB(X) = (C,A(X), C,B(X))

– AB,C(Y) = A,C(X) B,C(X)

• How should we define FAB[st] : AB AB

• Idea: FAB[st](a, b) = (FA[st] a, FB[st] b)

• Are component-wise transformers precise?

126

Cartesian product analysis example
• Abstract interpreter 1: Constant Propagation
• Abstract interpreter 2: Variable Equalities
• Let’s compare

– Running them separately and combining results
– Running the analysis with their Cartesian product

127

a := 9;

b := 9;

c := a;

a := 9;

b := 9;

c := a;

CP analysis VE analysis
{a=9}

{a=9, b=9}

{a=9, b=9, c=9}

{}

{}

{c=a}

Cartesian product analysis example
• Abstract interpreter 1: Constant Propagation
• Abstract interpreter 2: Variable Equalities
• Let’s compare

– Running them separately and combining results
– Running the analysis with their Cartesian product

128

CP analysis + VE analysis
a := 9;

b := 9;

c := a;

{a=9}

{a=9, b=9}

{a=9, b=9, c=9, c=a}

Cartesian product analysis example
• Abstract interpreter 1: Constant Propagation
• Abstract interpreter 2: Variable Equalities
• Let’s compare

– Running them separately and combining results
– Running the analysis with their Cartesian product

129

CPVE analysis
Missing

{a=b, b=c}

a := 9;

b := 9;

c := a;

{a=9}

{a=9, b=9}

{a=9, b=9, c=9, c=a}

Transformers for Cartesian product

• Naïve (component-wise) transformers do not
utilize information from both components

– Same as running analyses separately and then
combining results

• Can we treat transformers from each analysis
as black box and obtain best transformer for
their combination?

130

Can we combine transformer
modularly?

• No generic method for any abstract
interpretations

131

Reducing values for CPVE

• X = set of CP constraints of the form x=c
(e.g., a=9)

• Y = set of VE constraints of the form x=y

• ReduceCPVE(X, Y) = (X’, Y’) such that
(X’, Y’) (X’, Y’)

• Ideas?

132

Reducing values for CPVE

• X = set of CP constraints of the form x=c
(e.g., a=9)

• Y = set of VE constraints of the form x=y
• ReduceCPVE(X, Y) = (X’, Y’) such that

(X’, Y’) (X’, Y’)
• ReduceRight:

– if a=b X and a=c Y then add b=c to Y

• ReduceLeft:
– If a=c and b=c Y then add a=b to X

• Keep applying ReduceLeft and ReduceRight and reductions
on each domain separately until reaching a fixed-point

133

Transformers for Cartesian product

• Do we get the best transformer by applying
component-wise transformer followed by
reduction?

– Unfortunately, no (what’s the intuition?)

– Can we do better?

– Logical Product [Gulwani and Tiwari, PLDI 2006]

134

Product vs. reduced product

135

CPVE lattice

{a=9}{c=a} {c=9}{c=a}

{a=9, c=9}{c=a}

{[a9, c 9]}

collecting lattice

{}

Reduced product

• For two complete lattices
L1 = (D1, 1, 1, 1, 1, 1)
L2 = (D2, 2, 2, 2, 2, 2)

• Define the reduced poset
D1D2 = {(d1,d2)D1D2 | (d1,d2) = (d1,d2) }

L1L2 = (D1D2, cart, cart, cart, cart, cart)

136

Transformers for Cartesian product

• Do we get the best transformer by applying
component-wise transformer followed by
reduction?

– Unfortunately, no (what’s the intuition?)

– Can we do better?

– Logical Product [Gulwani and Tiwari, PLDI 2006]

137

138

Logical product--

• Assume A=(D,…) is an abstract domain that
supports two operations: for xD

– inferEqualities(x) = { a=b | (x) a=b }
returns a set of equalities between variables that
are satisfied in all states given by x

– refineFromEqualities(x, {a=b}) = y
such that

• (x)=(y)

• y x

139

Developing a transformer for EQ - 1

• Input has the form X = {a=b}

• sp(x:=expr,) = v. x=expr[v/x] [v/x]

• sp(x:=y, X) = v. x=y[v/x] {a=b}[v/x] = …

• Let’s define helper notations:
– EQ(X, y) = {y=a, b=y X}

• Subset of equalities containing y

– EQc(X, y) = X \ EQ(X, y)
• Subset of equalities not containing y

140

Developing a transformer for EQ - 2

• sp(x:=y, X) = v. x=y[v/x] {a=b}[v/x] = …

• Two cases
– x is y: sp(x:=y, X) = X
– x is different from y:

sp(x:=y, X) = v. x=y EQ)X, x)[v/x] EQc(X, x)[v/x]
= x=y EQc(X, x) v. EQ)X, x)[v/x]

 x=y EQc(X, x)

• Vanilla transformer: x:=y#1 X = x=y EQc(X, x)

• Example: x:=y#1 {x=p, q=x, m=n} = {x=y, m=n}
Is this the most precise result?

141

Developing a transformer for EQ - 3

• x:=y#1 {x=p, x=q, m=n} = {x=y, m=n}

{x=y, m=n, p=q}
– Where does the information p=q come from?

• sp(x:=y, X) =

x=y EQc(X, x) v. EQ)X, x)[v/x]

• v. EQ)X, x)[v/x] holds possible equalities
between different a’s and b’s – how can we
account for that?

142

Developing a transformer for EQ - 4

• Define a reduction operator:
Explicate(X) = if exist {a=b, b=c}X

but not {a=c} X then
Explicate(X{a=c})

else
X

• Define x:=y#2 = x:=y#1 Explicate

• x:=y#2) {x=p, x=q, m=n}) = {x=y, m=n, p=q}
is this the best transformer?

143

Developing a transformer for EQ - 5

• x:=y#2) {y=z}) = {x=y, y=z} {x=y, y=z, x=z}

• Idea: apply reduction operator again after the
vanilla transformer

• x:=y#3 = Explicate x:=y#1 Explicate

144

Logical Product-

145

basically the strongest
postcondition

safely abstracting the
existential quantifier

Abstracting the existential

146

Reduce the pair

Abstract away
existential quantifier
for each domain

Example

147

Information loss example

148

if (…)

b := 5

else

b := -5

if (b>0)

b := b-5

else

b := b+5

assert b==0

{}

{b=5}

{b=-5}

{b=}

{b=}

{b=}

can’t prove

Disjunctive completion of a lattice

• For a complete lattice
L = (D, , , , ,)

• Define the powerset lattice
L = (2D, , , , ,)
 = ? = ? = ? = ? = ?

• Lemma: L is a complete lattice
• L contains all subsets of D, which can be thought

of as disjunctions of the corresponding predicates
• Define the disjunctive completion constructor

L = Disj(L)

149

Disjunctive completion for GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Disjunctive completion
GCC,P(A) = (C, P(A), P(A), P(A))

– C,P(A)(X) = ?

– P(A),C(Y) = ?

150

Disjunctive completion for GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Disjunctive completion
GCC,P(A) = (C, P(A), P(A), P(A))

– C,P(A)(X) = {C,A({x}) | xX}

– P(A),C(Y) = {P(A)(y) | yY}

• What about transformers?

151

Information loss example

152

if (…)

b := 5

else

b := -5

if (b>0)

b := b-5

else

b := b+5

assert b==0

{}

{b=5}

{b=-5}

{b=5 b=-5}

{b=0}

{b=0}

proved

The base lattice CP

153

{x=0}

true

{x=-1}{x=-2} {x=1} {x=2} ……

false

The disjunctive completion of CP

154

{x=0}

true

{x=-1}{x=-2} {x=1} {x=2} ……

false

{x=-2x=-1} {x=-2x=0} {x=-2x=1} {x=1x=2}… … …

{x=0 x=1x=2}{x=-1 x=1x=-2}… ……
…

What is the height
of this lattice?

Taming disjunctive completion

• Disjunctive completion is very precise
– Maintains correlations between states of different analyses

– Helps handle conditions precisely

– But very expensive – number of abstract states grows
exponentially

– May lead to non-termination

• Base analysis (usually product) is less precise
– Analysis terminates if the analyses of each component

terminates

• How can we combine them to get more precision yet
ensure termination and state explosion?

155

Taming disjunctive completion

• Use different abstractions for different
program locations

– At loop heads use coarse abstraction (base)

– At other points use disjunctive completion

• Termination is guaranteed (by base domain)

• Precision increased inside loop body

156

With Disj(CP)

157

while (…) {

if (…)

b := 5

else

b := -5

if (b>0)

b := b-5

else

b := b+5

assert b==0

}

Doesn’t
terminate

With tamed Disj(CP)

158

while (…) {

if (…)

b := 5

else

b := -5

if (b>0)

b := b-5

else

b := b+5

assert b==0

}

terminates

CP

Disj(CP)

What MultiCartDomain implements

Reducing disjunctive elements

• A disjunctive set X may contain within it an
ascending chain Y=a b c…

• We only need max(Y) – remove all elements
below

159

Relational product of lattices

• L1 = (D1, 1, 1, 1, 1, 1)
L2 = (D2, 2, 2, 2, 2, 2)

• Lrel = (2D1D2, rel, rel, rel, rel, rel)
as follows:

– Lrel = ?

160

Relational product of lattices

• L1 = (D1, 1, 1, 1, 1, 1)
L2 = (D2, 2, 2, 2, 2, 2)

• Lrel = (2D1D2, rel, rel, rel, rel, rel)
as follows:
– Lrel = Disj(Cart(L1, L2))

• Lemma: L is a complete lattice

• What does it buy us?
– How is it relative to Cart(Disj(L1), Disj(L2))?

• What about transformers?

161

Relational product of GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Relational Product
GCC,P(AB) = (C, C,P(AB), P(AB),C, P(AB))

– C,P(AB)(X) = ?

– P(AB),C(Y) = ?

162

Relational product of GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Relational Product
GCC,P(AB) = (C, C,P(AB), P(AB),C, P(AB))

– C,P(AB)(X) = {(C,A({x}), C,B({x})) | xX}

– P(AB),C(Y) = {A,C(yA) B,C(yB) | (yA,yB)Y}

163

Cartesian product example

164

Correlations
preserved

Function space

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Denote the set of monotone functions from A to B by AB
• Define for elements of AB as follows

(a1, b1) (a2, b2) = if a1=a2 then {(a1, b1B b1)}
else {(a1, b1), (a2, b2)}

• Reduced cardinal power
GCC,AB = (C, C,AB, AB,C, AB)
– C,AB(X) = {(C,A({x}), C,B({x})) | xX}
– AB,C(Y) = {A,C(yA) B,C(yB) | (yA,yB)Y}

• Useful when A is small and B is much larger
– E.g., typestate verification

165

Widening/Narrowing

166

How can we prove this automatically?

167

RelProd(CP, VE)

Intervals domain

• One of the simplest numerical domains

• Maintain for each variable x an interval [L,H]

– L is either an integer of -

– H is either an integer of +

• A (non-relational) numeric domain

168

Intervals lattice for variable x

169

[0,0][-1,-1][-2,-2] [1,1] [2,2]

[-,+]

[0,1] [1,2] [2,3][-1,0][-2,-1]

[-10,10]

[1,+][-,0]

... ...

[2,+][0,+][-,-1][-,-1]... ...

[-20,10]

Intervals lattice for variable x

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

•
• =[-,+]

• = ?
– [1,2] [3,4] ?

– [1,4] [1,3] ?

– [1,3] [1,4] ?

– [1,3] [-,+] ?

• What is the lattice height?

170

Intervals lattice for variable x

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

•
• =[-,+]

• = ?
– [1,2] [3,4] no

– [1,4] [1,3] no

– [1,3] [1,4] yes

– [1,3] [-,+] yes

• What is the lattice height? Infinite

171

Joining/meeting intervals

• [a,b] [c,d] = ?

– [1,1] [2,2] = ?

– [1,1] [2, +] = ?

• [a,b] [c,d] = ?

– [1,2] [3,4] = ?

– [1,4] [3,4] = ?

– [1,1] [1,+] = ?

• Check that indeed xy if and only if xy=y

172

Joining/meeting intervals

• [a,b] [c,d] = [min(a,c), max(b,d)]
– [1,1] [2,2] = [1,2]

– [1,1] [2,+] = [1,+]

• [a,b] [c,d] = [max(a,c), min(b,d)] if a proper
interval and otherwise
– [1,2] [3,4] =

– [1,4] [3,4] = [3,4]

– [1,1] [1,+] = [1,1]

• Check that indeed xy if and only if xy=y

173

Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = ?

174

Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = Dint[x1] … Dint[xk]

• How can we represent it in terms of formulas?

175

Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = Dint[x1] … Dint[xk]

• How can we represent it in terms of formulas?
– Two types of factoids xc and xc

– Example: S = {x9, y5, y10}

– Helper operations
• c + + = +
• remove(S, x) = S without any x-constraints

• lb(S, x) =

176

Assignment transformers

• x := c# S = ?

• x := y# S = ?

• x := y+c# S = ?

• x := y+z# S = ?

• x := y*c# S = ?

• x := y*z# S = ?

177

Assignment transformers

• x := c# S = remove(S,x) {xc, xc}

• x := y# S = remove(S,x) {xlb(S,y), xub(S,y)}

• x := y+c# S = remove(S,x) {xlb(S,y)+c, xub(S,y)+c}

• x := y+z# S = remove(S,x) {xlb(S,y)+lb(S,z),
xub(S,y)+ub(S,z)}

• x := y*c# S = remove(S,x) if c>0 {xlb(S,y)*c, xub(S,y)*c}
else {xub(S,y)*-c, xlb(S,y)*-c}

• x := y*z# S = remove(S,x) ?

178

assume transformers

• assume x=c# S = ?

• assume x<c# S = ?

• assume x=y# S = ?

• assume xc# S = ?

179

assume transformers

• assume x=c# S = S {xc, xc}

• assume x<c# S = S {xc-1}

• assume x=y# S = S {xlb(S,y), xub(S,y)}

• assume xc# S = ?

180

assume transformers

• assume x=c# S = S {xc, xc}

• assume x<c# S = S {xc-1}

• assume x=y# S = S {xlb(S,y), xub(S,y)}

• assume xc# S = (S {xc-1}) (S {xc+1})

181

Effect of function f on lattice elements
• L = (D, , , , ,)

• f : D D monotone

• Fix(f) = { d | f(d) = d }

• Red(f) = { d | f(d) d }

• Ext(f) = { d | d f(d) }

• Theorem [Tarski 1955]
– lfp(f) = Fix(f) = Red(f) Fix(f)

– gfp(f) = Fix(f) = Ext(f) Fix(f)

182

Red(f)

Ext(f)

Fix(f)

lfp

gfp

fn()

fn()

Effect of function f on lattice elements
• L = (D, , , , ,)

• f : D D monotone

• Fix(f) = { d | f(d) = d }

• Red(f) = { d | f(d) d }

• Ext(f) = { d | d f(d) }

• Theorem [Tarski 1955]
– lfp(f) = Fix(f) = Red(f) Fix(f)

– gfp(f) = Fix(f) = Ext(f) Fix(f)

183

Red(f)

Ext(f)

Fix(f)

lfp

gfp

fn()

fn()

Continuity and ACC condition

• Let L = (D, , ,) be a complete partial order

– Every ascending chain has an upper bound

• A function f is continuous if for every
increasing chain Y D*,

f(Y) = { f(y) | yY }

• L satisfies the ascending chain condition (ACC)
if every ascending chain eventually stabilizes:

d0 d1 … dn = dn+1 = …

184

Fixed-point theorem [Kleene]

• Let L = (D, , ,) be a complete partial order
and a continuous function f: D D then

lfp(f) = nN fn()

185

Resulting algorithm
• Kleene’s fixed point theorem

gives a constructive method
for computing the lfp

186

lfp
fn()

f()

f2()

…d :=
while f(d) d do

d := d f(d)
return d

Algorithm

lfp(f) = nN fn()
Mathematical definition

Chaotic iteration

187

• Input:
– A cpo L = (D, , ,) satisfying ACC
– Ln = L L … L
– A monotone function f : Dn Dn

– A system of equations { X[i] | f(X) | 1 i n }

• Output: lfp(f)
• A worklist-based algorithm

for i:=1 to n do
X[i] :=

WL = {1,…,n}
while WL do

j := pop WL // choose index non-deterministically
N := F[i](X)
if N X[i] then

X[i] := N
add all the indexes that directly depend on i to WL
(X[j] depends on X[i] if F[j] contains X[i])

return X

Concrete semantics equations

188

• R[0] = {xZ}
R[1] = x:=7
R[2] = R[1] R[4]
R[3] = R[2] {s | s(x) < 1000}
R[4] = x:=x+1 R[3]
R[5] = R[2] {s | s(x) 1000}
R[6] = R[5] {s | s(x) 1001}

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]

Abstract semantics equations

189

• R[0] = ({xZ})
R[1] = x:=7#

R[2] = R[1] R[4]
R[3] = R[2] ({s | s(x) < 1000})
R[4] = x:=x+1# R[3]
R[5] = R[2] ({s | s(x) 1000})
R[6] = R[5] ({s | s(x) 1001}) R[5] ({s | s(x) 999})

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]

Abstract semantics equations

190

• R[0] =
R[1] = [7,7]
R[2] = R[1] R[4]
R[3] = R[2] [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2] [1000,+]
R[6] = R[5] [999,+] R[5] [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]

Too many iterations to converge

191

How many iterations for this one?

192

Widening

• Introduce a new binary operator to ensure
termination
– A kind of extrapolation

• Enables static analysis to use infinite height
lattices
– Dynamically adapts to given program

• Tricky to design

• Precision less predictable then with finite-
height domains (widening non-monotone)

193

Formal definition

• For all elements d1 d2 d1 d2

• For all ascending chains d0 d1 d2 …
the following sequence is finite
– y0 = d0

– yi+1 = yi di+1

• For a monotone function f : DD define
– x0 =
– xi+1 = xi f(xi)

• Theorem:
– There exits k such that xk+1 = xk

– xkRed(f) = { d | dD and f(d) d }

194

Analysis with finite-height lattice

195

A

f#n = lpf(f#) …

f#2

f#3

f#

Red(f)

Fix(f)

Analysis with widening

196

A

f#2 f#3

f#2

f#3

f#

Red(f)

Fix(f) lpf(f#)

Widening for Intervals Analysis

• [c, d] = [c, d]

• [a, b] [c, d] = [
if a c
then a
else -,

if b d
then b
else

197

Semantic equations with widening

198

• R[0] =
R[1] = [7,7]
R[2] = R[1] R[4]
R[2.1] = R[2.1] R[2]
R[3] = R[2.1] [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2] [1001,+]
R[6] = R[5] [999,+] R[5] [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]

Choosing analysis with widening

199

Enable widening

Non monotonicity of widening

• [0,1] [0,2] = ?

• [0,2] [0,2] = ?

Non monotonicity of widening

• [0,1] [0,2] = [0,]

• [0,2] [0,2] = [0,2]

Analysis results with widening

202

Did we prove it?

Analysis with narrowing

203

A

f#2 f#3

f#2

f#3

f#

Red(f)

Fix(f) lpf(f#)

Formal definition of narrowing

• Improves the result of widening
• y x y (x y) x
• For all decreasing chains x0 x1 …

the following sequence is finite
– y0 = x0

– yi+1 = yi xi+1

• For a monotone function f: DD
and xkRed(f) = { d | dD and f(d) d }
define
– y0 = x
– yi+1 = yi f(yi)

• Theorem:
– There exits k such that yk+1 =yk

– ykRed(f) = { d | dD and f(d) d }

Narrowing for Interval Analysis

• [a, b] = [a, b]

• [a, b] [c, d] = [
if a = -
then c
else a,

if b =
then d
else b

]

Semantic equations with narrowing

206

• R[0] =
R[1] = [7,7]
R[2] = R[1] R[4]
R[2.1] = R[2.1] R[2]
R[3] = R[2.1] [-,999]
R[4] = R[3]+[1,1]
R[5] = R[2]# [1000,+]
R[6] = R[5] [999,+] R[5] [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]

Analysis with widening/narrowing
• Two phases

– Phase 1: analyze
with widening until
converging

– Phase 2: use values
to analyze with
narrowing

207

Phase 2:
R[0] =
R[1] = [7,7]
R[2] = R[1] R[4]
R[2.1] = R[2.1] R[2]
R[3] = R[2.1] [-,999]
R[4] = R[3]+[1,1]
R[5] = R[2]# [1000,+]
R[6] = R[5] [999,+] R[5] [1001,+]

Phase 1:
R[0] =
R[1] = [7,7]
R[2] = R[1] R[4]
R[2.1] = R[2.1] R[2]
R[3] = R[2.1] [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2] [1001,+]
R[6] = R[5] [999,+] R[5] [1001,+]

Analysis with widening/narrowing

208

Analysis results widening/narrowing

209

Precise invariant

