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Abstract Interpretation [Cousot’77]

• Mathematical framework for approximating 
semantics (aka abstraction)

– Allows designing sound static analysis algorithms

• Usually compute by iterating to a fixed-point

– Computes (loop) invariants

• Can be interpreted as axiomatic verification assertions

• Generalizes Hoare Logic & WP / SP calculus
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Required knowledge

Domain theory

Collecting semantics

Abstract semantics (over lattices)

Algorithm to compute abstract semantics
(chaotic iteration)

Connection between collecting semantics and 
abstract semantics

Abstract transformers
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Galois Connection

• Given two complete lattices
C = (DC, C, C, C, C, C) – concrete domain
A = (DA, A, A, A, A, A) – abstract domain

• A Galois Connection (GC) is quadruple (C, , , A)
that relates C and A via the monotone functions
– The abstraction function  : DC  DA

– The concretization function  : DA  DC

• for every concrete element cDC

and abstract element aDA

((a))  a and c  ((c))

• Alternatively (c)  a iff c  (a)
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Galois Connection: c  ((c))
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Galois Connection: ((a))  a

6

1





3((a))

2(a) a



C AWhat a represents in C
(its meaning)



Example: lattice of equalities

• Concrete lattice:
C = (2State, , , , , State)

• Abstract lattice:
EQ = { x=y | x, y  Var}
A = (2EQ, , , , EQ , )
– Treat elements of A as both formulas and sets of 

constraints

• Useful for copy propagation – a compiler 
optimization
– (X) = ?
– (Y) = ?
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Example: lattice of equalities

• Concrete lattice:
C = (2State, , , , , State)

• Abstract lattice:
EQ = { x=y | x, y  Var}
A = (2EQ, , , , EQ , )
– Treat elements of A as both formulas and sets of 

constraints

• Useful for copy propagation – a compiler optimization

• (s) = ({s}) = { x=y | s x = s y} that is s  x=y
(X) = {(s) | sX} = A {(s) | sX}
(Y) = { s | s  Y } = models(Y)
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Galois Connection: c  ((c))
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Most precise abstract representation
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Most precise abstract representation
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Galois Connection: ((a))  a
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Galois Insertion a: ((a))=a
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Properties of a Galois Connection

• The abstraction and concretization functions 
uniquely determine each other:

(a) = {c | (c)  a}
(c) = {a | c  (a)}
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Abstracting (disjunctive) sets

• It is usually convenient to first define the 
abstraction of single elements

(s) = ({s}) 

• Then lift the abstraction to sets of elements
(X) = A {(s) | sX}
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The case of symbolic domains

• An important class of abstract domains are symbolic 
domains – domains of formulas

• C = (2State, , , , , State)
A = (DA, A, A, A, A, A)

• If DA is a set of formulas then the abstraction of a state 
is defined as

(s) = ({s}) = A{ | s  }
the least formula from DA that s satisfies

• The abstraction of a set of states is
(X) = A {(s) | sX}

• The concretization is
() = { s | s   } = models()
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Inducing along the connections

• Assume the complete lattices
C = (DC, C, C, C, C, C) 
A = (DA, A, A, A, A, A)
M = (DM, M, M, M, M, M)
and
Galois connections
GCC,A=(C, C,A, A,C, A) and GCA,M=(A, A,M, M,A, M)

• Lemma: both connections induce the
GCC,M= (C, C,M, M,C, M) 

defined by C,M = C,A  A,M and M,C = M,A  A,C
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Inducing along the connections
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Sound abstract transformer

• Given two lattices
C = (DC, C, C, C, C, C)
A = (DA, A, A, A, A, A)
and GCC,A=(C, , , A) with

• A concrete transformer f : DC DC

an abstract transformer f# : DA DA

• We say that f# is a sound transformer (w.r.t. f) if
• c: f(c)=c’  (f#(c))  (c’)

• For every a and a’ such that 
(f((a)))A f#(a)
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Transformer soundness condition 1
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Transformer soundness condition 2
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Best (induced) transformer
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Best abstract transformer [CC’77]

• Best in terms of precision
– Most precise abstract transformer
– May be too expensive to compute

• Constructively defined as
f# =   f  

– Induced by the GC

• Not directly computable because first step is 
concretization

• We often compromise for a “good enough” 
transformer
– Useful tool: partial concretization
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Transformer example

• C = (2State, , , , , State)

• EQ = { x=y | x, y  Var}
A = (2EQ, , , , EQ , )

• (s) = ({s}) = { x=y | s x = s y} that is s  x=y
(X) = {(s) | sX} = A {(s) | sX}
() = { s | s   } = models()

• Concrete: x:=y X = { s[xs y] | sX}

• Abstract: x:=y# X = ?
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Developing a transformer for EQ - 1 

• Input has the form X = {a=b}

• sp(x:=expr, ) = v. x=expr[v/x]  [v/x]

• sp(x:=y, X) = v. x=y[v/x] {a=b}[v/x] = …

• Let’s define helper notations:
– EQ(X, y) = {y=a, b=y  X}

• Subset of equalities containing y

– EQc(X, y) = X \ EQ(X, y)
• Subset of equalities not containing y
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Developing a transformer for EQ - 2 

• sp(x:=y, X) = v. x=y[v/x] {a=b}[v/x] = …

• Two cases
– x is y: sp(x:=y, X) = X
– x is different from y:

sp(x:=y, X) = v. x=y  EQ)X, x)[v/x]  EQc(X, x)[v/x]
= x=y EQc(X, x) v. EQ)X, x)[v/x]

 x=y  EQc(X, x)

• Vanilla transformer: x:=y#1 X = x=y  EQc(X, x)

• Example: x:=y#1 {x=p, q=x, m=n} = {x=y, m=n}
Is this the most precise result?
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Developing a transformer for EQ - 3 

• x:=y#1 {x=p, x=q, m=n} = {x=y, m=n} 

{x=y, m=n, p=q}
– Where does the information p=q come from?

• sp(x:=y, X) =

x=y EQc(X, x) v. EQ)X, x)[v/x]

• v. EQ)X, x)[v/x] holds possible equalities 
between different a’s and b’s – how can we 
account for that?
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Developing a transformer for EQ - 4 

• Define a reduction operator:
Explicate(X) = if exist {a=b, b=c}X

but not {a=c} X then 
Explicate(X{a=c})

else
X

• Define x:=y#2 = x:=y#1  Explicate

• x:=y#2 ) {x=p, x=q, m=n}) = {x=y, m=n, p=q}
is this the best transformer?
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Developing a transformer for EQ - 5 

• x:=y#2 ) {y=z}) = {x=y, y=z}  {x=y, y=z, x=z}
• Idea: apply reduction operator again after the 

vanilla transformer
• x:=y#3 = Explicate  x:=y#1  Explicate 
• Observation : after the first time we apply 

Explicate, all subsequent values will be in the 
image of the abstraction so really we only need 
to apply it once to the input

• Finally: x:=y#(X) = Explicate  x:=y#1

– Best transformer for reduced elements (elements in 
the image of the abstraction)

29



Negative property of best transformers

• Let f# =   f  

• Best transformer does not compose
(f(f((a))))  f#(f#(a))
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(f(f((a))))  f#(f#(a))

31

C A

2

3f
1 f#

6

5
4

f

7

f#

8

9

f



Soundness theorem 1

1. Given two complete lattices
C = (DC, C, C, C, C, C)
A = (DA, A, A, A, A, A)
and GCC,A=(C, , , A) with

2. Monotone concrete transformer f : DC DC

3. Monotone abstract transformer f# : DA DA

4. a DA : f((a))  (f#(a))
Then

lfp(f)  (lfp(f#))
(lfp(f))  lfp(f#)
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Soundness theorem 1
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C A



f 

fn …

lpf(f) 

f2 

f3

f#n 

…

lpf(f#) 

f#2 

f#3

f# 

aDA : f((a))  (f#(a))  aDA : fn((a))  (f#n(a))
 aDA : lfp(fn)((a))  (lfp(f#n)(a))
 lfp(f)   lfp(f#) 



Soundness theorem 2

1. Given two complete lattices
C = (DC, C, C, C, C, C)
A = (DA, A, A, A, A, A)
and GCC,A=(C, , , A) with

2. Monotone concrete transformer f : DC DC

3. Monotone abstract transformer f# : DA DA

4. c DC : (f(c))  f#((c))
Then

(lfp(f))  lfp(f#)
lfp(f)  (lfp(f#))
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Soundness theorem 2
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 c DC : (lfp(f)(c))  lfp(f#)((c))
 lfp(f)   lfp(f#) 



A recipe for a sound static analysis

• Define an “appropriate” operational semantics
• Define “collecting” structural operational 

semantics 
• Establish a Galois connection between collecting 

states and abstract states
• Local correctness: show that the abstract 

interpretation of every atomic statement is sound
w.r.t. the collecting semantics

• Global correctness: conclude that the analysis is 
sound
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Completeness

• Local property:
– forward complete: c: (f#(c)) = (f(c))
– backward complete: a: f((a)) = (f#(a))

• A property of domain and the (best) transformer
• Global property:

– (lfp(f)) = lfp(f#)
– lfp(f) = (lfp(f#))

• Very ideal but usually not possible unless we 
change the program model (apply strong 
abstraction) and/or aim for very simple 
properties
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Forward complete transformer
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Backward complete transformer
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Global (backward) completeness
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Global (forward) completeness
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 lfp(f)  = lfp(f#) 



Example: Pointer Analysis



Plan

• Understand the problem

• Mention some applications

• Simplified problem
– Only variables (no object allocation)

• Reference analysis

• Andersen’s analysis

• Steensgaard’s analysis

• Generalize to handle object allocation
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Constant propagation example

x = 3;

y = 4;

z = x + 5;

44



Constant propagation example with pointers

x = 3;

*p = 4;

z = x + 5;

Is x always 3 here?
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p = &y;

x = 3;

*p = 4;

z = x + 5;

Constant propagation example with pointers

x is always 3

p = &x;

x = 3;

*p = 4;

z = x + 5;

if (?)

p = &x;

else

p = &y;

x = 3;

*p = 4;

z = x + 5; x is always 4

x may be 3 or 4
(i.e., x is unknown in our lattice)

pointers affect
most program analyses
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p = &y;

x = 3;

*p = 4;

z = x + 5;

Constant propagation example with pointers

p = &x;

x = 3;

*p = 4;

z = x + 5;

if (?)

p = &x;

else

p = &y;

x = 3;

*p = 4;

z = x + 5;

p always
points-to y

p always
points-to x

p may point-to x or y
47



Points-to Analysis

• Determine the set of targets a pointer variable 
could point-to (at different points in the 
program)
– “p points-to x”

• “p stores the value &x”

• “*p denotes the location x”

– targets could be variables or locations in the heap 
(dynamic memory allocation)
• p = &x;

• p = new Foo(); or p = malloc (…);

– must-point-to vs. may-point-to
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Constant propagation example with pointers

*q = 3;

*p = 4;

z = *q + 5;

what values can
this take?

Can *p denote the
same location as *q?

49



More terminology

• *p and *q are said to be aliases (in a given 
concrete state) if they represent the same 
location

• Alias analysis

– Determine if a given pair of references could be 
aliases at a given program point

– *p may-alias *q

– *p must-alias *q
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Pointer Analysis

• Points-To Analysis

– may-point-to

– must-point-to

• Alias Analysis

– may-alias

– must-alias
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Applications

• Compiler optimizations
– Method de-virtualization

– Call graph construction

– Allocating objects on stack via escape analysis

• Verification & Bug Finding
– Datarace detection

– Use in preliminary phases

– Use in verification itself
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Points-to analysis: a simple example

p = &x;

q = &y;

if (?) {

q = p;

}

x = &a;

y = &b;

z = *q;

{p=&x}

{p=&x  q=&y}

{p=&x  q=&x}

{p=&x  (q=&y  q=&x)}

{p=&x  (q=&y  q=&x)  x=&a}

{p=&x  (q=&y  q=&x)  x=&a  y=&b}

{p=&x  (q=&yq=&x)  x=&a  y=&b  (z=xz=y)}

How would you construct an abstract domain to represent these abstract states?

We will usually drop 
variable-equality 
information
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Points-to lattice

• Points-to

– PT-factoids[x] = { x=&y | y  Var}  false
PT[x] = (2PT-factoids, , ,  , false, PT-factoids[x])
(interpreted disjunctively)

• How should combine them to get the abstract 
states in the example?
{p=&x  (q=&yq=&x)  x=&a  y=&b}
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Points-to lattice

• Points-to

– PT-factoids[x] = { x=&y | y  Var}  false
PT[x] = (2PT-factoids, , ,  , false, PT-factoids[x])
(interpreted disjunctively)

• How should combine them to get the abstract 
states in the example?
{p=&x  (q=&yq=&x)  x=&a  y=&b}

• D[x] = Disj(VE[x])  Disj(PT[x])

• For all program variables: D = D[x1]  …  D[xk]
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Points-to analysis

a = &y

x = &a;

y = &b;

if (?) {

p = &x;

} else {

p = &y;

}

*x = &c;

*p = &c;

How should we 
handle this 
statement?

Strong update

Weak updateWeak update

{x=&a  y=&b  (p=&xp=&y)  a=&y}

{x=&a  y=&b  (p=&xp=&y)  a=&c}

{(x=&ax=&c)  (y=&by=&c)  (p=&xp=&y)}
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Questions

• When is it correct to use a strong update?
A weak update?

• Is this points-to analysis precise?

• What does it mean to say
– p must-point-to x at program point u
– p may-point-to x at program point u
– p must-not-point-to x at program u
– p may-not-point-to x at program u

57



Points-to analysis, formally

• We must formally define what we want to 
compute before we can answer many such 
questions
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PWhile syntax

• A primitive statement is of the form

• x := null

• x := y

• x := *y

• x := &y;

• *x := y

• skip

(where x and y are variables in Var)

Omitted (for now)
• Dynamic memory allocation
• Pointer arithmetic
• Structures and fields
• Procedures
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PWhile operational semantics

• State : (VarZ)  (VarVar{null})

•  x = y  s = 

•  x = *y  s = 

•  *x = y  s = 

•  x = null  s = 

•  x = &y  s =
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PWhile operational semantics

• State : (VarZ)  (VarVar{null})

•  x = y  s = s[xs(y)]

•  x = *y  s = s[xs(s(y))]

•  *x = y  s = s[s(x)s(y)]

•  x = null  s = s[xnull]

•  x = &y  s = s[xy]

must say what 
happens if null is 

dereferenced
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PWhile collecting semantics

• CS[u] = set of concrete states that can reach  
program point u (CFG node)
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Ideal PT Analysis: formal definition

• Let u denote a node in the CFG

• Define IdealMustPT(u) to be

{ (p,x) | forall s in CS[u]. s(p) = x }

• Define IdealMayPT(u) to be

{ (p,x) | exists s in CS[u]. s(p) = x }
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May-point-to analysis:
formal Requirement specification

For every vertex u in the CFG,
compute a set R(u) such that

R(u) ⊆ { (p,x) | $sCS[u]. s(p) = x }

Compute R: V -> 2Vars’ such that
R(u)⊇IdealMayPT(u)

May/Must Point-To Analysis
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may

must

Var’ = Var U {null}



May-point-to analysis:
formal Requirement specification

• An algorithm is said to be correct if the solution R it 
computes satisfies

uV. R(u) ⊇ IdealMayPT(u)
• An algorithm is said to be precise if the solution R it 

computes satisfies
uV. R(u) = IdealMayPT(u)

• An algorithm that computes a solution R1 is said to be more 
precise than one that computes a solution R2 if

uV. R1(u)  R2(u)

Compute R: V -> 2Vars’ such that
R(u) ⊇ IdealMayPT(u)
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(May-point-to analysis)
Algorithm A

• Is this algorithm correct?

• Is this algorithm precise?

• Let’s first completely and formally define the 
algorithm
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Points-to graphs

67

x = &a;

y = &b;

if (?) {

p = &x;

} else {

p = &y;

}

*x = &c;

*p = &c;

{x=&a  y=&b  (p=&xp=&y)}

{x=&a  y=&b  (p=&xp=&y)  a=&c}

{(x=&ax=&c)  (y=&by=&c)  (p=&xp=&y)  a=&c}

a
x

c

b
y

p

The points-to 
set of x



Algorithm A: A formal definition
the “Data Flow Analysis” Recipe

• Define join-semilattice of abstract-values

– PTGraph ::= (Var, VarVar’)

– g1  g2 = ?

–  = ?

–  = ?

• Define transformers for primitive statements

– stmt# : PTGraph  PTGraph

68



Algorithm A: A formal definition
the “Data Flow Analysis” Recipe

• Define join-semilattice of abstract-values

– PTGraph ::= (Var, VarVar’)

– g1  g2 = (Var, E1  E2)

–  = (Var, {}) 

–  = (Var, VarVar’)

• Define transformers for primitive statements

– stmt# : PTGraph  PTGraph
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Algorithm A: transformers

• Abstract transformers for primitive statements

–  stmt # : PTGraph  PTGraph

•  x := y # (Var, E) = ?

•  x := null # (Var, E) = ?

•  x := &y # (Var, E) = ?

•  x := *y # (Var, E) = ?

•  *x := &y # (Var, E) = ?
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Algorithm A: transformers

• Abstract transformers for primitive statements

–  stmt # : PTGraph  PTGraph

•  x := y # (Var, E) = (Var, E[succ(x)=succ(y)]

•  x := null # (Var, E) = (Var, E[succ(x)={null}]

•  x := &y # (Var, E) = (Var, E[succ(x)={y}]

•  x := *y # (Var, E) = (Var, E[succ(x)=succ(succ(y))] 

•  *x := &y # (Var, E) = ???
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Correctness & precision

• We have a complete & formal definition of the 
problem

• We have a complete & formal definition of a 
proposed solution

• How do we reason about the correctness & 
precision of the proposed solution?
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Points-to analysis
(abstract interpretation)

(Y) = { (p,x) | exists s in Y. s(p) = x }

CS(u)

2State PTGraph

IdealMayPT(u)

MayPT(u)







IdealMayPT (u) =  ( CS(u) )
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Concrete transformers

• CS[stmt] : State  State
•  x = y  s = s[xs(y)]
•  x = *y  s = s[xs(s(y))]
•  *x = y  s = s[s(x)s(y)]
•  x = null  s = s[xnull]
•  x = &y  s = s[xy]

• CS*[stmt] : 2State  2State

• CS*[st] X = { CS[st]s | s  X }
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Abstract transformers
•  stmt # : PTGraph  PTGraph

•  x := y # (Var, E) = (Var, E[succ(x)=succ(y)]

•  x := null # (Var, E) = (Var, E[succ(x)={null}]

•  x := &y # (Var, E) = (Var, E[succ(x)={y}]

•  x := *y # (Var, E) = (Var, E[succ(x)=succ(succ(y))] 

•  *x := &y # (Var, E) = ???
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Algorithm A: transformers
Weak/Strong Update

x: {&y} y: {&x,&z} z: {&a}

x: &b y: &x z: &a

x: &y y: &z z: &b
x: {&y,&b} y: {&x,&z} z: {&a,&b}

x: &y y: &x z: &a

x: &y y: &z z: &a

*y = &b;f#*y = &b;f




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Algorithm A: transformers
Weak/Strong Update

x: {&y} y: {&x,&z} z: {&a}

x: &y y: &b z: &a

x: &y y: &b z: &a
x: {&y} y: {&b} z: {&a}

x: &y y: &x z: &a

x: &y y: &z z: &a

*x := &b;f#*x := &b;f




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Abstract transformers
•  *x := &y # (Var, E) =

if succ(x) = {z} then (Var, E[succ(z)={y}]
else succ(x)={z1,…,zk} where k>1

(Var, E[succ(z1)=succ(z1){y}]
…

[succ(zk)=succ(zk){y}]
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Some dimensions of pointer analysis

• Intra-procedural / inter-procedural

• Flow-sensitive / flow-insensitive

• Context-sensitive / context-insensitive

• Definiteness
– May vs. Must

• Heap modeling
– Field-sensitive / field-insensitive

• Representation (e.g., Points-to graph)
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Andersen’s Analysis

• A flow-insensitive analysis 
– Computes a single points-to solution valid at all 

program points
– Ignores control-flow – treats program as a set of 

statements
– Equivalent to merging all vertices into one (and 

applying Algorithm A)
– Equivalent to adding an edge between every pair of 

vertices (and applying Algorithm A)

– A (conservative) solution R: Vars  2Vars’ such that
R ⊇ IdealMayPT(u) for every vertex u
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Flow-sensitive analysis
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5: 
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x

a yb
z

L1

x

a yb
z

L2

x

a yb
z

L3

x

a yb
z

L4

x

a yb
z

L5



Flow-insensitive analysis
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5: 
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x

a yb
z

L1-5



Andersen’s analysis

• Strong updates?

• Initial state?
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Why flow-insensitive analysis?

• Reduced space requirements
– A single points-to solution

• Reduced time complexity
– No copying

• Individual updates more efficient

– No need for joins
– Number of iterations?
– A cubic-time algorithm

• Scales to millions of lines of code
– Most popular points-to analysis

• Conventionally used as an upper bound for precision 
for pointer analysis
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Andersen’s analysis as set constraints
•  x := y # PT[x]  PT[y]

•  x := null # PT[x]  {null}

•  x := &y # PT[x]  {y}

•  x := *y # PT[x]  PT[z] for all zPT[y]

•  *x := &y # PT[z]  PT[y] for all zPT[x]
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Cycle elimination

• Andersen-style pointer analysis is O(n3) for 
number of nodes in graph

– Improve scalability by reducing n

• Important optimization

– Detect strongly-connected components in 
PTGraph and collapse to a single node

• Why? In the final result all nodes in SCC have same PT

– How to detect cycles efficiently?

• Some statically, some on-the-fly
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Steensgaard’s Analysis

• Unification-based analysis

• Inspired by type inference
– An assignment lhs := rhs is interpreted as a 

constraint that lhs and rhs have the same type

– The type of a pointer variable is the set of 
variables it can point-to

• “Assignment-direction-insensitive”
– Treats lhs := rhs as if it were both lhs := rhs

and rhs := lhs
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Steensgaard’s Analysis

• An almost-linear time algorithm

– Uses union-find data structure

– Single-pass algorithm; no iteration required

• Sets a lower bound in terms of performance
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Steensgaard’s analysis initialization
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5: 
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x

b

y

a

z



Steensgaard’s analysis x=&a
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5: 
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x

b
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Steensgaard’s analysis y=x
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5: 
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Steensgaard’s analysis x=&b
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5: 
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x y

ba

z

Automatically 
sets y=&b



Steensgaard’s analysis z=x
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5: 
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z x y

ba

Automatically sets 
z=&a and z=&b



Steensgaard’s analysis final result
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5: 
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z x y

ba



Andersen’s analysis final result
L1: x = &a;

L2: y = x;

L3: x = &b;

L4: z = x;

L5: 
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x
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Another example
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5: 
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Andersen’s analysis result = ?
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5: 
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Another example
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5: 
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Steensgaard’s analysis result = ?
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5: 
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Steensgaard’s analysis result =
L1: x = &a;

L2: y = x;

L3: y = &b;

L4: b = &c;

L5: 
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May-points-to analyses

Ideal-May-Point-To

Algorithm A

Andersen’s

Steensgaard’s

more efficient / less precise

???

more efficient / less precise
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Ideal points-to analysis

• A sequence of states s1s2 … sn is said to be an 
execution (of the program) iff

– s1 is the Initial-State

– si | si+1 for 1 <= I < n

• A state s is said to be a reachable state iff there exists 
some execution s1s2 … sn is such that sn = s.

• CS(u) = { s | (u,s) is reachable }

• IdealMayPT (u) = { (p,x) | $ s  CS(u). s(p) = x }

• IdealMustPT (u) =  { (p,x) |  s  CS(u). s(p) = x }
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Does Algorithm A compute
the most precise solution?
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Ideal vs. Algorithm A

• Abstracts away correlations 
between variables

– Relational analysis vs.

– Independent attribute (Cartesian)

x: &b y: &x

x: &y y: &z

x: {&y,&b} y: {&x,&z}

x: &y y: &x

x: &b y: &z

x: &y y: &z

x: &b y: &x
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Does Algorithm A compute
the most precise solution?
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Is the precise solution computable?

• Claim: The set CS(u) of reachable concrete 
states (for our language) is computable

• Note: This is true for any collecting semantics 
with a finite state space
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Computing CS(u)
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Precise points-to analysis: decidability

• Corollary: Precise may-point-to analysis is computable.

• Corollary: Precise (demand) may-alias analysis is 
computable.
– Given ptr-exp1, ptr-exp2, and a program point u, identify if 

there exists some reachable state at u where ptr-exp1 and 
ptr-exp2 are aliases.

• Ditto for must-point-to and must-alias

• … for our restricted language!
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Precise Points-To Analysis:
Computational Complexity

• What’s the complexity of the least-fixed point 
computation using the collecting semantics?

• The worst-case complexity of computing reachable 
states is exponential in the number of variables.
– Can we do better?

• Theorem: Computing precise may-point-to is 
PSPACE-hard even if we have only two-level 
pointers
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May-Point-To Analyses

Ideal-May-Point-To

Algorithm A

Andersen’s

Steensgaard’s

more efficient / less precise

more efficient / less precise

more efficient / less precise
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Precise points-to analysis: caveats

• Theorem: Precise may-alias analysis is 
undecidable in the presence of dynamic 
memory allocation
– Add “x = new/malloc ()” to language

– State-space becomes infinite

• Digression: Integer variables + conditional-
branching also makes any precise analysis 
undecidable
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High-level classification

Ideal (no Int, no Malloc)

Algorithm A

Andersen’s

Steensgaard’s

Ideal (with Int, with Malloc)

Ideal (with Int) Ideal (with Malloc)

112



Handling memory allocation

• s: x = new () / malloc ()
• Assume, for now, that allocated object stores one 

pointer
– s: x = malloc ( sizeof(void*) )

• Introduce a pseudo-variable Vs to represent objects 
allocated at statement s, and use previous algorithm
– Treat s as if it were “x = &Vs”
– Also track possible values of Vs

– Allocation-site based approach

• Key aspect: Vs represents a set of objects (locations), 
not a single object
– referred to as a summary object (node) 
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Dynamic memory allocation example

L1: x = new O;

L2: y = x;

L3: *y = &b;

L4: *y = &a;

x

b

L1

y

a
How should we handle 
these statements
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Summary object update

L1: x = new O;

L2: y = x;

L3: *y = &b;

L4: *y = &a;

x

b

L1

y

a
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Object fields

• Field-insensitive analysis

class Foo {

A* f;

B* g;

}

L1: x = new Foo()

x->f = &b;

x->g = &a;

x

b

L1

a
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Object fields
• Field-sensitive analysis

class Foo {

A* f;

B* g;

}

L1: x = new Foo()

x->f = &b;

x->g = &a;

x

b

L1

a

f g
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Other Aspects

• Context-sensitivity

• Indirect (virtual) function calls and call-graph 
construction

• Pointer arithmetic

• Object-sensitivity
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Combining abstract domains



Three example analyses

• Abstract states are conjunctions of constraints

• Variable Equalities
– VE-factoids = { x=y | x, y  Var}  false

VE = (2VE-factoids, , , , false, )

• Constant Propagation
– CP-factoids = { x=c | x  Var, c  Z}  false

CP = (2CP-factoids, , , , false, )

• Available Expressions
– AE-factoids = { x=y+z | x  Var, y,z  VarZ}  false

A = (2AE-factoids, , , , false, )
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Lattice combinators reminder

• Cartesian Product
– L1 = (D1, 1, 1, 1, 1, 1)

L2 = (D2, 2, 2, 2, 2, 2)

– Cart(L1, L2) = (D1D2, cart, cart, cart, cart, cart)

• Disjunctive completion
– L = (D, , , , , )

– Disj(L) = (2D, , , , , )

• Relational Product
– Rel(L1, L2) = Disj(Cart(L1, L2))
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Cartesian product of complete lattices

• For two complete lattices
L1 = (D1, 1, 1, 1, 1, 1)
L2 = (D2, 2, 2, 2, 2, 2)

• Define the poset
Lcart = (D1D2, cart, cart, cart, cart, cart)
as follows:
– (x1, x2) cart (y1, y2) iff

x1 1 y1 and
x2 2 y2

– cart = ?         cart = ?         cart = ?         cart = ?

• Lemma: L is a complete lattice
• Define the Cartesian constructor Lcart = Cart(L1, L2)
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Cartesian product of GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Cartesian Product
GCC,AB = (C, C,AB, AB,C, AB)

– C,AB(X)= ?

– AB,C(Y) = ?
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Cartesian product of GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Cartesian Product
GCC,AB = (C, C,AB, AB,C, AB)

– C,AB(X) = (C,A(X), C,B(X))

– AB,C(Y) = A,C(X)  B,C(X)

• What about transformers?
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Cartesian product transformers

• GCC,A=(C, C,A, A,C, A) FA[st] : A  A
GCC,B=(C, C,B, B,C, B) FB[st] : B  B

• Cartesian Product
GCC,AB = (C, C,AB, AB,C, AB)

– C,AB(X) = (C,A(X), C,B(X))

– AB,C(Y) = A,C(X)  B,C(X)

• How should we define FAB[st] : AB  AB
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Cartesian product transformers

• GCC,A=(C, C,A, A,C, A) FA[st] : A  A
GCC,B=(C, C,B, B,C, B) FB[st] : B  B

• Cartesian Product
GCC,AB = (C, C,AB, AB,C, AB)

– C,AB(X) = (C,A(X), C,B(X))

– AB,C(Y) = A,C(X)  B,C(X)

• How should we define FAB[st] : AB  AB

• Idea: FAB[st](a, b) = (FA[st] a, FB[st] b)

• Are component-wise transformers precise?
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Cartesian product analysis example
• Abstract interpreter 1: Constant Propagation
• Abstract interpreter 2: Variable Equalities
• Let’s compare

– Running them separately and combining results
– Running the analysis with their Cartesian product
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a := 9;

b := 9;

c := a;

a := 9;

b := 9;

c := a;

CP analysis VE analysis
{a=9}

{a=9, b=9}

{a=9, b=9, c=9}

{}

{}

{c=a}



Cartesian product analysis example
• Abstract interpreter 1: Constant Propagation
• Abstract interpreter 2: Variable Equalities
• Let’s compare

– Running them separately and combining results
– Running the analysis with their Cartesian product

128

CP analysis + VE analysis
a := 9;

b := 9;

c := a;

{a=9}

{a=9, b=9}

{a=9, b=9, c=9, c=a}



Cartesian product analysis example
• Abstract interpreter 1: Constant Propagation
• Abstract interpreter 2: Variable Equalities
• Let’s compare

– Running them separately and combining results
– Running the analysis with their Cartesian product
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CPVE analysis
Missing

{a=b, b=c}

a := 9;

b := 9;

c := a;

{a=9}

{a=9, b=9}

{a=9, b=9, c=9, c=a}



Transformers for Cartesian product

• Naïve (component-wise) transformers do not 
utilize information from both components

– Same as running analyses separately and then 
combining results

• Can we treat transformers from each analysis 
as black box and obtain best transformer for 
their combination?
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Can we combine transformer 
modularly?

• No generic method for any abstract 
interpretations
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Reducing values for CPVE

• X = set of CP constraints of the form x=c
(e.g., a=9)

• Y = set of VE constraints of the form x=y

• ReduceCPVE(X, Y) = (X’, Y’) such that
(X’, Y’)  (X’, Y’)

• Ideas?
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Reducing values for CPVE

• X = set of CP constraints of the form x=c
(e.g., a=9)

• Y = set of VE constraints of the form x=y
• ReduceCPVE(X, Y) = (X’, Y’) such that

(X’, Y’)  (X’, Y’)
• ReduceRight:

– if a=b  X and a=c  Y then add b=c to Y

• ReduceLeft:
– If a=c and b=c  Y then add a=b to X

• Keep applying ReduceLeft and ReduceRight and reductions 
on each domain separately until reaching a fixed-point

133



Transformers for Cartesian product

• Do we get the best transformer by applying 
component-wise transformer followed by 
reduction?

– Unfortunately, no (what’s the intuition?)

– Can we do better?

– Logical Product [Gulwani and Tiwari, PLDI 2006]
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Product vs. reduced product

135

CPVE lattice

{a=9}{c=a} {c=9}{c=a}

{a=9, c=9}{c=a}

{[a9, c 9]}

collecting lattice

{}









Reduced product

• For two complete lattices
L1 = (D1, 1, 1, 1, 1, 1)
L2 = (D2, 2, 2, 2, 2, 2)

• Define the reduced poset
D1D2 = {(d1,d2)D1D2 | (d1,d2) =  (d1,d2) }

L1L2 = (D1D2, cart, cart, cart, cart, cart)
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Transformers for Cartesian product

• Do we get the best transformer by applying 
component-wise transformer followed by 
reduction?

– Unfortunately, no (what’s the intuition?)

– Can we do better?

– Logical Product [Gulwani and Tiwari, PLDI 2006]
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Logical product--

• Assume A=(D,…) is an abstract domain that 
supports two operations: for xD

– inferEqualities(x) = { a=b | (x)  a=b }
returns a set of equalities between variables that 
are satisfied in all states given by x

– refineFromEqualities(x, {a=b}) = y
such that

• (x)=(y)

• y  x
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Developing a transformer for EQ - 1 

• Input has the form X = {a=b}

• sp(x:=expr, ) = v. x=expr[v/x]  [v/x]

• sp(x:=y, X) = v. x=y[v/x] {a=b}[v/x] = …

• Let’s define helper notations:
– EQ(X, y) = {y=a, b=y  X}

• Subset of equalities containing y

– EQc(X, y) = X \ EQ(X, y)
• Subset of equalities not containing y
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Developing a transformer for EQ - 2 

• sp(x:=y, X) = v. x=y[v/x] {a=b}[v/x] = …

• Two cases
– x is y: sp(x:=y, X) = X
– x is different from y:

sp(x:=y, X) = v. x=y  EQ)X, x)[v/x]  EQc(X, x)[v/x]
= x=y EQc(X, x) v. EQ)X, x)[v/x]

 x=y  EQc(X, x)

• Vanilla transformer: x:=y#1 X = x=y  EQc(X, x)

• Example: x:=y#1 {x=p, q=x, m=n} = {x=y, m=n}
Is this the most precise result?
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Developing a transformer for EQ - 3 

• x:=y#1 {x=p, x=q, m=n} = {x=y, m=n} 

{x=y, m=n, p=q}
– Where does the information p=q come from?

• sp(x:=y, X) =

x=y EQc(X, x) v. EQ)X, x)[v/x]

• v. EQ)X, x)[v/x] holds possible equalities 
between different a’s and b’s – how can we 
account for that?
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Developing a transformer for EQ - 4 

• Define a reduction operator:
Explicate(X) = if exist {a=b, b=c}X

but not {a=c} X then 
Explicate(X{a=c})

else
X

• Define x:=y#2 = x:=y#1  Explicate

• x:=y#2 ) {x=p, x=q, m=n}) = {x=y, m=n, p=q}
is this the best transformer?
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Developing a transformer for EQ - 5 

• x:=y#2 ) {y=z}) = {x=y, y=z}  {x=y, y=z, x=z}

• Idea: apply reduction operator again after the 
vanilla transformer

• x:=y#3 = Explicate  x:=y#1  Explicate 
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Logical Product-
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basically the strongest 
postcondition

safely abstracting the 
existential quantifier



Abstracting the existential
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Reduce the pair

Abstract away 
existential quantifier 
for each domain



Example
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Information loss example
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if (…)

b := 5

else

b := -5

if (b>0)

b := b-5

else

b := b+5

assert b==0

{}

{b=5}

{b=-5}

{b=}

{b=}

{b=}

can’t prove



Disjunctive completion of a lattice

• For a complete lattice
L = (D, , , , , )

• Define the powerset lattice
L = (2D, , , , , )
 = ?         = ?         = ?         = ?         = ?

• Lemma: L is a complete lattice
• L contains all subsets of D, which can be thought 

of as disjunctions of the corresponding predicates
• Define the disjunctive completion constructor

L = Disj(L)
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Disjunctive completion for GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Disjunctive completion
GCC,P(A) = (C, P(A), P(A), P(A))

– C,P(A)(X) = ?

– P(A),C(Y) = ?
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Disjunctive completion for GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Disjunctive completion
GCC,P(A) = (C, P(A), P(A), P(A))

– C,P(A)(X) = {C,A({x}) | xX}

– P(A),C(Y) = {P(A)(y) | yY}

• What about transformers?
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Information loss example
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if (…)

b := 5

else

b := -5

if (b>0)

b := b-5

else

b := b+5

assert b==0

{}

{b=5}

{b=-5}

{b=5  b=-5}

{b=0}

{b=0}

proved



The base lattice CP
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{x=0}

true

{x=-1}{x=-2} {x=1} {x=2} ……

false



The disjunctive completion of CP
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{x=0}

true

{x=-1}{x=-2} {x=1} {x=2} ……

false

{x=-2x=-1} {x=-2x=0} {x=-2x=1} {x=1x=2}… … …

{x=0 x=1x=2}{x=-1 x=1x=-2}… ……
…

What is the height 
of this lattice?



Taming disjunctive completion

• Disjunctive completion is very precise
– Maintains correlations between states of different analyses

– Helps handle conditions precisely

– But very expensive – number of abstract states grows 
exponentially

– May lead to non-termination

• Base analysis (usually product) is less precise
– Analysis terminates if the analyses of each component 

terminates

• How can we combine them to get more precision yet 
ensure termination and state explosion?
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Taming disjunctive completion

• Use different abstractions for different 
program locations

– At loop heads use coarse abstraction (base)

– At other points use disjunctive completion

• Termination is guaranteed (by base domain)

• Precision increased inside loop body
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With Disj(CP)
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while (…) {

if (…)

b := 5

else

b := -5

if (b>0)

b := b-5

else

b := b+5

assert b==0

}

Doesn’t 
terminate



With tamed Disj(CP)
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while (…) {

if (…)

b := 5

else

b := -5

if (b>0)

b := b-5

else

b := b+5

assert b==0

}

terminates

CP

Disj(CP)

What MultiCartDomain implements



Reducing disjunctive elements

• A disjunctive set X may contain within it an 
ascending chain Y=a  b  c…

• We only need max(Y) – remove all elements 
below
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Relational product of lattices

• L1 = (D1, 1, 1, 1, 1, 1)
L2 = (D2, 2, 2, 2, 2, 2)

• Lrel = (2D1D2, rel, rel, rel, rel, rel)
as follows:

– Lrel = ?
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Relational product of lattices

• L1 = (D1, 1, 1, 1, 1, 1)
L2 = (D2, 2, 2, 2, 2, 2)

• Lrel = (2D1D2, rel, rel, rel, rel, rel)
as follows:
– Lrel = Disj(Cart(L1, L2))

• Lemma: L is a complete lattice

• What does it buy us?
– How is it relative to Cart(Disj(L1), Disj(L2))?

• What about transformers?
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Relational product of GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Relational Product
GCC,P(AB) = (C, C,P(AB), P(AB),C, P(AB))

– C,P(AB)(X) = ?

– P(AB),C(Y) = ?

162



Relational product of GCs

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Relational Product
GCC,P(AB) = (C, C,P(AB), P(AB),C, P(AB))

– C,P(AB)(X) = {(C,A({x}), C,B({x})) | xX}

– P(AB),C(Y) = {A,C(yA)  B,C(yB) | (yA,yB)Y}
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Cartesian product example

164

Correlations 
preserved



Function space

• GCC,A=(C, C,A, A,C, A)
GCC,B=(C, C,B, B,C, B)

• Denote the set of monotone functions from A to B by AB
• Define  for elements of AB as follows

(a1, b1)  (a2, b2) = if a1=a2 then {(a1, b1B b1)}
else {(a1, b1), (a2, b2)}

• Reduced cardinal power
GCC,AB = (C, C,AB, AB,C, AB)
– C,AB(X) = {(C,A({x}), C,B({x})) | xX}
– AB,C(Y) = {A,C(yA)  B,C(yB) | (yA,yB)Y}

• Useful when A is small and B is much larger
– E.g., typestate verification
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Widening/Narrowing
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How can we prove this automatically?
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RelProd(CP, VE)



Intervals domain

• One of the simplest numerical domains

• Maintain for each variable x an interval [L,H]

– L is either an integer of -

– H is either an integer of +

• A (non-relational) numeric domain
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Intervals lattice for variable x
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

[0,0][-1,-1][-2,-2] [1,1] [2,2] ......

[-,+]

[0,1] [1,2] [2,3][-1,0][-2,-1]

[-10,10]

[1,+][-,0]

... ...

[2,+][0,+][-,-1][-,-1]... ...

[-20,10]



Intervals lattice for variable x

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• 
• =[-,+]

•  = ?
– [1,2]  [3,4] ?

– [1,4]  [1,3] ?

– [1,3]  [1,4] ?

– [1,3]  [-,+] ?

• What is the lattice height?
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Intervals lattice for variable x

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• 
• =[-,+]

•  = ?
– [1,2]  [3,4] no

– [1,4]  [1,3] no

– [1,3]  [1,4] yes

– [1,3]  [-,+] yes

• What is the lattice height? Infinite
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Joining/meeting intervals

• [a,b]  [c,d] = ?

– [1,1]  [2,2] = ?

– [1,1]  [2, +] = ?

• [a,b]  [c,d] = ?

– [1,2]  [3,4] = ?

– [1,4]  [3,4] = ?

– [1,1]  [1,+] = ?

• Check that indeed xy if and only if xy=y
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Joining/meeting intervals

• [a,b]  [c,d] = [min(a,c), max(b,d)]
– [1,1]  [2,2] = [1,2]

– [1,1]  [2,+] = [1,+]

• [a,b]  [c,d] = [max(a,c), min(b,d)] if a proper 
interval and otherwise 
– [1,2]  [3,4] = 

– [1,4]  [3,4] = [3,4]

– [1,1]  [1,+] = [1,1]

• Check that indeed xy if and only if xy=y
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Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = ?
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Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = Dint[x1]  …  Dint[xk]

• How can we represent it in terms of formulas?
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Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = Dint[x1]  …  Dint[xk]

• How can we represent it in terms of formulas?
– Two types of factoids xc and xc

– Example: S = {x9, y5, y10}

– Helper operations
• c + + = +
• remove(S, x) = S without any x-constraints

• lb(S, x) = 
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Assignment transformers

• x := c# S = ?

• x := y# S = ?

• x := y+c# S = ?

• x := y+z# S = ?

• x := y*c# S = ?

• x := y*z# S = ?
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Assignment transformers

• x := c# S = remove(S,x)  {xc, xc}

• x := y# S = remove(S,x)  {xlb(S,y), xub(S,y)}

• x := y+c# S = remove(S,x)  {xlb(S,y)+c, xub(S,y)+c}

• x := y+z# S = remove(S,x)  {xlb(S,y)+lb(S,z), 
xub(S,y)+ub(S,z)}

• x := y*c# S = remove(S,x)  if c>0 {xlb(S,y)*c, xub(S,y)*c} 
else {xub(S,y)*-c, xlb(S,y)*-c}

• x := y*z# S = remove(S,x)  ?
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assume transformers

• assume x=c# S = ?

• assume x<c# S = ?

• assume x=y# S = ?

• assume xc# S = ?
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assume transformers

• assume x=c# S = S  {xc, xc}

• assume x<c# S = S  {xc-1}

• assume x=y# S = S  {xlb(S,y), xub(S,y)}

• assume xc# S = ?
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assume transformers

• assume x=c# S = S  {xc, xc}

• assume x<c# S = S  {xc-1}

• assume x=y# S = S  {xlb(S,y), xub(S,y)}

• assume xc# S = (S  {xc-1})  (S  {xc+1})
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Effect of function f on lattice elements
• L = (D, , , , , )

• f : D  D monotone

• Fix(f) = { d | f(d) = d }

• Red(f) = { d | f(d)  d }

• Ext(f) = { d | d  f(d) }

• Theorem [Tarski 1955]
– lfp(f) = Fix(f) = Red(f)  Fix(f)

– gfp(f) = Fix(f) = Ext(f)  Fix(f)
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Red(f)

Ext(f)

Fix(f)





lfp

gfp

fn()

fn()



Effect of function f on lattice elements
• L = (D, , , , , )

• f : D  D monotone

• Fix(f) = { d | f(d) = d }

• Red(f) = { d | f(d)  d }

• Ext(f) = { d | d  f(d) }

• Theorem [Tarski 1955]
– lfp(f) = Fix(f) = Red(f)  Fix(f)

– gfp(f) = Fix(f) = Ext(f)  Fix(f)
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Red(f)

Ext(f)

Fix(f)





lfp

gfp

fn()

fn()



Continuity and ACC condition

• Let L = (D, , , ) be a complete partial order

– Every ascending chain has an upper bound

• A function f is continuous if for every 
increasing chain Y  D*, 

f(Y) = { f(y) | yY }

• L satisfies the ascending chain condition (ACC) 
if every ascending chain eventually stabilizes:

d0  d1  …  dn = dn+1 = … 
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Fixed-point theorem [Kleene]

• Let L = (D, , , ) be a complete partial order 
and a continuous function f: D  D then

lfp(f) = nN fn()
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Resulting algorithm 
• Kleene’s fixed point theorem 

gives a constructive method 
for computing the lfp
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



lfp
fn()

f()

f2()

…d := 
while f(d)  d do

d := d  f(d)
return d

Algorithm

lfp(f) = nN fn()
Mathematical definition



Chaotic iteration
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• Input:
– A cpo L = (D, , , ) satisfying ACC
– Ln = L  L  …  L
– A monotone function f : Dn Dn

– A system of equations { X[i] | f(X) | 1  i  n }

• Output: lfp(f)
• A worklist-based algorithm

for i:=1 to n do
X[i] := 

WL = {1,…,n}
while WL   do

j := pop WL // choose index non-deterministically
N := F[i](X)
if N  X[i] then

X[i] := N
add all the indexes that directly depend on i to WL
(X[j] depends on X[i] if F[j] contains X[i])

return X



Concrete semantics equations
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• R[0] = {xZ} 
R[1] = x:=7
R[2] = R[1]  R[4]
R[3] = R[2]  {s | s(x) < 1000}
R[4] = x:=x+1 R[3]
R[5] = R[2]  {s | s(x)  1000} 
R[6] = R[5]  {s | s(x)  1001}

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]



Abstract semantics equations
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• R[0] = ({xZ}) 
R[1] = x:=7#

R[2] = R[1]  R[4]
R[3] = R[2]  ({s | s(x) < 1000})
R[4] = x:=x+1# R[3]
R[5] = R[2]  ({s | s(x)  1000})
R[6] = R[5]  ({s | s(x)  1001})  R[5]  ({s | s(x)  999}) 

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]



Abstract semantics equations
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• R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[3] = R[2]  [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2]  [1000,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]



Too many iterations to converge
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How many iterations for this one?
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Widening

• Introduce a new binary operator to ensure 
termination
– A kind of extrapolation

• Enables static analysis to use infinite height 
lattices
– Dynamically adapts to given program

• Tricky to design

• Precision less predictable then with finite-
height domains (widening non-monotone)
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Formal definition

• For all elements d1  d2  d1  d2

• For all ascending chains d0  d1  d2  …
the following sequence is finite
– y0 = d0

– yi+1 = yi di+1 

• For a monotone function f : DD define
– x0  = 
– xi+1 = xi  f(xi )

• Theorem:
– There exits k such that  xk+1 = xk

– xkRed(f) = { d | dD and f(d)  d }
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Analysis with finite-height lattice
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A



f#n = lpf(f#) …

f#2 

f#3

f# 

Red(f)

Fix(f)



Analysis with widening
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A



f#2  f#3

f#2 

f#3

f# 

Red(f)

Fix(f) lpf(f#) 



Widening for Intervals Analysis

•  [c, d] = [c, d]

• [a, b]   [c, d] = [
if a  c
then a
else -,

if b  d
then b
else 
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Semantic equations with widening
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• R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2]  [1001,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]



Choosing analysis with widening
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Enable widening



Non monotonicity of widening

• [0,1]  [0,2] = ?

• [0,2]  [0,2] = ?



Non monotonicity of widening

• [0,1]  [0,2] = [0, ]

• [0,2]  [0,2] = [0,2] 



Analysis results with widening
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Did we prove it?



Analysis with narrowing
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A



f#2  f#3

f#2 

f#3

f# 

Red(f)

Fix(f) lpf(f#) 



Formal definition of narrowing

• Improves the result of widening
• y  x  y  (x y)  x
• For all decreasing chains x0  x1 …

the following sequence is finite
– y0 = x0

– yi+1 = yi xi+1 

• For a monotone function f: DD
and xkRed(f) = { d | dD and f(d)  d }
define
– y0  = x
– yi+1 = yi f(yi )

• Theorem:
– There exits k such that  yk+1 =yk

– ykRed(f) = { d | dD and f(d)  d }



Narrowing for Interval Analysis 

• [a, b]   = [a, b]

• [a, b]  [c, d] = [
if a = -
then c
else a,

if b = 
then d
else b 

]



Semantic equations with narrowing
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• R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3]+[1,1]
R[5] = R[2]#  [1000,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]



Analysis with widening/narrowing
• Two phases

– Phase 1: analyze 
with widening until 
converging

– Phase 2: use values 
to analyze with 
narrowing
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Phase 2:
R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3]+[1,1]
R[5] = R[2]#  [1000,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

Phase 1:
R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2]  [1001,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]



Analysis with widening/narrowing
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Analysis results widening/narrowing
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Precise invariant




