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Procedural program

int p(int a) {

return a + 1;

}

void main() {

int x;

x = p(7);

x = p(9);

}
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Effect of procedures

The effect of calling a procedure is the effect 
of executing its body

call bar()

foo()

bar()
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Interprocedural Analysis

goal: compute the abstract effect of calling a 
procedure

call bar()

foo()

bar()
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Naïve solutions

• Inilining

• Call/Return as goto



Guiding light

• Exploit stack regime

Precision

Efficiency
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Stack regime

P() { 

…

R(); 

…

}

R(){

… 

}  

Q() { 

…

R(); 

… 

}

P

R
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Interprocedural Valid Paths

( )

f1 f2 fk-1 fk

f3

f4

f5

fk-2

fk-3

callq

enterq exitq

ret

•IVP: all paths with matching calls and returns
–And prefixes

8



Join Over All Paths (JOP)

start n

i

• JOP[v] = {[[e1, e2, …,en]]()  | (e1, …, en)  paths(v)}

• JOP  LFP
– Sometimes JOP = LFP 

• precise up to “symbolic execution”

• Distributive problem

L  L⟦fk  o  ... o f1⟧
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CFL-Graph reachability

• Special cases of functional analysis

• Finite distributive lattices

• Provides more efficient analysis algorithms

• Reduce the interprocedural analysis problem 
to finding context free reachability
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IDFS / IDE

• IDFS Interprocedural Distributive Finite Subset 
Precise interprocedural dataflow analysis via 

graph reachability. Reps, Horowitz, and 

Sagiv, POPL’95

• IDE Interprocedural Distributive Environment 
Precise interprocedural dataflow analysis 

with applications to constant propagation.

Reps, Horowitz, and Sagiv, FASE’95, TCS’96

– More general solutions exist
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Possibly Uninitialized Variables
Start

x = 3

if . . .

y = x

y = w

w = 8

printf(y)

{w,x,y}

{w,y}

{w,y}

{w,y}

{w}

{w,y}{}

{w,y}

{}
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IFDS Problems

• Finite subset distributive

– Lattice L = (D)

–  is 

–  is 

– Transfer functions are distributive

• Efficient solution through formulation as CFL 
reachability
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Encoding Transfer Functions

• Enumerate all input space and output space
• Represent functions as graphs with 2(D+1) nodes
• Special symbol “0” denotes empty sets (sometimes 

denoted )
• Example:  D = { a, b, c }

f(S) = (S – {a}) U {b}

207

0 a b c

0 a b c
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Efficiently Representing Functions

• Let f:2D
2D be a distributive function

• Then:  

– f(X) = f()  ( { f({z}) | z  X })

– f(X) = f()  ( { f({z}) \ f() | z  X }) 
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Representing Dataflow Functions

Identity Function

Constant Function

a b c

a b c
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“Gen/Kill” Function

Non-“Gen/Kill” Function a b c

a b c

Representing Dataflow Functions
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x = 3

p(x,y)

return from p

printf(y)

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

printf(b)

exit p

x y a b
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a b c

b ca

Composing Dataflow Functions
b ca
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x = 3

p(x,y)

return from p

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

exit p

x y a b

printf(y)

Might b be

uninitialized

here?

printf(b) NO!

(

]

Might y be

uninitialized

here?

YES!

(

)
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The Tabulation Algorithm

• Worklist algorithm, start from entry of “main”
• Keep track of

– Path edges: matched paren paths from procedure entry
– Summary edges: matched paren call-return paths

• At each instruction
– Propagate facts using transfer functions; extend path edges

• At each call
– Propagate to procedure entry, start with an empty path
– If a summary for that entry exits, use it

• At each exit
– Store paths from corresponding call points as summary paths
– When a new summary is added, propagate to the return node
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Interprocedural Dataflow Analysis
via  CFL-Reachability

• Graph: Exploded control-flow graph

• L: L(unbalLeft)

– unbalLeft = valid   

• Fact d holds at n iff there is an L(unbalLeft)-path 

from 
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Asymptotic Running Time

• CFL-reachability

– Exploded control-flow graph: ND nodes
– Running time: O(N3D3)

• Exploded control-flow graph          Special structure

Running time: O(ED3)

Typically: E  N, hence O(ED3)  O(ND3)

“Gen/kill” problems: O(ED) 23



IDE

• Goes beyond IFDS problems

– Can handle unbounded domains

• Requires special form of the domain 

• Can be much more efficient than IFDS
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Example Linear Constant Propagation

• Consider the constant propagation lattice

• The value of every variable y at the program exit can 
be represented by:

y =  {(axx + bx )| x  Var* }  c 

ax ,c  Z {, } bx Z 

• Supports efficient composition and “functional” join
– [z := a * y + b]

– What  about [z:=x+y]?
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Linear constant propagation

Point-wise representation of environment transformers
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IDE Analysis

• Point-wise representation closed under 
composition

• CFL-Reachability on the exploded graph

• Compose functions
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Costs

• O(ED3)

• Class of value transformers F  LL

– idF 

– Finite height

• Representation scheme with (efficient)
• Application

• Composition

• Join

• Equality

• Storage
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Conclusion

• Handling functions is crucial for abstract 
interpretation

• Virtual functions and exceptions complicate 
things

• But scalability is an issue

– Small call strings

– Small functional domains

– Demand analysis
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Challenges in Interprocedural Analysis

• Respect call-return mechanism

• Handling recursion

• Local variables

• Parameter passing mechanisms

• The called procedure is not always known

• The source code of the called procedure is not 
always available
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A trivial treatment of procedure 

• Analyze a single procedure

• After every call continue with conservative 
information

– Global variables and local variables which “may be 
modified by the call” have unknown values

• Can be easily implemented

• Procedures can be written in different languages

• Procedure inline can help
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Disadvantages of the trivial solution

• Modular (object oriented and functional) 
programming  encourages small frequently called 
procedures

• Almost all information is lost
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Motivation

• Interprocedural shape analysis
– Conservative static pointer analysis

– Heap intensive programs
• Imperative programs with procedures

• Recursive data structures

• Challenge
– Destructive update

– Localized effect of procedures



Main idea

• Local heaps

y

t

g

x

y

t

g

call p(x);
x

xx



Main idea

• Local heaps 

• Cutpoints

y

t

g

x

y

t

g

call p(x);
x

xx



Numerical Analysis



Abstract Interpretation [Cousot’77]

• Mathematical foundation of static analysis

41



Widening/Narrowing
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How can we prove this automatically?
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RelProd(CP, VE)



Intervals domain

• One of the simplest numerical domains

• Maintain for each variable x an interval [L,H]

– L is either an integer of -

– H is either an integer of +

• A (non-relational) numeric domain
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Intervals lattice for variable x

45



[0,0][-1,-1][-2,-2] [1,1] [2,2] ......

[-,+]

[0,1] [1,2] [2,3][-1,0][-2,-1]

[-10,10]

[1,+][-,0]

... ...

[2,+][0,+][-,-1][-,-1]... ...

[-20,10]



Intervals lattice for variable x

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• 
• =[-,+]

•  = ?
– [1,2]  [3,4] ?

– [1,4]  [1,3] ?

– [1,3]  [1,4] ?

– [1,3]  [-,+] ?

• What is the lattice height?
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Intervals lattice for variable x

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• 
• =[-,+]

•  = ?
– [1,2]  [3,4] no

– [1,4]  [1,3] no

– [1,3]  [1,4] yes

– [1,3]  [-,+] yes

• What is the lattice height? Infinite
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Joining/meeting intervals

• [a,b]  [c,d] = ?

– [1,1]  [2,2] = ?

– [1,1]  [2, +] = ?

• [a,b]  [c,d] = ?

– [1,2]  [3,4] = ?

– [1,4]  [3,4] = ?

– [1,1]  [1,+] = ?

• Check that indeed xy if and only if xy=y
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Joining/meeting intervals

• [a,b]  [c,d] = [min(a,c), max(b,d)]
– [1,1]  [2,2] = [1,2]

– [1,1]  [2,+] = [1,+]

• [a,b]  [c,d] = [max(a,c), min(b,d)] if a proper 
interval and otherwise 
– [1,2]  [3,4] = 

– [1,4]  [3,4] = [3,4]

– [1,1]  [1,+] = [1,1]

• Check that indeed xy if and only if xy=y
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Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = ?
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Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = Dint[x1]  …  Dint[xk]

• How can we represent it in terms of formulas?
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Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = Dint[x1]  …  Dint[xk]

• How can we represent it in terms of formulas?
– Two types of factoids xc and xc

– Example: S = {x9, y5, y10}

– Helper operations
• c + + = +
• remove(S, x) = S without any x-constraints

• lb(S, x) = 
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Assignment transformers

• x := c# S = ?

• x := y# S = ?

• x := y+c# S = ?

• x := y+z# S = ?

• x := y*c# S = ?

• x := y*z# S = ?
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Assignment transformers

• x := c# S = remove(S,x)  {xc, xc}

• x := y# S = remove(S,x)  {xlb(S,y), xub(S,y)}

• x := y+c# S = remove(S,x)  {xlb(S,y)+c, xub(S,y)+c}

• x := y+z# S = remove(S,x)  {xlb(S,y)+lb(S,z), 
xub(S,y)+ub(S,z)}

• x := y*c# S = remove(S,x)  if c>0 {xlb(S,y)*c, xub(S,y)*c} 
else {xub(S,y)*-c, xlb(S,y)*-c}

• x := y*z# S = remove(S,x)  ?
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assume transformers

• assume x=c# S = ?

• assume x<c# S = ?

• assume x=y# S = ?

• assume xc# S = ?
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assume transformers

• assume x=c# S = S  {xc, xc}

• assume x<c# S = S  {xc-1}

• assume x=y# S = S  {xlb(S,y), xub(S,y)}

• assume xc# S = ?
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assume transformers

• assume x=c# S = S  {xc, xc}

• assume x<c# S = S  {xc-1}

• assume x=y# S = S  {xlb(S,y), xub(S,y)}

• assume xc# S = (S  {xc-1})  (S  {xc+1})
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Effect of function f on lattice elements

• L = (D, , , , , )

• f : D  D monotone

• Fix(f) = { d | f(d) = d }

• Red(f) = { d | f(d)  d }

• Ext(f) = { d | d  f(d) }

• Theorem [Tarski 1955]
– lfp(f) = Fix(f) = Red(f)  Fix(f)

– gfp(f) = Fix(f) = Ext(f)  Fix(f)

58

Red(f)

Ext(f)

Fix(f)





lfp

gfp

fn()

fn()



Effect of function f on lattice elements

• L = (D, , , , , )

• f : D  D monotone

• Fix(f) = { d | f(d) = d }

• Red(f) = { d | f(d)  d }

• Ext(f) = { d | d  f(d) }

• Theorem [Tarski 1955]
– lfp(f) = Fix(f) = Red(f)  Fix(f)

– gfp(f) = Fix(f) = Ext(f)  Fix(f)
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Red(f)

Ext(f)

Fix(f)





lfp

gfp

fn()

fn()



Continuity and ACC condition

• Let L = (D, , , ) be a complete partial order

– Every ascending chain has an upper bound

• A function f is continuous if for every 
increasing chain Y  D*, 

f(Y) = { f(y) | yY }

• L satisfies the ascending chain condition (ACC) 
if every ascending chain eventually stabilizes:

d0  d1  …  dn = dn+1 = … 
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Fixed-point theorem [Kleene]

• Let L = (D, , , ) be a complete partial order 
and a continuous function f: D  D then

lfp(f) = nN fn()
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Resulting algorithm 
• Kleene’s fixed point theorem 

gives a constructive method 
for computing the lfp

62





lfp
fn()

f()

f2()

…d := 
while f(d)  d do

d := d  f(d)
return d

Algorithm

lfp(f) = nN fn()
Mathematical definition



Chaotic iteration

63

• Input:
– A cpo L = (D, , , ) satisfying ACC
– Ln = L  L  …  L
– A monotone function f : DnDn

– A system of equations { X[i] | f(X) | 1  i  n }

• Output: lfp(f)
• A worklist-based algorithm

for i:=1 to n do
X[i] := 

WL = {1,…,n}
while WL  do

j := pop WL // choose index non-deterministically
N := F[i](X)
if N  X[i] then

X[i] := N
add all the indexes that directly depend on i to WL
(X[j] depends on X[i] if F[j] contains X[i])

return X



Concrete semantics equations

64

• R[0] = {xZ} 
R[1] = x:=7
R[2] = R[1]  R[4]
R[3] = R[2]  {s | s(x) < 1000}
R[4] = x:=x+1 R[3]
R[5] = R[2]  {s | s(x) 1000} 
R[6] = R[5]  {s | s(x) 1001}

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]



Abstract semantics equations

65

• R[0] = ({xZ}) 
R[1] = x:=7#

R[2] = R[1]  R[4]
R[3] = R[2]  ({s | s(x) < 1000})
R[4] = x:=x+1# R[3]
R[5] = R[2]  ({s | s(x) 1000})
R[6] = R[5]  ({s | s(x) 1001})  R[5]  ({s | s(x) 999}) 

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]



Abstract semantics equations

66

• R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[3] = R[2]  [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2]  [1000,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]



Too many iterations to converge
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How many iterations for this one?
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Widening

• Introduce a new binary operator to ensure 
termination
– A kind of extrapolation

• Enables static analysis to use infinite height 
lattices
– Dynamically adapts to given program

• Tricky to design

• Precision less predictable then with finite-
height domains (widening non-monotone)
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Formal definition

• For all elements d1  d2  d1  d2

• For all ascending chains d0  d1  d2  …
the following sequence eventually stabilizes
– y0 = d0

– yi+1 = yi di+1 

• For a monotone function f : DD define
– x0  = 
– xi+1 = xi  f(xi )

• Theorem:
– There exits k such that  xk+1 = xk

– xkRed(f) = { d | dD and f(d)  d }
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Analysis with finite-height lattice

71

A



f#n = lpf(f#) …

f#2 

f#3

f# 

Red(f)

Fix(f)



Analysis with widening

72

A



f#2  f#3

f#2 

f#3

f# 

Red(f)

Fix(f) lpf(f#) 



Widening for Intervals Analysis

•  [c, d] = [c, d]

• [a, b]   [c, d] = [
if a  c
then a
else -,

if b  d
then b
else 
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Semantic equations with widening

74

• R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2]  [1001,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]



Non monotonicity of widening

• [0,1]  [0,2] = ?

• [0,2]  [0,2] = ?



Non monotonicity of widening

• [0,1]  [0,2] = [0, ]

• [0,2]  [0,2] = [0,2] 



Analysis results with widening

78

Did we prove it?



Analysis with narrowing

79

A



f#2  f#3

f#2 

f#3

f# 

Red(f)

Fix(f) lpf(f#) 



Formal definition of narrowing

• Improves the result of widening
• y  x  y  (x y)  x
• For all decreasing chains x0  x1 …

the following sequence is finite
– y0 = x0

– yi+1 = yi xi+1 

• For a monotone function f: DD
and xkRed(f) = { d | dD and f(d)  d }
define
– y0  = x
– yi+1 = yi f(yi )

• Theorem:
– There exits k such that  yk+1 =yk

– ykRed(f) = { d | dD and f(d)  d }



Narrowing for Interval Analysis 

• [a, b]   = [a, b]

• [a, b]  [c, d] = [
if a = -
then c
else a,

if b = 
then d
else b 

]



Semantic equations with narrowing

82

• R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3]+[1,1]
R[5] = R[2]#  [1000,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]



Analysis with widening/narrowing

• Two phases
– Phase 1: analyze 

with widening until 
converging

– Phase 2: use values 
to analyze with 
narrowing

83

Phase 2:
R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3]+[1,1]
R[5] = R[2]#  [1000,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

Phase 1:
R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2]  [1001,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]



Analysis with widening/narrowing
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Analysis results widening/narrowing
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Precise invariant





Project

• 1-2 Students in a group
– 3-4: Bigger projects

• Theoretical + Practical

• Your choice of topic
– Contact me in 3 weeks

• Submission – 15/Sep
– Code + Examples

– Document

– 15 minutes presentation
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Past projects

• JavaScript Dominator Analysis

• Attribute Analysis for JavaScript

• Simple Pointer Analysis for C

• Adding program counters to Past Abstraction 
(abstraction of finite state machines.)

• Verification of Asynchronous programs

• Verifying SDNs using TVLA

• Verifying independent accesses to arrays in GO
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Past projects

• Detecting index out of bound errors in C 
programs

• Lattice-Based Semantics for Combinatorial 
Models Evolution 

• Verifying sorting programs

• Cross-array sorting (array of arrays) – use for 
storage systems version management

• Verifying LTL formulae over TVLA structures

• Worst-case memory consumption
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Past projects

• Automatic loop parallelization via dependency 
tracking

• Handling asynchronous calls



Default Project

• Pick a framework 

– LLVM ( C ) : http://llvm.org/

– Soot ( Java ) : https://sable.github.io/soot/

• Analysis:

– Refined pointer analysis

– Invent numerical domain

https://sable.github.io/soot/

