
Program Analysis
and Verification

0368-4479

Noam Rinetzky

Lecture 12: Interprocedural Analysis + Numerical
Analysis

1

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

Procedural program

int p(int a) {

return a + 1;

}

void main() {

int x;

x = p(7);

x = p(9);

}

2

Effect of procedures

The effect of calling a procedure is the effect
of executing its body

call bar()

foo()

bar()

3

Interprocedural Analysis

goal: compute the abstract effect of calling a
procedure

call bar()

foo()

bar()

4

Naïve solutions

• Inilining

• Call/Return as goto

Guiding light

• Exploit stack regime

Precision

Efficiency

6

Stack regime

P() {

…

R();

…

}

R(){

…

}

Q() {

…

R();

…

}

P

R

7

Interprocedural Valid Paths

()

f1 f2 fk-1 fk

f3

f4

f5

fk-2

fk-3

callq

enterq exitq

ret

•IVP: all paths with matching calls and returns
–And prefixes

8

Join Over All Paths (JOP)

start n

i

• JOP[v] = {[[e1, e2, …,en]]() | (e1, …, en)  paths(v)}

• JOP  LFP
– Sometimes JOP = LFP

• precise up to “symbolic execution”

• Distributive problem

L  L⟦fk o ... o f1⟧

9

CFL-Graph reachability

• Special cases of functional analysis

• Finite distributive lattices

• Provides more efficient analysis algorithms

• Reduce the interprocedural analysis problem
to finding context free reachability

10

IDFS / IDE

• IDFS Interprocedural Distributive Finite Subset
Precise interprocedural dataflow analysis via

graph reachability. Reps, Horowitz, and

Sagiv, POPL’95

• IDE Interprocedural Distributive Environment
Precise interprocedural dataflow analysis

with applications to constant propagation.

Reps, Horowitz, and Sagiv, FASE’95, TCS’96

– More general solutions exist

11

Possibly Uninitialized Variables
Start

x = 3

if . . .

y = x

y = w

w = 8

printf(y)

{w,x,y}

{w,y}

{w,y}

{w,y}

{w}

{w,y}{}

{w,y}

{}

12

IFDS Problems

• Finite subset distributive

– Lattice L = (D)

–  is 

–  is 

– Transfer functions are distributive

• Efficient solution through formulation as CFL
reachability

13

Encoding Transfer Functions

• Enumerate all input space and output space
• Represent functions as graphs with 2(D+1) nodes
• Special symbol “0” denotes empty sets (sometimes

denoted )
• Example: D = { a, b, c }

f(S) = (S – {a}) U {b}

207

0 a b c

0 a b c
14

Efficiently Representing Functions

• Let f:2D
2D be a distributive function

• Then:

– f(X) = f()  ( { f({z}) | z  X })

– f(X) = f()  ( { f({z}) \ f() | z  X })

15

Representing Dataflow Functions

Identity Function

Constant Function

a b c

a b c

16

“Gen/Kill” Function

Non-“Gen/Kill” Function a b c

a b c

Representing Dataflow Functions

17

x = 3

p(x,y)

return from p

printf(y)

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

printf(b)

exit p

x y a b

18

a b c

b ca

Composing Dataflow Functions
b ca

19

x = 3

p(x,y)

return from p

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

exit p

x y a b

printf(y)

Might b be

uninitialized

here?

printf(b) NO!

(

]

Might y be

uninitialized

here?

YES!

(

)
20

The Tabulation Algorithm

• Worklist algorithm, start from entry of “main”
• Keep track of

– Path edges: matched paren paths from procedure entry
– Summary edges: matched paren call-return paths

• At each instruction
– Propagate facts using transfer functions; extend path edges

• At each call
– Propagate to procedure entry, start with an empty path
– If a summary for that entry exits, use it

• At each exit
– Store paths from corresponding call points as summary paths
– When a new summary is added, propagate to the return node

21

Interprocedural Dataflow Analysis
via CFL-Reachability

• Graph: Exploded control-flow graph

• L: L(unbalLeft)

– unbalLeft = valid

• Fact d holds at n iff there is an L(unbalLeft)-path

from

22

Asymptotic Running Time

• CFL-reachability

– Exploded control-flow graph: ND nodes
– Running time: O(N3D3)

• Exploded control-flow graph Special structure

Running time: O(ED3)

Typically: E  N, hence O(ED3)  O(ND3)

“Gen/kill” problems: O(ED) 23

IDE

• Goes beyond IFDS problems

– Can handle unbounded domains

• Requires special form of the domain

• Can be much more efficient than IFDS

24

Example Linear Constant Propagation

• Consider the constant propagation lattice

• The value of every variable y at the program exit can
be represented by:

y =  {(axx + bx)| x  Var* }  c

ax ,c  Z {, } bx Z

• Supports efficient composition and “functional” join
– [z := a * y + b]

– What about [z:=x+y]?

25

Linear constant propagation

Point-wise representation of environment transformers

26

IDE Analysis

• Point-wise representation closed under
composition

• CFL-Reachability on the exploded graph

• Compose functions

27

28

29

Costs

• O(ED3)

• Class of value transformers F  LL

– idF

– Finite height

• Representation scheme with (efficient)
• Application

• Composition

• Join

• Equality

• Storage

30

Conclusion

• Handling functions is crucial for abstract
interpretation

• Virtual functions and exceptions complicate
things

• But scalability is an issue

– Small call strings

– Small functional domains

– Demand analysis

31

Challenges in Interprocedural Analysis

• Respect call-return mechanism

• Handling recursion

• Local variables

• Parameter passing mechanisms

• The called procedure is not always known

• The source code of the called procedure is not
always available

32

A trivial treatment of procedure

• Analyze a single procedure

• After every call continue with conservative
information

– Global variables and local variables which “may be
modified by the call” have unknown values

• Can be easily implemented

• Procedures can be written in different languages

• Procedure inline can help

33

Disadvantages of the trivial solution

• Modular (object oriented and functional)
programming encourages small frequently called
procedures

• Almost all information is lost

34

Bibliography

• Textbook 2.5

• Patrick Cousot & Radhia Cousot. Static determination of dynamic
properties of recursive procedures In IFIP Conference on Formal
Description of Programming Concepts, E.J. Neuhold, (Ed.), pages 237-
277, St-Andrews, N.B., Canada, 1977. North-Holland Publishing
Company (1978).

• Two Approaches to interprocedural analysis by Micha Sharir and
Amir Pnueli

• IDFS Interprocedural Distributive Finite Subset Precise interprocedural
dataflow analysis via graph reachability. Reps, Horowitz, and Sagiv,
POPL’95

• IDE Interprocedural Distributive Environment Precise interprocedural
dataflow analysis with applications to constant propagation. Sagiv, Reps,
Horowitz, and TCS’96

35

http://www.di.ens.fr/~cousot/COUSOTpapers/IFIP77.shtml

A Semantics for Procedure Local Heaps
and its Abstractions

Noam Rinetzky Tel Aviv University

Jörg Bauer Universität des Saarlandes

Thomas Reps University of Wisconsin

Mooly Sagiv Tel Aviv University

Reinhard Wilhelm Universität des Saarlandes

Motivation

• Interprocedural shape analysis
– Conservative static pointer analysis

– Heap intensive programs
• Imperative programs with procedures

• Recursive data structures

• Challenge
– Destructive update

– Localized effect of procedures

Main idea

• Local heaps

y

t

g

x

y

t

g

call p(x);
x

xx

Main idea

• Local heaps

• Cutpoints

y

t

g

x

y

t

g

call p(x);
x

xx

Numerical Analysis

Abstract Interpretation [Cousot’77]

• Mathematical foundation of static analysis

41

Widening/Narrowing

42

How can we prove this automatically?

43

RelProd(CP, VE)

Intervals domain

• One of the simplest numerical domains

• Maintain for each variable x an interval [L,H]

– L is either an integer of -

– H is either an integer of +

• A (non-relational) numeric domain

44

Intervals lattice for variable x

45



[0,0][-1,-1][-2,-2] [1,1] [2,2]

[-,+]

[0,1] [1,2] [2,3][-1,0][-2,-1]

[-10,10]

[1,+][-,0]

... ...

[2,+][0,+][-,-1][-,-1]... ...

[-20,10]

Intervals lattice for variable x

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• 
• =[-,+]

•  = ?
– [1,2]  [3,4] ?

– [1,4]  [1,3] ?

– [1,3]  [1,4] ?

– [1,3]  [-,+] ?

• What is the lattice height?

46

Intervals lattice for variable x

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• 
• =[-,+]

•  = ?
– [1,2]  [3,4] no

– [1,4]  [1,3] no

– [1,3]  [1,4] yes

– [1,3]  [-,+] yes

• What is the lattice height? Infinite

47

Joining/meeting intervals

• [a,b]  [c,d] = ?

– [1,1]  [2,2] = ?

– [1,1]  [2, +] = ?

• [a,b]  [c,d] = ?

– [1,2]  [3,4] = ?

– [1,4]  [3,4] = ?

– [1,1]  [1,+] = ?

• Check that indeed xy if and only if xy=y

48

Joining/meeting intervals

• [a,b]  [c,d] = [min(a,c), max(b,d)]
– [1,1]  [2,2] = [1,2]

– [1,1]  [2,+] = [1,+]

• [a,b]  [c,d] = [max(a,c), min(b,d)] if a proper
interval and otherwise 
– [1,2]  [3,4] = 

– [1,4]  [3,4] = [3,4]

– [1,1]  [1,+] = [1,1]

• Check that indeed xy if and only if xy=y

49

Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = ?

50

Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = Dint[x1]  …  Dint[xk]

• How can we represent it in terms of formulas?

51

Interval domain for programs

• Dint[x] = { (L,H) | L-,Z and HZ,+ and LH}

• For a program with variables Var={x1,…,xk}

• Dint[Var] = Dint[x1]  …  Dint[xk]

• How can we represent it in terms of formulas?
– Two types of factoids xc and xc

– Example: S = {x9, y5, y10}

– Helper operations
• c + + = +
• remove(S, x) = S without any x-constraints

• lb(S, x) =

52

Assignment transformers

• x := c# S = ?

• x := y# S = ?

• x := y+c# S = ?

• x := y+z# S = ?

• x := y*c# S = ?

• x := y*z# S = ?

53

Assignment transformers

• x := c# S = remove(S,x)  {xc, xc}

• x := y# S = remove(S,x)  {xlb(S,y), xub(S,y)}

• x := y+c# S = remove(S,x)  {xlb(S,y)+c, xub(S,y)+c}

• x := y+z# S = remove(S,x)  {xlb(S,y)+lb(S,z),
xub(S,y)+ub(S,z)}

• x := y*c# S = remove(S,x)  if c>0 {xlb(S,y)*c, xub(S,y)*c}
else {xub(S,y)*-c, xlb(S,y)*-c}

• x := y*z# S = remove(S,x)  ?

54

assume transformers

• assume x=c# S = ?

• assume x<c# S = ?

• assume x=y# S = ?

• assume xc# S = ?

55

assume transformers

• assume x=c# S = S  {xc, xc}

• assume x<c# S = S  {xc-1}

• assume x=y# S = S  {xlb(S,y), xub(S,y)}

• assume xc# S = ?

56

assume transformers

• assume x=c# S = S  {xc, xc}

• assume x<c# S = S  {xc-1}

• assume x=y# S = S  {xlb(S,y), xub(S,y)}

• assume xc# S = (S  {xc-1})  (S  {xc+1})

57

Effect of function f on lattice elements

• L = (D, , , , , )

• f : D  D monotone

• Fix(f) = { d | f(d) = d }

• Red(f) = { d | f(d)  d }

• Ext(f) = { d | d  f(d) }

• Theorem [Tarski 1955]
– lfp(f) = Fix(f) = Red(f)  Fix(f)

– gfp(f) = Fix(f) = Ext(f)  Fix(f)

58

Red(f)

Ext(f)

Fix(f)





lfp

gfp

fn()

fn()

Effect of function f on lattice elements

• L = (D, , , , , )

• f : D  D monotone

• Fix(f) = { d | f(d) = d }

• Red(f) = { d | f(d)  d }

• Ext(f) = { d | d  f(d) }

• Theorem [Tarski 1955]
– lfp(f) = Fix(f) = Red(f)  Fix(f)

– gfp(f) = Fix(f) = Ext(f)  Fix(f)

59

Red(f)

Ext(f)

Fix(f)





lfp

gfp

fn()

fn()

Continuity and ACC condition

• Let L = (D, , , ) be a complete partial order

– Every ascending chain has an upper bound

• A function f is continuous if for every
increasing chain Y  D*,

f(Y) = { f(y) | yY }

• L satisfies the ascending chain condition (ACC)
if every ascending chain eventually stabilizes:

d0  d1  …  dn = dn+1 = …

60

Fixed-point theorem [Kleene]

• Let L = (D, , , ) be a complete partial order
and a continuous function f: D  D then

lfp(f) = nN fn()

61

Resulting algorithm
• Kleene’s fixed point theorem

gives a constructive method
for computing the lfp

62





lfp
fn()

f()

f2()

…d := 
while f(d)  d do

d := d  f(d)
return d

Algorithm

lfp(f) = nN fn()
Mathematical definition

Chaotic iteration

63

• Input:
– A cpo L = (D, , , ) satisfying ACC
– Ln = L  L  …  L
– A monotone function f : DnDn

– A system of equations { X[i] | f(X) | 1  i  n }

• Output: lfp(f)
• A worklist-based algorithm

for i:=1 to n do
X[i] := 

WL = {1,…,n}
while WL  do

j := pop WL // choose index non-deterministically
N := F[i](X)
if N  X[i] then

X[i] := N
add all the indexes that directly depend on i to WL
(X[j] depends on X[i] if F[j] contains X[i])

return X

Concrete semantics equations

64

• R[0] = {xZ}
R[1] = x:=7
R[2] = R[1]  R[4]
R[3] = R[2]  {s | s(x) < 1000}
R[4] = x:=x+1 R[3]
R[5] = R[2]  {s | s(x) 1000}
R[6] = R[5]  {s | s(x) 1001}

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]

Abstract semantics equations

65

• R[0] = ({xZ})
R[1] = x:=7#

R[2] = R[1]  R[4]
R[3] = R[2]  ({s | s(x) < 1000})
R[4] = x:=x+1# R[3]
R[5] = R[2]  ({s | s(x) 1000})
R[6] = R[5]  ({s | s(x) 1001})  R[5]  ({s | s(x) 999})

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]

Abstract semantics equations

66

• R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[3] = R[2]  [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2]  [1000,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]

Too many iterations to converge

67

How many iterations for this one?

68

Widening

• Introduce a new binary operator to ensure
termination
– A kind of extrapolation

• Enables static analysis to use infinite height
lattices
– Dynamically adapts to given program

• Tricky to design

• Precision less predictable then with finite-
height domains (widening non-monotone)

69

Formal definition

• For all elements d1  d2  d1  d2

• For all ascending chains d0  d1  d2  …
the following sequence eventually stabilizes
– y0 = d0

– yi+1 = yi di+1

• For a monotone function f : DD define
– x0 = 
– xi+1 = xi  f(xi)

• Theorem:
– There exits k such that xk+1 = xk

– xkRed(f) = { d | dD and f(d)  d }

70

Analysis with finite-height lattice

71

A



f#n = lpf(f#) …

f#2 

f#3

f# 

Red(f)

Fix(f)

Analysis with widening

72

A



f#2  f#3

f#2 

f#3

f# 

Red(f)

Fix(f) lpf(f#) 

Widening for Intervals Analysis

•  [c, d] = [c, d]

• [a, b]  [c, d] = [
if a  c
then a
else -,

if b  d
then b
else 

73

Semantic equations with widening

74

• R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2]  [1001,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]

Non monotonicity of widening

• [0,1]  [0,2] = ?

• [0,2]  [0,2] = ?

Non monotonicity of widening

• [0,1]  [0,2] = [0, ]

• [0,2]  [0,2] = [0,2]

Analysis results with widening

78

Did we prove it?

Analysis with narrowing

79

A



f#2  f#3

f#2 

f#3

f# 

Red(f)

Fix(f) lpf(f#) 

Formal definition of narrowing

• Improves the result of widening
• y  x  y  (x y)  x
• For all decreasing chains x0  x1 …

the following sequence is finite
– y0 = x0

– yi+1 = yi xi+1

• For a monotone function f: DD
and xkRed(f) = { d | dD and f(d)  d }
define
– y0 = x
– yi+1 = yi f(yi)

• Theorem:
– There exits k such that yk+1 =yk

– ykRed(f) = { d | dD and f(d)  d }

Narrowing for Interval Analysis

• [a, b]   = [a, b]

• [a, b]  [c, d] = [
if a = -
then c
else a,

if b = 
then d
else b

]

Semantic equations with narrowing

82

• R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3]+[1,1]
R[5] = R[2]#  [1000,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

R[0]

R[2]

R[3] R[4]

R[1]

R[5]

R[6]

Analysis with widening/narrowing

• Two phases
– Phase 1: analyze

with widening until
converging

– Phase 2: use values
to analyze with
narrowing

83

Phase 2:
R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3]+[1,1]
R[5] = R[2]#  [1000,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

Phase 1:
R[0] = 
R[1] = [7,7]
R[2] = R[1]  R[4]
R[2.1] = R[2.1]  R[2]
R[3] = R[2.1]  [-,999]
R[4] = R[3] + [1,1]
R[5] = R[2]  [1001,+]
R[6] = R[5]  [999,+]  R[5]  [1001,+]

Analysis with widening/narrowing

84

Analysis results widening/narrowing

85

Precise invariant

Project

• 1-2 Students in a group
– 3-4: Bigger projects

• Theoretical + Practical

• Your choice of topic
– Contact me in 3 weeks

• Submission – 15/Sep
– Code + Examples

– Document

– 15 minutes presentation

87

Past projects

• JavaScript Dominator Analysis

• Attribute Analysis for JavaScript

• Simple Pointer Analysis for C

• Adding program counters to Past Abstraction
(abstraction of finite state machines.)

• Verification of Asynchronous programs

• Verifying SDNs using TVLA

• Verifying independent accesses to arrays in GO

88

Past projects

• Detecting index out of bound errors in C
programs

• Lattice-Based Semantics for Combinatorial
Models Evolution

• Verifying sorting programs

• Cross-array sorting (array of arrays) – use for
storage systems version management

• Verifying LTL formulae over TVLA structures

• Worst-case memory consumption

89

Past projects

• Automatic loop parallelization via dependency
tracking

• Handling asynchronous calls

Default Project

• Pick a framework

– LLVM (C) : http://llvm.org/

– Soot (Java) : https://sable.github.io/soot/

• Analysis:

– Refined pointer analysis

– Invent numerical domain

https://sable.github.io/soot/

