
Automatic	program	generation	for	
detecting	vulnerabilities	and	errors	

in	compilers	and	interpreters

0368-3500

Nurit Dor
Shir Landau-Feibish
Noam	Rinetzky

Preliminaries
• Students will group in teams of 2-3 students.

• Each group will do one of the projects presented.

Administration
• Workshop meetings will take place only on Thursdays 12-14

o No meetings (with us) during other hours

• Attendance in all meetings is mandatory

• Grading: 100% of grade will be given after final project submission.
• Projects will be graded based on:

• Code correctness and functionality
• Original and innovative ideas
• Level of technical difficulty of solution

Administration
• Workshop staff should be contacted by email.
• Please address all emails to all of the staff:

• Noam Rinetzky - maon@cs.tau.ac.il
• Nurit Dor - nurit.dor@gmail.com
•

• Follow updates on the workshop website:
http://www.cs.tau.ac.il/~maon/teaching/2016-2017/workshop/workshop1617a.html

Tentative Schedule
• Meeting	1,	6/11/2016	(today)

– Project	presentation
• Meeting	2,	27/11/2016

– Each	group	presents	its	project	&	plan
• Meeting	3,	1/1/2017

– Progress	report	– meeting	with	each	group
• Meeting	4,	29/1/2017

– First	phase	submission
• Submission:	13/03/2017
• Presentation:	~19/3/2017

– Each	group	separately

Automatic	program	generation	for	
detecting	vulnerabilities	and	errors	

in	compilers	and	interpreters

Programming	Errors
“As	soon	as	we	started		
programming,	we	found	to		
our	surprise	that	it	wasn’t	as		
easy	to	get	programs	right	as		
we	had	thought.		Debugging		
had	to	be	discovered.	I	can	
remember	the	exact	instant		
when	I	realized	that	a	large		
part	of	my	life	from	then	on		
was	going	to	be	spent	in	finding	
mistakes	in	my	own	programs.”

—Maurice	Wilkes,		
Inventor	of	the	EDSAC,		
1949

Compiler	bugs?

• Most	programmers	treat	compiler	as	a	100%	
correct	program

• Why?
– Never	found	a	bug	in	a	compiler

• Even	if	they	do,	they	don’t	understand	it	and	solve	the	
problem	by	“voodoo	programming”

– A	compiler	is	indeed	rather	thoroughly	tested
• Tens	of	thousands	of	testcases
• Used	daily	by	so	many	users	

Small	Example

int foo (void) {
signed char x = 1;
unsigned char y = 255;
return x > y;

}
• Bug	in	GCC	for	Ubuntu
compiles	this	function	
to	return	1

FUZZERS

What	is	Fuzzing?

• Fuzzing is	a	testing	approach
– Test	cases	generated	by	a	program.
– Software	under	test	in	activated	on	those	
testcases

– Monitored	at	run-time	for	failures

Naïve	Fuzzing

• Miller	et	al		1990	

• Send	“random”	data	to	
application.	
– Long	printable	and	non-printable	

characters	with	and	without	null	
byte

• 25-33%	of	utility	programs		
(emacs,	ftp,…)	in	unix crashed	or	
hanged

Naïve	Fuzzing

• Advantages:	
– Amazingly	simple	

• Disadvantage:	
– inefficient

• Input	often	requires	structures
– random	inputs	are	likely	to	be	rejected

• Inputs	that	would	trigger	a	crash	is	a	very	small	
fraction,	probability	of	getting	lucky	may	be	very	low

• Today's	security	awareness	is	much	higher

Mutation	Based	Fuzzing

• Little	or	no	knowledge	of	the	structure	of	the	
inputs	is	assumed

• Anomalies	are	added	to	existing	valid	inputs
• Anomalies	may	be	completely	random	or	follow	
some	heuristics

• Requires	little	to	no	set	up	time
• Dependent	on	the	inputs	being	modified
• May	fail	for	protocols	with	checksums,	those	
which	depend	on	challenge	response,	etc.

Mutation	Based	Example:	PDF	Fuzzing
• Google	.pdf (lots	of	results)
• Crawl	the	results	and	download	lots	of	PDFs

• Use	a	mutation	fuzzer:
1. Grab	the	PDF	file
2. Mutate	the	file
3. Send	the	file	to	the	PDF	viewer
4. Record	if	it	crashed	(and	the	input	that	crashed	it)

Generation	Based	Fuzzing

• Test	cases	are	generated	from	some	
description	of	the	format:	RFC,	
documentation,	etc.

• Anomalies	are	added	to	each	possible	spot	in	
the	inputs

• Knowledge	of	protocol	should	give	better	
results	than	random	fuzzing

• Can	take	significant	time	to	set	up

Example	Specification	for	ZIP	file

Src:	http://www.flinkd.org/2011/07/fuzzing-with-peach-part-1/

Mutation	vs Generation

Mutation	Based

Easy	to	implement,	no	need	to	
understand	the	input	structure

General	implementation

Effectiveness	is	limited	by	the	initial	
testcases

Coverage	is	usually	not	improved

Generation	based

Can	be	labor	intensive	to	implement	
epically	for	complex	input	(file	formats)

Implementation	for	specific	input

Can	produce	new	testcases

Coverage	is	usally improved

Constraint	Based	Fuzzing

• Mutation	and	generation	based	fuzzing will	
probably	not	reach	the	crash	

void test(char *buf)
{

int n=0;
if(buf[0] == 'b') n++;
if(buf[1] == 'a') n++;
if(buf[2] == 'd') n++;
if(buf[3] == '!') n++;
if(n==4) {

crash();
}

}

Constraint	Based	Fuzzing

CSMITH

Csmith

• From	the	University	of	Utah
• Csmith is	a	tool	that	can	generate	random	C	
programs
– Only	valid	C99	standard	

Random	Generator:
Csmith

gcc -O0 gcc -O2	 clang	-Os …

vote minoritymajority

C	program

results

23

24

25

Why	Csmith	Works
• Unambiguous:	avoid	undefined	or	unspecified	
behaviors	that	create	ambiguous	meanings	of	a	program

Integer	operations
Loops	(with	break/continue)
Conditionals
Function	calls

Const	and	volatile
Structs and	Bitfields
Pointers	and	arrays
Goto

• Expressiveness:	support	most	commonly	used	C	features	

26

Integer	undefined	behavior
Use	without	initialization
Unspecified	evaluation	order		

Use	of	dangling	pointer	
Null	pointer	dereference
OOB	array	access

27

Avoiding	Undefined/unspecified	Behaviors

28

Problem Generation	Time	Solution Run	Time Solution

Integer	undefined	
behaviors

• Constant	
folding/propagation
• Algebraic	simplification	

Safe math	
wrappers

Use	without	
initialization

explicit	initializers

OOB	array access Force	index	within	range Take modulus

Null	pointer	
dereference

Inter-procedural	points-to	
analysis

Use	of	dangling	
pointers

Inter-procedural	points-to
analysis

Unspecified	
evaluation	order

Inter-procedural	effect	
analysis

Code	Generator

29

assign

call

func_2
validate

ok?

Generation	Time	Analyzer

no
*q

…

RHSLHS

Code	Generator

30

assign

call

func_2

Generation	Time	Analyzer

…

RHSLHS

*p

31

*p*p

Code	Generator

update	facts

assign

call

func_2
validate

ok?

yes

Generation	Time	Analyzer

…

RHSLHS

• From	March,	2008	to	present:

• Do	they	matter?
– 25	priority	1	bugs	for	GCC
– 8	of	reported	bugs	were	re-reported	by	others

Compiler Bugs reported	(fixed)

GCC 104	(86)
LLVM 228	(221)
Others (Compcert,	icc,	
armcc,	tcc,	cil,	suncc,	
open64,	etc)

50

Total 382

32

Accounts	for	1%	
total	valid	GCC	
bugs	reported	in	
the	same	period

Accounts	for	
3.5%	total	valid	
LLVM	bugs	

reported	in	the	
same	period

Bug	Dist.	Across	Compiler	Stages

GCC LLVM

Front	end 1 11

Middle end 71 93

Back	end 28 78

Unclassified 4 46

Total 104 228

33

+0.15% +0.05%

+0.26%

Line Function Branch

test	suite

test	suite	+	10,000	random	programs

+0.45%
+0.18%

+0.85%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Line Function Branch
Check-C

Check-C	+	10,000	random	programs

34

Coverage	of	GCC Coverage	of	LLVM/Clang

Common	Compiler	Bug	Pattern

Analysis

Safety	
Check

Transformation

Y
N

if	(condition1	
&&
condition2

)

35

missing	safety	
condition

Compiler	Optimization

Optimization	Bug
void foo (void) {

int x;
for (x = 0; x < 5; x++) {

if (x) continue;
if (x) break;

}
printf ("%d", x);

}

•Bug	in	LLVM	in	
scalar	evolution	analysis	computed
x	is	1	after	the	loop	executed

UNDEFINED	BEHAVIOR

Example

int foo(int a)
{

return (a+1) > a;
}

foo:	movl	$1,	%eax	
ret

Undefined	Behavior

• Executing	an	erroneous	operation
• The	program	may	:

– fail	to	compile
– execute	incorrectly
– crash	
– do	exactly	what	the	programmer	intended

Undefined	Behavior	- challenges

• Programmers	are	not	aware	of	all	undefined	
behavior

• Code	may	be	compiled	for	a	different	
environment	with	a	different	compiler
– Which	undefined	behavior	are	different?

PROJECT	IDEAS

1. Add	features	that	are	not	supported	by	Csmith
– C++	constructs	
– Heap	allocation
– Recursive
– String	Operation	
– Use	of	common	libraries

2. Generate	programs	that	takes	input
– Use	another	fuzzer	(constraint-based)	to	generate	inputs	

to	the	generated	program
3. Generate	programs	with	undefined	behavior

– Automatically	understand	them
– Use	reduce	testcase tools

4. Enhance	Csmith by	incorporating	other	fuzzing
techniques	(mutation,	genetic)

5. Apply	approach	for	different	languages
6. ….Your	idea…

RESOURCES

• Fuzzer	survey
https://fuzzinginfo.files.wordpress.com/2012/05/dsto-tn-1043-pr.pdf

• Csmith
Website:		https://embed.cs.utah.edu/csmith/	

paper:	http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf
• Undefined	behavior

– http://blog.regehr.org/archives/213

