
Symbolic	Execution	Tools
for	Software	Testing

0368-3526

Noam	Rinetzky
Sundays*	0900-1100

Kaplun 324



Preliminaries
• Students will group in teams of 2-3 students.

• Each group will do one of the projects presented.



Administration
• Workshop meetings will take place only on Sundays 09-11

o No classes during other hours

• Attendance in all meetings is mandatory

• Grading: 100% of grade will be given after final project submission.
• Projects will be graded based on:

• Code correctness and functionality
• Original and innovative ideas
• Level of technical difficulty of solution



Administration
• Workshop staff (me) should be contacted by email. 

• Noam Rinetzky - maon@cs.tau.ac.il

• Follow updates on the workshop website:
http://www.cs.tau.ac.il/~maon/teaching/workshop.html



Tentative Schedule
• Meeting	1	29/10/2017	(today)

– Introduction	to	symbolic	execution
– Home	assignment:	Tutorial	1-3	in	http://klee.github.io/tutorials/

• Meeting	2	12/11/2017
– Projects	description
– Project	suggestions

• Meeting	3,	26/11/2017
– Each	group	presents	its	project	&	plan

• Meeting	4,	24/12/2017
– Progress	report		

• Meeting	5,	21/1/2018
– First	phase	submission

• Submission:	4/3/2018
• Presentation:	15/3/2018

– Each	group	separately



Your	Ideas



Suggested	Project	1:	Search

• New	search	heuristics
– Study	existing

• E.g.,	random,	BFS,	DFS,	directed

– Come	up	with	new	ones

• Steering	Symbolic	Execution	to	Less	Traveled	
Paths	[Li	et	al.	OOPSLA’13]



Suggested	Project	2:	EVM

• Smart	contracts	run	on	a	VM
• Most	popular:	EVM	(Ethereum)
• Build	an	SE	engine	for	EVM

• Making	Smart	Contracts	Smarter	[Luu et	al.	
CCS’16]



Suggested	Project	3:	Multisolver

• KLEE	works	with	multiple	solvers
– STP	or	Z3	

• Extend	KLEE	to	work	with	multiple	solvers	
simultaneously
– Competition	mode
– Smart	partitioning	of	work

• metaSMT:	Focus	On	Your	Application	Not	On	
Solver	Integration	[Haedicke et	al.	IJSTTT’17]



Suggested	Project	4:	Foresight

• Search	extends	prefixes
• May	explore	irrelevant	paths

– E.g.,	if	we	look	for	particular	bugs

• Combine	preliminary	static	analysis	to	pre-
prune	paths
– Pointer	analysis	(Finds:	x	and	y	may	never	alias)
– Numerical	analysis	(Finds:	x	>	y)



Suggested	Project	5:	Interactive	SE

• KLEE	explores	paths	automatically
– Search	heuristics

• Add	human	into	the	loop
– Guide	the	exploration
– Guide	the	concretization


