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Abstract. We define and study a new variant of the secretary
problem. Whereas in the classic setting multiple secretaries com-
pete for a single position, we study the case where the secretaries
arrive one at a time and are assigned, in an on-line fashion, to one
of multiple positions. Secretaries are ranked according to talent,
as in the original formulation, and in addition positions are ranked
according to attractiveness. To evaluate an online matching mech-
anism, we use the notion of blocking pairs from stable matching
theory: our goal is to maximize the number of positions (or secre-
taries) that do not take part in a blocking pair. This is compared
with a stable matching in which no blocking pair exists. We con-
sider the case where secretaries arrive randomly, as well as that of
an adversarial arrival order, and provide corresponding upper and
lower bounds.

1. Introduction

The celebrated secretary problem, which first appeared in print in
Martin Gardner’s 1960 Scientific American column [16] (but appar-
ently originated much earlier, see [14]), considers a simple online prob-
lem where multiple applicants interview sequentially for an open po-
sition (say a secretary). The interview of an applicant allows the em-
ployer to assess the relative quality of this applicant with respect to
all those interviewed so far. An irreversible decision whether to hire or
reject an applicant must be made as soon as the applicant’s interview
is over. In particular, the decision is taken without knowing anything
about the quality of future applicants. The problem is then to find a
scheme that will maximize the probability of choosing the best appli-
cant.
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The problem gained considerable popularity and many variants have
been introduced and studied since. Some of the classical extensions
have been (1) to move from an ordinal setting, where applicants are
ranked one compared to the other (a.k.a. the comparison-based model),
to a cardinal setting, where applicants are identified with an absolute
score; (2) to generalize the original uniform arrival order to other dis-
tributions as well as to an adversarial arrival order; (3) to choose an
applicant from the top tier instead of necessarily the best one; and (4)
to choose more than one secretary. For more information, the reader
is referred to Ferguson [14] for an early survey of the history of the
secretary problem and to Dinitiz [10] who gives a survey of relatively
recent results with an emphasis on applications to auction theory.

For the most part, the models and extensions considered through-
out the years maintain the invariant that the hiring challenge involves
a single position or, in some generalizations, several identical posi-
tions.1 However, many practical applications call for the need to per-
form many-to-many matchings, where candidates arrive sequentially
and are matched to a fixed pool of non-identical positions. For exam-
ple, in the labor market it is often the case that multiple applicants
arrive sequentially and are assigned to various existing job openings
within a firm. Likewise, in some dating services, men arrive sequen-
tially and are matched to a fixed pool of women, in transportation
services (e.g., Uber), passengers arrive sequentially (say, getting out of
an airport terminal) and are matched to a pool of drivers, and in a
reviewing process for journals, the manuscripts arrive sequentially and
are assigned to the various members of the editorial board.

In this paper, we introduce a new version of the secretary prob-
lem, where the primary novelty is to consider multiple non-identical
positions. Applicants are matched to one of the positions (or left job-
less) by some central authority, e.g., a human resources department.
As in the original problem, applicants are interviewed sequentially and
their relative rank among applicants interviewed thus far is determined
(namely, we consider an ordinal setting). At the end of the interview,
the applicant is assigned to (at most) one position in an irreversible
manner.

The challenge is to match applicants to positions in an optimal way,
but what is the optimality criterion when non-identical positions are
involved? We augment the standard model by adding a preference
order over the various positions. In other words, positions are not
equally attractive (e.g., the related salaries are different), however any
position is preferred to unemployment. To evaluate an online matching
mechanism, we use the notion of blocking pairs from stable matching
theory ([15, 18]).

1The unique exception we are familiar with is the decentralized model considered
in [8].
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To explain this notion, consider an arbitrary matching. A pair, made
of a position and an applicant, is said to form a blocking pair if they
both prefer each other over those they are matched with. We would
like to maximize the number of positions (or applicants) that do not
take part in a blocking pair. This is compared against an optimal off-
line stable matching that admits no blocking pairs.2 An alternative
objective is to maximize the probability of producing a stable match-
ing; this, however, is virtually impossible as one can easily show that
when the applicants’ arrival order is chosen uniformly at random, the
probability to generate a stable matching decreases exponentially with
the number of positions/applicants.

We consider three variants of the problem inspired by potential un-
derlying business models of the central matching agency: in some cases,
it is the employer that pays (this is indeed typical to the labor mar-
ket); in other cases, it is the sequentially arriving applicants that pay
(the common practice in some professional companionship services);3

and finally, in other cases the matching agency is interested in satisfy-
ing both sides of the market. We study scenarios with either random
or adversarial applicant arrival order and provide corresponding upper
and lower bounds.

1.1. The Model. We now turn to a formal exposition of the abstract
model investigated in this paper. Throughout, we consider finite totally
ordered girl set G (corresponding to the positions or the employers
behind them) and boy set B (corresponding to the applicants) with
� denoting the order relation referred to hereafter as a preference.
While the girls and their total order are known to the decision maker
(denoted by DM) in advance, the boys arrive in an online fashion so
that boy π(t) ∈ B arrives at time t for t = 1, . . . , |B|, where π is an
(initially hidden) permutation over B. Unless stated otherwise, it is
assumed that the number |B| of boys is known to DM in advance.

Upon arrival of boy b = π(t), its relative rank among boys π(1), . . . , π(t)
is reported to DM. In response, DM matches b to some girl in G that
was not matched beforehand or leaves b unmatched; this (un)matching
operation is irrevocable. We treat an unmatched individual as being
matched to the designated symbol ⊥ and extend the definition of the
preference � so that x � ⊥ for every individual x ∈ G ∪B.

Consider the situation after all boys have arrived. Girl g and boy b
form a blocking pair if g � g(b) and b � b(g), where g(b) (resp., b(g))
denotes the girl (resp., boy) matched to boy b (resp., girl g) or ⊥ if b
(resp., g) was left unmatched. Girl g (resp., boy b) is said to be satisfied

2The original formulation of the secretary problem is equivalent to finding
the unique stable matching, assuming that all secretaries prefer employment to
unemployment.

3Such services for matching professional companions for the elderly are popular
in some countries.
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if she (resp., he) is matched and does not participate in a blocking pair.
A (g, b) matched pair is said to be satisfied if both g and b are satisfied.
The objective of DM is to maximize one of the following three criteria:
Cg : the number of satisfied girls;

Cb : the number of satisfied boys; or
Cp : the number of satisfied matched pairs.

Since a stable matching induces n = min{|G|, |B|} stable pairs, DM aims
for algorithms that guarantee to satisfy (in expectation) ρn girls (Cg),
boys (Cb), or matched pairs (Cp) for as large as possible approximation
ratio ρ, typically expressed as ρ = ρ(n).

The aforementioned setting can be generalized by augmenting the
girls (resp., boys) with a weight function w : G → R>0 (resp., w :
B → R>0). In that case, the objective of DM is to maximize one of the
following two criteria:
Cw

g : the total weight of satisfied girls; or

Cw
b : the total weight of satisfied boys.

(The weighted version of satisfying matched pairs is not treated in this
paper.) Taking HG ⊆ G (resp., HB ⊆ B) to be the subset consisting of
the n = min{|G|, |B|} heaviest (in terms of w, breaking ties arbitrar-
ily) girls (resp., boys), we observe that the total weight of satisfied girls
(resp., boys) in an optimal (stable) matching is w(HG) (resp., w(HB)).4

Therefore, in the weighted setting, DM aims for algorithms that guar-
antee to satisfy girls (resp., boys) whose total weight (in expectation)
is ρw(HG) (resp., ρw(HB)) for as large as possible approximation ratio
ρ, typically expressed as ρ = ρ(n).

It will be convenient to assume that the boy arrival permutation
π is chosen according to some probability distribution Π. When not
stated otherwise, Π is assumed to be uniform, but we also consider the
case where Π is designed by an oblivious adversary (this is restricted
to Section 4). The guarantee of DM’s algorithmic strategy is taken in
expectation over the distribution Π and possibly also over the random
coin tosses of DM (if it is randomized). To avoid confusion, we empha-
size that the order relation � and weights w (in the weighted version)
are determined before the random choice of π is performed (say, by a
designated nature player).

1.2. Our Contribution. Our contribution is both conceptual and
technical. Conceptually, we consider the problem of a central authority
that assigns applicants to one of many non-identical positions. Allow-
ing a variety of positions introduces the challenge of identifying the
criterion by which one should measure the quality of a match. We pro-
pose some formal criteria, inspired by the concept of stable marriage,
to measure the quality of an online assignment.

4We follow the convention that the weight of a set is the total weight of the set’s
elements.



STABLE SECRETARIES 5

optimization criterion
Cg Cb Cp Cw

g Cw
b

arrival
uniform random

Ω(1) Ω(1) O(1/
√
n) Ω(1/ log n) Ω(1)

[3.1] [3.1] [3.3] [5.1] [5.2]

adversarial
O(1/

√
n) O(1/

√
n) 1

[4.3] [4.3] [4.4]

Table 1. Our main technical results. Each cell specifies
a bound on the achievable approximation ratio ρ = ρ(n)
for the given optimization criterion (columns) and arrival
order distribution (rows). The corresponding theorem
numbers are specified in brackets.

Beyond the conceptual contribution suggested above, we provide up-
per and lower bounds on the performance of online assignment algo-
rithms (refer to Table 1 for a summary). Our main results concern
the unweighted case: when the arrival order is random (distributed
uniformly), one can satisfy Ω(n) positions/applicants (corresponding
to girls/boys, Theorem 3.1), however, no (randomized) algorithm can
guarantee more than O(

√
n) satisfied matched pairs (Theorem 3.3);

on the other hand, if the arrival order is adversarial, then any (ran-
domized) algorithm can satisfy at most O(

√
n) positions/applicants

(Theorem 4.3) and at most 1 matched pair (Theorem 4.4). We further
consider the case of weighted candidates and positions. Here, we show
that the total weight of satisfied positions in an optimal (stable) match-
ing can be approximated within an Ω(1/ log n) ratio (Theorem 5.1) and
the total weight of satisfied applicants in an optimal (stable) matching
can be approximated within an Ω(1) ratio (Theorem 5.2).

1.3. Related Work. In contrast to our optimization criteria that aim
at maximizing the number of satisfied positions (or applicants or matched
pairs), i.e., positions that do not participate in a blocking pair, some
previous papers [23, 1, 12, 27] follow the complement approach of min-
imizing the number of blocking pairs (which can be quadratic). Notice
that these two criteria are very different as a single agent may con-
tribute to multiple blocking pairs. We believe that our approach is
more natural when looking at our problems from the perspective of
generalizing the classic secretary problem: instead of aiming at satis-
fying a single position (the classic secretary problem), we now try to
satisfy as many positions as possible out of n non-identical positions.

Recall that most of our technical focus is dedicated to the balanced
scenario where |G| = |B|. Interestingly, in the static model the bal-
anced scenario is a knife-edge case for some phenomena such as multi-
plicity of stable outcomes (e.g., [4]). This is in contrast to our online
setting, where unbalanced scenarios can be reduced to the balanced
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one, possibly with a constant loss in the guaranteed approximation
ratio.

Optimization criterion Cp can be compared to the one considered
by [19]. In [19], a subset of the participants can be ignored (i.e., not
matched) and the matching is required to be stable with respect to the
matched participants. The objective is then to minimize the number
of omitted participants.

The economic literature on dynamic matching often focuses on the
tension between market thickness and participants’ waiting time.5 The
idea is that participants join the market and can be matched thereafter
at any given point of time. The longer one waits with the matching,
the thicker the market becomes and so it may be possible to find a
better match. On the other hand, participants may lose utility due
to the waiting time (e.g., health deterioration in the context of the
kidney matching market). Some examples that study this tension are
[6] and [3] (see also [11] for a related online matching formulation).
In contrast with our work where the number of agents is finite and
hence a hindsight benchmark for comparing the outcome of an online
mechanism is natural, these models consider an infinite stream of agents
whose preferences are stochastic, generated by a stationary source. The
objective function in this case is not to minimize some criterion in
hindsight, but rather to maximize the total expected utility, taking
into account both the utility from each match and the agents’ waiting
times.

The online nature of the maximization problems studied in the cur-
rent paper is inspired by the online bipartite matching model of Karp,
Vazirani, and Vazirani [20], where the nodes in one side of a bipartite
graph are known from the beginning and the nodes in the other side
arrive in an online fashion together with their incident edges. This
model became very popular with quite a few papers aiming at maxi-
mizing the size of the matching [20, 7, 17, 9, 25, 26] or the weight of
the matched nodes on the static side [2, 9, 26]. [2] also show that in the
general case, no online algorithm can guarantee a non-trivial competi-
tive ratio on the weight of the edges included in the output matching
(the weighted nodes setting is a special case of weighted edges, where
all edges incident on the same static node admit the same weight). In
contrast, [22] prove that under a random arrival order, this problem
can be approximated within a constant factor. Notice that the graph
topology and the edge weights (if the edges are weighted) implicitly
induce a set of cardinal preferences, where a heavier edge is preferable
to a lighter one (the weighted case) and any edge is preferable to no
edge at all. However, the preferences that can be defined this way are

5Not to be confused with the algorithmic literature on the maximum matching
problem in dynamic graphs.
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inherently symmetric and as such, form a strict subset of the (ordinal)
preferences considered in the current paper.

A different line of work studied variants of the secretary problem
where the algorithm designer should select any subset of the arriv-
ing candidates subject to some combinatorial constraints. This line of
research has received significant attention recently, in part due to ap-
plications to auction theory and mechanism design. The most famous
variant is the matroid secretary problem, where the chosen subset forms
an independent set in a matroid [5, 24, 13], but recent work considered
more general combinatorial constraints as well [28]. Secretary settings
with non-uniform random arrival orders have been investigated in [21].

2. General Transformations

We begin with “black-box” lemmas that help us develop a better
understanding of the different optimization criteria. To that end, we
say that the matching algorithm is conservative if it is guaranteed to
output a (size-wise) maximum matching. Alternatively, a conservative
algorithm may decide to leave a boy unmatched only if the number of
pending boys is at least as large as the number of yet unmatched girls.

Lemma 2.1. Optimization criteria Cw
b and Cp admit optimal conser-

vative approximation algorithms. This holds for every arrival order
distribution.

Proof. We establish the assertion for optimization criterion Cw
b ; the

proof for optimization criterion Cp is based on the same line of ar-
guments. Let b1, . . . , bn be the boys indexed in order of arrival. For
1 ≤ i ≤ n, let Bi = {bi, bi+1, . . . , bn} and let Gi be the set of girls that
are unmatched upon arrival of boy bi. Matching boy bi to girl g ∈ G
is said to be a weak matching action if |Gi| > |Bi| and g is among the
|Gi| − |Bi| weakest available girls.6

We first argue that optimization criterion Cw
b admits an optimal

algorithm that never performs weak matching actions. To that end,
consider some algorithm Alg that performs a weak matching action
by matching boy bi to girl g and let S ⊆ Gi be the set of the |Bi|
strongest unmatched girls upon arrival of bi. By definition, at least
one of the girls in gs ∈ S is unmatched in the final outcome of Alg,
hence all boys matched to girls g′ ≺ gs, including bi, are unsatisfied.
Therefore, the algorithm that mimics Alg at all times other than i and
leaves bi unmatched at time i satisfies the same set of boys that Alg

does. By repeating this argument over all such times i, we come up
with an algorithm that does not perform any weak matching actions
and satisfies the same set of boys as Alg.

6Throughout, the terms weak and strong refer to the preference order � in the
natural manner.
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So, let Alg be an optimal Cw
b -algorithm that never performs weak

matching actions. Consider some time i such that |Bi| ≤ |Gi| and let
g1 � g2 � · · · � gn−i+1 be the |Bi| strongest unmatched girls upon
arrival of boy bi. Suppose that Alg leaves bi unmatched. Since Alg

never performs weak matching actions, it follows that girl gn−i+1 will
remain unmatched under Alg. Therefore, an algorithm that mimics
Alg at all times other than i and matches bi to gn−i+1 is guaranteed to
satisfy all the boys that Alg satisfies. By repeating this argument over
all such times i, we obtain an optimal conservative algorithm. �

Conjecture 2.2. Optimization criterion Cg does not admit an optimal
conservative approximation algorithm under a random arrival order for
any sufficiently large n = |B| = |G|.

Next, we turn our attention to balanced instances, where |G| = |B|
and prove that these instances are as hard (up to a constant factor)
as the general case for optimization criteria Cg and Cw

b . Moreover,
in balanced instances, optimization criteria Cg and Cb are, in fact,
equivalent for conservative algorithms despite the inherent asymmetry
between girls and boys in our setting.

Lemma 2.3. There exist universal constants α, β > 0 such that an al-
gorithm that guarantees to approximate optimization criteria Cg within
ratio ρ = ρ(n) in an instance with |G| = |B| = n implies an algorithm
that guarantees to approximate optimization criteria Cg within ratio
αρ(βn) in an instance with min{|G|, |B|} = n.

Lemma 2.4. There exist universal constants α, β > 0 such that an al-
gorithm that guarantees to approximate optimization criteria Cw

b within
ratio ρ = ρ(n) in an instance with |G| = |B| = n implies an algorithm
that guarantees to approximate optimization criteria Cw

b within ratio
αρ(βn) in an instance with min{|G|, |B|} = n.

The proofs of Lemmas 2.3 and 2.4 rely on the following observation
(whose proof is deferred to Appendix A)

Observation 2.5. There exists a constant c > 0 such that for every
sufficiently large integer k and for every integer c ≤ ` ≤ k/c, if π be a
(uniform) random permutation over [k] and R = min{π(1), . . . , π(dk/`e)},
then

Pr(`/5 < R ≤ `) > 1/13 .

Proof of Lemma 2.3. If |G| = m > n = |B|, then we simply ignore any
subset of m−n girls (leaving them unmatched) and run the algorithm
promised by the assumption on the remaining n girls and all boys in
B.

The more interesting case is when |G| = n < m = |B|. Let c be
the constant from Observation 2.5. If n < c, then it suffices to satisfy
a single girl which can be fulfilled by applying the classic secretary



STABLE SECRETARIES 9

algorithm to the instance consisting of an arbitrary girl g ∈ G and all
boys in B, thus satisfying g with probability that converges to 1/e as
m → ∞; assume hereafter that n ≥ c. We can further assume that
n ≤ m/c as otherwise, we simply ignore an arbitrary subset of n−m/c
girls (leaving them unmatched).

Refer to the first dm/ne boys as the filter boys and leave them un-
matched. Let bf be the most preferred filter boy and define the ran-
dom set X = {b ∈ B | b � bf}. Observation 2.5 ensures that the
event n/5 ≤ |X| < n occurs with probability at least 1/13; condition
hereafter on this event.

Refer to the n/5 least preferred girls in G as the target girls. We run
the algorithm promised by the assumption on the target girls and the
first n/5 boys to arrive from X, matching any remaining boy from X
to an arbitrary non-target girl and ignoring all boys not in X (leaving
them unmatched). The assumption ensures that a ρ(n/5) fraction of
the target girls will be satisfied. �

Proof of Lemma 2.4. If |G| = m > n = |B|, then one can simply ignore
the m− n least preferred girls (leaving them unmatched) and run the
algorithm promised by the assumption on the remaining n girls in G
and all boys in B.

The more interesting case is when |G| = n < m = |B|. Let c be the
constant promised by Observation 2.5 and fix ` = 5n. If ` < c, then
it suffices to satisfy the heaviest boy which can be trivially fulfilled by
matching him to the most preferred girl; assume hereafter that ` ≥ c.
We can further assume that ` ≤ m/c as otherwise, we simply ignore the
last arriving m− ` < m(1− 1/c) boys (leaving them unmatched), thus
losing an expected weight of w(B)/c; employing Markov’s inequality,
we can condition on the lost weight to be sufficiently close to it.

Our proof requires an assumption on the weights as well: We assume
that w(b) 6= w(b′) for every two boys b, b′ ∈ B; this is without loss of
generality since one can break ties randomly in an online fashion.

Refer to the first dm/`e boys as the filter boys and leave them un-
matched. Let bf be the heaviest filter boy and define the random set
X = {b ∈ B | w(b) > w(bf )}. Observation 2.5 ensures that the event
n = `/5 ≤ |X| < ` = 5n occurs with probability at least 1/13 (recall
the assumption that the boys’ weights are distinct); condition hereafter
on this event. This means, in particular, that w(X) ≥ w(HB).

Let Y ⊆ B be the subset consisting of the first n boys to arrive
from X. We run the algorithm promised by the assumption on all
girls in G and the boys in Y , ignoring all remaining boys (leaving
them unmatched). The assertion follows since the random arrival order
ensures that in expectation, w(Y ) ≥ w(X)/5; employing Markov’s
inequality, we can condition on w(Y ) being sufficiently close to it. �
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Lemma 2.6. There exists a conservative algorithm that approximates
optimization criterion Cg within ratio ρ = ρ(n) in an instance with
|G| = |B| = n if and only if there exists a conservative algorithm
that approximates optimization criterion Cb within ratio ρ = ρ(n) in
an instance with |G| = |B| = n. This holds for every arrival order
distribution.

Proof. Consider some instance that consists of girl set G and boy set
B. We construct its transposed instance by setting the girl set Ḡ =
{ḡ | g ∈ G}, boy set B̄ = {b̄ | b ∈ B}, and define the preferences over
Ḡ and B̄ so that ḡ1 � ḡ2 if and only if g1 ≺ g2 and b̄1 � b̄2 if and
only if b1 ≺ b2. Given some perfect matching M between G and B,
construct its transposed matching by setting M̄ = {(ḡ, b̄) | (g, b) ∈M}.
For an individual x ∈ G ∪B, let M(x) denote the individual to which
x is matched under M ; likewise, for an individual x̄ ∈ Ḡ∪ B̄, let M̄(x̄)
denote the individual to which x̄ is matched under M̄ .

We argue that boy b ∈ B is satisfied under M if and only if girl
M̄(b̄) ∈ Ḡ is satisfied under M̄ . The assertion follows since the trans-
posed instance can be constructed in an online fashion and since the
transposed instance of the transposed instance is the original instance.
Indeed,

b is satisfied under M

⇐⇒ M(g) � b ∀g �M(b)

⇐⇒ M̄(ḡ) ≺ b̄ ∀ḡ ≺ M̄(b̄)

⇐⇒ M̄(b̄) is satisfied under M̄ ,

where the first and third transitions follow directly from the definition
of a satisfied individual and the second transition follows from the
construction of the transposed instance and matching. �

3. Random Arrival Order

3.1. Maximizing the Number of Satisfied Individuals.

Theorem 3.1. Optimization criteria Cg and Cb (maximizing the num-
ber of satisfied girls and boys) can be approximated within a (positive)
constant ratio.

Theorem 3.1 is established by combining the following lemma with
Lemmas 2.3, 2.4, and 2.6.

Lemma 3.2. For every ε > 0, there exists n0 ∈ N such that for any
n ≥ n0, DM has a conservative strategy that with probability at least 1−ε,
satisfies at least (1/5− ε)n boys in any instance with |G| = |B| = n.

Proof. Fix 0 < γ < 1/5 and n ∈ N. We describe a probabilistic
algorithm for DM. We then claim that the probability that there are at
least γn satisfied boys converges to 1 as n goes to infinity. Obviously,
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there is a deterministic algorithm (in the support of our algorithm)
that ensures at least the same guarantee. Figure 1 illustrates a typical
output of the algorithm.

Set δ = 1/5−γ and a = 2γ+δ. Let X = (R,W, Y ) be a multinomial
random variable with parameters (a, a, 1 − 2a;n). Namely, X can be
realized as follows: take x1, . . . , xn i.i.d. random variables taking val-
ues in {red,white, yellow} with probabilities Pr(x1 = red) = Pr(x1 =
white) = a and Pr(x1 = yellow) = 1 − 2a; let R = |{i : xi = red}|,
W = |{i : xi = white}|, and Y = |{i : xi = yellow}|. Each realization
of X prescribes a deterministic algorithm parameterized by (R,W, Y ).

We call the first R boys to arrive “red” boys and index them in
decreasing order of preference b1 � b2 � · · · � bR. The girls are
indexed in decreasing order of preference, g1 � g2 · · · � gn. The red
boys are matched with the least preferred girls gn, . . . , gn−R+1 in an
arbitrary order (say, in order of their arrival).

Each one of the remaining boys x is associated a number rank(x) ∈
{0, . . . , R} according to how he compares with the red boys,

rank(x) =


0 if x � b1,

i if bi � x � bi+1,

R if bR � x.

We call the boys arriving from time R + 1 until R + W “white.”
Let r = d1

4
δne. We try to match as many white boys as possible

with the R − r most preferred girls while preserving the preference
order. In order to be able to do so we need to assume that the R − r
most preferred girls are unmatched yet. Therefore, if 2R − r > n the
algorithm reports Catastrophe of Type I and halts.

When a white boy x arrives we match him either with grank(x)−r if
rank(x) > r and grank(x)−r is unmatched yet, or with the least preferred
unmatched girl gi. In the latter case, if i ≤ R−r the algorithm reports
Catastrophe of Type II and halts.

We call the boys arriving after time R +W “yellow” boys. When a
yellow boy x arrives we match him with the most preferred unmatched
girl gi subject to i ≥ rank(x)− r. I.e., i = min{j ∈ [n]\ [rank(x)− r−
1] : gj is unmatched yet}. If that set is empty, the algorithm reports
Catastrophe of Type III and halts.

We now turn to analyze the number of satisfied boys. The idea is
to estimate the number of white boys x who are matched according to
their rank to grank(x)−r, and to show that these boys are all satisfied.

Let R′ = min{R,
⌈
(a− 1

4
δ)n
⌉
} and

R′′ = |[R′] \ {rank(x) : x is a white boy}| .

Intuitively, R′′ approximates the size of the complement of the image
of the mapping x 7→ rank(x), where x ranges over the white boys.
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Clearly, R′′ bounds from above the number of unmatched girls among
the R− r most preferred girls at time R +W .

Consider the following (bad) events:

E1 = {Catastrophe of Type I reported},
E2 = {Catastrophe of Type II reported},
E3 = {Catastrophe of Type III reported},
E4 = {R < (a− 1

4
δ)n},

E5 = {R′′ > 1
2
an}.

We will soon show that for all i = 1, ..., 5, Pr(Ei) → 0, as n → ∞.
We now show that given that none of the five bad events occurred,
the number of satisfied boys is at least γn. Given that E1 and E2

do not occur, the boys matched with girls in {g1, . . . , gR−r} until time
R+W are exactly all the white boys x whose match is grank(x)−r. Given
that E3 does not occur, these boys end up being satisfied (when the
algorithm terminates). Indeed, if a white boy of rank i is matched
with gi−r and j < i − r, then gj is matched with either a white or a
yellow boy. In the former case, gj is matched with a (white) boy of
rank j + r < i. In the latter case, gj is matched with a yellow boy
whose rank is at most j + r.

We show that the number of these boys

W ′ = |([R] \ [r]) ∩ {rank(x) : x is a white boy}|

is at least γn. Indeed, given that none of events E4 or E5 occurred,
since W ′ ≥ R′ − r −R′′,

1

n
W ′ ≥ (a− 1

4
δ)− 1

4
δ − 1

2
a = γ.

It remains to verify that for all i = 1, ..., 5, Pr(Ei) → 0, as n → ∞.
By the weak law of large numbers, 1

n
R → a in probability, readily

implying that Pr(E1) and Pr(E4) vanish as n grows.
The following observation will be useful: let x1 be the color of the

most preferred boy, x2 the color of the second most preferred boy,
and so on until xn. The random variables x1, . . . , xn are i.i.d. with
Pr(xi = red) = Pr(xi = white) = a, and Pr(xi = yellow) = 1 − 2a.
For the sake of argumentation we extend x1, x2, . . . to be an infinite
sequence of i.i.d. random variables.

Let t1 < t2 < · · · be the occurrences of “red,” namely, {ti}i∈N = {j :
xj = red}. Let Ii be the indicator of the event {xj 6= white,∀ ti < j <
ti+1}. Clearly,

R′′ =
R′∑
i=1

Ii ≤
∑

i≤(a−1
4
δ)n

Ii.
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Since I1, I2, . . . are i.i.d. Bernoulli(1
2
, 1
2
), by the weak law of large num-

bers,

lim
n→∞

Pr(
∑

i≤(a−1
4
δ)n

Ii >
1
2
an) = 0.

Therefore, Pr(E5) vanishes as n grows.
We show that Pr(E2) vanishes by showing that Pr(E2 \E5) vanishes.

Suppose we modified the algorithm so that when a Catastrophe of Type
II occurs the algorithm skips the current boy (leaving him unmatched)
and continues to the next boy. Consider the situation at time R + W
in the event E2 \ E5. The girls {gi}nj=R−r+1 are all matched. Among

the other girls there are at most R′′+ |R− (a− 1
4
δ)n| unmatched girls.

Therefore,

Y = 1−R−W < “#unmatched boys”

= “#unmatched girls”

≤ 1
2
an+ |R− (a− 1

4
δ)n|,

where the last inequality holds since we are in the case that event E5

has not occurred. By the weak law of large numbers, 1
n
R → a and

1
n
Y → 1 − 2a in probability. Since 1 − 2a = 1

2
a + 21

2
δ > 1

2
a + 1

4
δ, it

follows that Pr(E2 \ E5)→ 0, as n→∞.
It remains to show that Pr(E3) vanishes. To this end define Yi =
|{ti < j < ti+1 : xj = yellow}|, i.e., the number of yellow boys between
the ith and (i+ 1)th red boys. The distribution of Yi + 1 is geometric

with success probability a/(1 − a), namely, Pr(Yi = k) =
(
1−2a
1−a

)k a
1−a

(k = 0, 1, . . .); hence E[Yi] = (1 − a)/a − 1 > 1
2
. Consider the i.i.d.

random variables Zi = Yi − Ii. By the strong law of large numbers
1
n

∑n
i=1 Zi → E[Z1] > 0, almost surely. It follows that

lim
n→∞

Pr(∃ k ≥ 1
4
δn s.t.

k∑
i=1

Zi ≤ 0) = 0.

We show that E3 ⊂ {∃ k ≥ 1
4
δn s.t.

∑k
i=1 Zi ≤ 0}. Suppose that the

algorithm reports Catastrophe of Type III upon the arrival of a yellow
boy x at time t. Let k = max{i+ r : gi is unmatched at time t}. Since
it is a Catastrophe of Type III, we have k < rank(x). The girls gi,
i = k − r + 1, . . . , n, are all matched with boys who are either red or
white, or have rank at least k+1. To see this, consider any such gi who
is matched with some yellow boy y. If rank(y) < i+r, then at the time
y arrived, all the girls gj, j = rank(y)− r, . . . , i− 1, were matched;
therefore, at the present time, all the girls gj, j = rank(y) − r, . . . , n,
are matched; therefore k < rank(y). Since the number of unmatched
boys is equal to the number of unmatched girls at the time just before
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Figure 1. A typical matching in the proof of
Lemma 3.2. The vertical lines represent the boys. The
first boy on the right is matched with the most preferred
girl g1, the second boy with g2, the third with g3, and
so on. The lengths of the lines represents the quality of
the corresponding boys. The shorter the line the more
preferred the boy is. A line corresponds to a satisfied
boy if there are no longer lines to its right. The white
boys on the R − r right segment are all satisfied. There
are roughly 1/5n such boys.

the catastrophe, we have

k∑
i=1

Ii ≥
k∑
i=r

Ii

= “#girls who are either unmatched or matched to yellow boys of rank at most k”

= “#yellow boys who are either unmatched or have rank at most k”

> “#yellow boys who have rank at most k”

≥
k∑
i=1

Yi.

It follows that
∑k

i=1 Zi < 0, and the proof is concluded since k > r ≥
1
4
δn. �

3.2. Maximizing the Number of Satisfied Matched Pairs.

Theorem 3.3. Optimization criterion Cp cannot be approximated within
ratio better than O(1/

√
n) even in balanced instances with |G| = |B| =

n.

Proof. We establish the assertion for conservative algorithms; the proof
for general algorithms follows by Lemma 2.1. Consider a two stage
auxiliary game in which DM is granted more power than in the actual
game. We assume, for simplicity, that n is even. Let R be a random
set of n/2 boys. Let us call the boys in R “red” and the remaining
boys “white”. In the first stage the red boys arrive (along with their
preference order), all at once, and DM has to match them with n/2 girls.
In the second stage, the white boys arrive (along with their preference
order), at all once, and DM has to match them with the remaining n/2
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girls. The objective is to maximize the expected number of satisfied
pairs.

Denote the value of the auxiliary game a(n). Since any strategy of
the original game can be employed in the auxiliary game, the value
of the original game is bounded from above by a(n). We show that

a(n) ≤
√
nπ/2 + o(

√
n).

We restrict attention to a subset of the strategies of the auxiliary
game. A simple strategy in the auxiliary game is a strategy of the
following form: (i) choose a set of n/2 girls A; (ii) match the red boys
with A in order of preference; (iii) match the white boys with the
remaining girls in order of preference.

We show that any strategy of the auxiliary game is weakly dominated
by a simple strategy. Take any pair of boys b � b′ and any pair of girls
g � g′. Suppose there is a positive probability to the event that b
and b′ have the same color, and DM matches b with g′ and b′ with g.
Modify DM’s strategy, such that in the above event, DM matches b with
g and b′ with g′. By applying this modification the number of satisfied
pairs cannot decrease. Indeed, any matched pair that involves a girl
who is between g and g′ in order of preference is already unsatisfied
before the modification, and any other matched pair is unaffected by
the modification. Repeatedly applying this modification, for any b, b′,
g, and g′, yields a weakly dominating simple strategy.

Order the boys and the girls in order of preference b1 � b2 · · · � bn
and g1 � g2 · · · � gn. Since there is no advantage in randomizing, DM
has an optimal simple strategy in which she chooses a fixed A ⊂ [n],
matches the red boys with the A-indexed girls and the white boys with
the remaining girls.

We estimate the number of satisfied pairs. Let m : [n] → [n], a
matching from boys to girls, be the output of DM’s strategy. With
tolerable abuse of notation, we also use m(S) to denote the set of girls
matched to boys in S. By definition, a pair (gi, bj) (m(j) = i) is
satisfied if and only if

m([j − 1]) ⊆ [i− 1], (better boys mate better girls)

m−1([i− 1]) ⊆ [j − 1]. (better girls mate better boys)

Since m is injective, the above implies that

m(i) = i,

m([i− 1]) = [i− 1],

m([n] \ [i]) = [n] \ [i].

Let R ⊂ [n] be the indexes of the red boys. The set of girls who are
matched with R is predetermined m(R) = A. Therefore, in order for
a girl gi to take part in a satisfied pair it is necessary (and sufficient)
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that the following event Ei occurs

|R ∩ [i− 1]| = |A ∩ [i− 1]|,
|R \ [i]| = |A \ [i]|.

By counting the values of R that result in Ei,

Pr(Ei) =

(
i−1

|A∩[i−1]|

)(
n−i
|A\[i]|

)(
n
n/2

) ≤

(
i−1

d(i−1)/2e

)(
n−i

d(n−i)/2e

)(
n
n/2

) .

Thus,

a(n) ≤
n∑
i=1

(
i−1

d(i−1)/2e

)(
n−i

d(n−i)/2e

)(
n
n/2

) .

By Stirling’s approximation,

a(n) .
n−1∑
i=2

1√
2π

√
n√

(i− 1)(n− i)
.
√
n

∫ 1

0

dx√
2πx(1− x)

=
√
nπ/2.

�

On the positive side, using similar ideas to the ones applied in the
original secretary problem, one can guarantee an expected number of
satisfied pairs of 2

e
−ε (the proof of the following observation is deferred

to Appendix A).

Observation 3.4. For every ε > 0, there is n0 ∈ N such that for every
n ≥ n0, DM can guarantee an expected number of satisfied pairs of 2

e
− ε

in any balanced instance with |G| = |B| = n.

4. Adversarial Arrival Order

The instances considered in this section are balanced (|G| = |B| = n)
with an adversarial arrival order. In every matching there is at least one
satisfied girl (resp., boy); indeed, the girl (resp., boy) that is matched
to the most preferred boy (resp., girl) is clearly satisfied. The first
observation of this section states that a deterministic DM cannot do any
better than satisfying this single individual.

Observation 4.1. There is no deterministic DM that satisfies more
than a single girl in balanced instances with an adversarial arrival or-
der.

Proof. Let t∗ denote the first time at which DM matches boy π(t∗) to the
least preferred girl or leaves a boy unmatched. The adversary, knowing
this in advance, provides a sequence of boys, so that π(t + 1) � π(t)
for every t < t∗, and π(t∗) � π(t) for every t > t∗ (with an arbitrary
order between them). Since π(t∗) is the strongest boy, all girls (with
the exception of the one matched with π(t∗), if he is matched) form a
blocking pair with him, hence the result. �
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Corollary 4.2. There is no deterministic DM that satisfies more than
a single boy in balanced instances with an adversarial arrival order.

Proof. Follows directly from Lemmas 2.1 and 2.6. �

We now turn our attention to a randomized DM, proving that the
situation is still much worse than the one in instances with uniform
random arrival order.

Theorem 4.3. Under adversarial arrival order, optimization criteria
Cg and Cb cannot be approximated within ratio better than O(1/

√
n)

even in balanced instances with |G| = |B| = n.

Theorem 4.4. Under adversarial arrival order, optimization criterion
Cp cannot be approximated within ratio better than 1/n even in balanced
instances with |G| = |B| = n.

The proofs of Theorems 4.3 and 4.4 are based on (the trivial direc-
tion of) Yao’s minimax principle. The former is established by merg-
ing Lemma 4.5 with Lemmas 2.1 and 2.6 and the latter follows from
Lemma 4.6 (whose proof is deferred to Appendix A).

Lemma 4.5. There exists a distribution D over the instances, such
that no deterministic DM can satisfy more than

√
2n girls in expectation

when provided with a D-random instance.

Lemma 4.6. There exists a distribution D over the instances, such
that no deterministic DM can satisfy more than 1 pair in expectation
when provided with a D-random instance.

The proofs of Lemmas 4.5 and 4.6 rely on a similar construction. A
sequence of probabilities p2, . . . , pn ∈ [0, 1] defines a distribution over
permutations of the boys D = D(p2, . . . , pn) as follows: the first boy
π(1) is either the most preferred boy, with probability pn, or the least
preferred boy, with probability 1−pn. Any subsequent boy π(k) (k < n)
is either the most preferred boy among the remaining boys {π(k), π(k+
1), . . . , π(n)}, with probability pn+1−k, or the least preferred boy among
the remaining boys, with probability 1− pn+1−k. The rank of the last
boy π(n) is already determined from the specification of the previous
boys.

A key feature that makes D hard to play against is that DM’s infor-
mation at time k, the relative order on {π(1), . . . , π(k)}, is independent
of the future, the relative order on {π(k), . . . , π(n)}. That feature also
simplifies the performance analysis, since we can refer to the expected
number of satisfied boys/pairs among the last n− k boys regardless of
the assignment of the first k boys.

Proof of Lemma 4.5. We use the distribution D = D(p2, . . . , pn), while
specifying p1, . . . , pn recursively. Suppose p2, . . . , pk are already speci-
fied. Let vk be the expected number of satisfied boys under DM’s best
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response to D(p2, . . . , pk). Clearly, v1 = 1. Set

pk+1 =
1

1 + vk
.

We show that

(1) vk+1 ≤ vk +
1

1 + vk
,

and deduce that vn <
√

2n.
Assuming Inequality (1) we deduce that 1 + vk <

√
2k +

√
2/k,

∀k ∈ N. Define u(x) =
√

2x+
√

2/x. We show that

(2) u(x+ 1) > u(x) +
1

u(x)
, ∀x ≥ 1.

By Lagrange’s mean value theorem u(x + 1) − u(x) = u′(ξ), for some
ξ ∈ (x, x + 1). Since u′ is decreasing, u(x + 1) − u(x) ≥ u′(x + 1) ≥
(2x+ 2)−

1
2 . Inequality (2) follows, since

1

u′(x+ 1)
≤
√

2x+ 2 ≤
√

2x+
√

2/x = u(x).

Where, the last inequality follows from Lagrange’s mean value theorem
and the fact that the derivative of the function

√
2x is decreasing.

We must show that 1 + vk < u(k), ∀k ∈ N. We do so by induction
on k. The case k = 1 holds since v1 = 1. Assuming it hols for k,

1 + vk+1 ≤ 1 + vk +
1

1 + vk
(Inequality(1))

< u(k) +
1

u(k)
(induction hypothesis; x 7→ x+

1

x
increases on x ≥ 1)

< u(k + 1). (Inequality(2))

It remains to prove Inequality (1). Consider two cases: (i) DM matches
π(1) with the least preferred girl or possibly leaves him unmatched; (ii)
DM matches π(1) with another girl. We show that in either cases the
expected number of satisfied boys is at most vk + 1

1+vk
.

Case (i): Conditioned on the event that π(1) is the least preferred
boy, the expected number of satisfied girls is at most 1 + vk. It is
exactly 1 + vk when π(1) is matched with the least preferred girl and it
is vk when he is left unmatched. Conditioned on the event that π(1) is
the most preferred boy, no matter whether he is matched or not, any
girl he is not matched with is unsatisfied and so there is at most one
satisfied girl. Therefore, the expected number of satisfied girls in case
(i) is at most

(1− pk+1)(1 + vk) + pk+1 = vk +
1

1 + vk
.

Case (ii): Conditioned on the event that π(1) is the least preferred
boy, the girl that π(1) is matched with is not satisfied and there are at



STABLE SECRETARIES 19

most vk satisfied girls in expectation. Conditioned on the event that
π(1) is the most preferred boy, the girl he is matched with is satisfied
and in addition there are at most vk other satisfied girls in expectation.
Therefore, the expected number of satisfied girls in case (ii) is at most

(1− pk+1)vk + pk+1(1 + vk) = vk +
1

1 + vk
.

The assertion follows. �

5. The Weighted case

In this section we return to uniform random arrival orders and es-
tablish the following theorems.

Theorem 5.1. Optimization criterion Cw
g can be approximated within

ratio Ω(1/ log n).

Theorem 5.2. Optimization criterion Cw
b can be approximated within

a (positive) constant ratio.

Proof of Theorem 5.1. Let g∗ be a heaviest girl in HG (which is also a
heaviest girl in G). Partition HG into into weight classes C1, C2, . . . so
that

Ci =
{
g ∈ HG | w(g∗)/2i < w(g) ≤ w(g∗)/2i−1

}
.

Taking k = O(log n), we observe that w
(⋃

i>k Ci
)
≤ w(g∗), hence

w (C1 ∪ · · · ∪ Ck) ≥ w(HG/2).
Let i∗ be an index 1 ≤ i ≤ k that maximizes w(Ci). Apply the

algorithm promised by Theorem 3.1 (satisfying girls) to the problem
instance that consists of the girls in Ci∗ (whose weights are uniform
up to factor 2) and all boys in B; the remaining girls are matched
arbitrarily or left unmatched. Theorem 3.1 ensures that Ω(|Ci∗|) girls
in Ci∗ are satisfied as |Ci∗ | ≤ |HG| ≤ |B|. The assertion follows since
w(Ci∗) ≥ Ω(w(HG)/ log n). �

Theorem 5.2 is established by combining the following lemma with
Lemma 2.4.

Lemma 5.3. There exists a universal constant p > 0 such that DM has
a strategy that satisfies each individual boy with probability at least p in
any balanced instance (|G| = |B|).

Proof. The algorithm is similar to the algorithm in the proof of Lemma 3.2.
The only difference is that here we set r = 0 (instead of 1

4
δn). As a

result, we manage to guarantee a positive constant lower bound on the
probability of being satisfied for every single boy. Alas, the probability
that at least (1

5
− δ)n boys are satisfied drop from being close to one

to being merely bounded away from zero.
For completeness, we briefly repeat parts of the description of the

algorithm and other ideas that appear also in the proof of Lemma 3.2.
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Fix 0 < γ < 1/5 and n ∈ N. Set δ = 1/5 − γ and a = 2γ + δ.
Let X = (R,W, Y ) be a multinomial random variable with parame-
ters (a, a, 1 − 2a;n). Each realization of X prescribes a deterministic
algorithm parameterized by (R,W, Y ).

As before the first R boys are called “red,” the next W boys white,
and the last Y boys “yellow.”If 2R > n we report Catastrophe of Type
I.

The white boys are indexed in decreasing order of preference b1 �
b2 � · · · � bR. The girls are indexed in decreasing order of preference,
g1 � g2 · · · � gn. The red boys are matched with the least preferred
girls gn, . . . , gn−R+1 in an arbitrary order.

Each one of the remaining boys x is associated a number rank(x) ∈
{0, . . . , R} according to how he compares with the red boys,

rank(x) =


0 if x � b1,

i if bi � x � bi+1,

R if bR � x.

When a white boy x arrives we match him either with grank(x) if
grank(x) is unmatched yet, or with the least preferred unmatched girl
gi. In the latter case, if i ≤ R the algorithm reports Catastrophe of
Type II and halts.

When a yellow boy x arrives we match him with the most preferred
unmatched girl gi subject to i ≥ rank(x). I.e., i = min{j ∈ [n] \
[rank(x) − r − 1] : gj is unmatched yet}. If that set is empty, the
algorithm reports Catastrophe of Type III and halts.

Define R′ = min{R,
⌈
(a− 1

4
δ)n
⌉
} and

R′′ = |[R′] \ {rank(x) : x is a white boy}| ,
and consider the following (bad) events:

E1 = {Catastrophe of Type I reported},
E2 = {Catastrophe of Type II reported},
E3 = {Catastrophe of Type III reported},
E4 = {R < (a− 1

4
δ)n},

E5 = {R′′ > 1
2
an}.

The proof that Pr(E1 ∪ E2 ∪ E4 ∪ E5) → 0, as n → ∞, follows the
same lines as in the proof of Lemma 3.2.

Unlike the proof of Lemma 3.2, here Pr(E3) is merely bounded away
from one, rather than close to zero.

Let x1, x2, . . . be the colors of the boys in decreasing order of pref-
erence extended to an infinite sequence of i.i.d. random variables. Let
t1 < t2 < · · · be the occurrences of “red,” namely, {ti}i∈N = {j : xj =
red}. Let Ii be the indicator of the event {xj 6= white,∀ ti < j < ti+1}.
Define Yi = |{ti < j < ti+1 : xj = yellow}|, i.e., the number of
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yellow boys between the ith and (i + 1)th red boys. The distribu-
tion of Yi + 1 is geometric with success probability a/(1− a), namely,

Pr(Yi = k) =
(
1−2a
1−a

)k a
1−a (k = 0, 1, . . .); hence E[Yi] = (1−a)/a−1 > 1

2
.

Consider the i.i.d. random variables Zi = Yi − Ii.
We show that

(3) Pr(∀k ∈ N
k∑
i=1

Zi > 0) > 0.

By the strong law of large numbers 1
n

∑n
i=1 Zi → E[Z1] > 0, almost

surely. It follows that there is l ∈ N such that Pr(∀k
∑k

i=1 Zi > −l) >
0. Since Pr(Z1 ≥ 1) > 0,

Pr(∀k ∈ N
k∑
i=1

Zi > 0)

≥ Pr(Z1, . . . , Zl ≥ 1, ∀k
l+k∑
i=l+1

Zi > −l) = Pr(Z1 ≥ 1)l Pr(∀k
k∑
i=1

Zi > −l) > 0.

Next, the proof is concluded by showing that E3 ⊂ {∃k ∈ N
∑k

i=1 Zi ≤
0}, since the probability of the latter event is smaller than one, by (3).

Suppose that the algorithm reports Catastrophe of Type III upon the
arrival of a yellow boy x at time t. Let k = max{i : gi is unmatched at time t}.
Since it is a Catastrophe of Type III, we have k < rank(x). The girls
gi, i = k − r + 1, . . . , n, are all matched with boys who are either red
or white, or have rank at least k + 1. To see this, consider any such gi
who is matched with some yellow boy y. If rank(y) < i, then at the
time y arrived, all the girls gj, j = rank(y), . . . , i− 1, were matched;
therefore, at the present time, all the girls gj, j = rank(y), . . . , n, are
matched; therefore k < rank(y). Since the number of unmatched boys
is equal to the number of unmatched girls at the time just before the
catastrophe, we have

k∑
i=1

Ii

= “#girls who are either unmatched or matched to yellow boys of rank at most k”

= “#yellow boys who are either unmatched or have rank at most k”

> “#yellow boys who have rank at most k”

≥
k∑
i=1

Yi.

It follows that
∑k

i=1 Zi < 0. �
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APPENDIX

Appendix A. Missing Proofs

Proof of Observation 2.5. Fix q = dk/`e and observe that for every
r ≤ `, we have

Pr(R > r) =
k − q
k
· k − q − 1

k − 1
· · · k − q − (r − 1)

k − (r − 1)
.

It follows that

Pr(R > r) ≤ k − k/`
k
·k − k/`− 1

k − 1
· · · k − k/`− (r − 1)

k − (r − 1)
≤
(

1− 1

`

)r
< e−r/`

and

Pr(R > r) ≥ k − k/`− 1

k
·k − k/`− 2

k − 1
· · · k − k/`− r

k − (r − 1)
>

(
1− k/`+ 1

k − r

)
.

Taking c to be sufficiently large so that r ≤ ` ≤ k/3, we ensure that

` ≤ k − 2r ⇐⇒ k + ` ≤ 2k − 2r ⇐⇒ k/`+ 1

k − r
≤ 2

`
,

thus

Pr(R > r) >

(
1− 2

`

)r
> e−4r/` ,

where the second transition follows by taking c to be sufficiently large
so that 2/` ≤ 0.79. Therefore,

Pr(`/5 < R ≤ `) = Pr(R > `/5)− Pr(R > `) > e−4/5 − e−1

which establishes the assertion as e−4/5 − e−1 ≈ 1/12.28. �

Proof of Observation 3.4. Recall the classical secretary problem in which
DM has to stop upon the arrival of some x and the objective is to max-
imize the probability that x is the most preferred boy. The optimal
strategy in the secretary problem is to wait until time k ≈ 1

e
n, and

then stop upon the first arrival of a boy who is more preferred than all
of the previous boys. The probability of success converges to 1

e
, as n

grows.
From the solution to the secretary problem we device a matching

strategy as follows: in the first k = b1
e
nc steps, match the boys with

arbitrary girls who are neither the most preferred nor the least preferred
girl. Continue in the same manner while reserving the most and least
preferred girls for the first arrivals of boys who are either more preferred
or less preferred than all previous boys. Upon the first arrival of a boy
x who is more preferred than all previous boys, match x with the most
preferred girl. Similarly, match the first boy who is less preferred than
all previous boys with the least preferred girl. At times n − 1 and n
match the arriving boys arbitrarily.
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In any matching in which the most (resp. least) preferred boy and
girl are matched together, they form a satisfied pair; therefore, by
the guarantee of the secretary problem solution and the additivity of
expectation, the proposed algorithm guarantees an expected number
of 2

e
− o(1) satisfied pairs. �

Proof of Lemma 4.6. We establish the assertion for conservative algo-
rithms; the proof for general algorithms follows by Lemma 2.1. We use
the distribution D(1

2
, . . . , 1

2
), i.e., each boy is either more or less pre-

ferred than all of the boys that come after him with equal probabilities.
Let vn denote the expected number of satisfied under an optimal

online assignment. We show that vn+1 ≤ max{vn, 12(vn + 1)}. Since
v1 = 1, we have, by induction on n, that vn ≤ 1, for all n.

We divide into two cases: (i) DM matches π(1) with either the most
or least preferred girl; (ii) DM matches π(1) with with some other girl.
Denote the rank of π(1) by r ∈ {1, n + 1} (assuming there are n + 1
boys and n + 1 girls). We show that the expected number of satisfied
pairs is at most 1

2
(vn + 1), in case (i), and vn in case (ii).

In Case (i), with probability 1
2
, π(1) is matched with the girl of rank

r. In this event they form a satisfied pair and the expected number of
additional satisfied pairs is at most vn. In the complement event that
π(1) is matched with the girl of rank n + 2 − r, none of the pairs is
satisfied. Therefore, the expected number of satisfied pairs in case (i)
is at most 1

2
(vn + 1).

In case (ii), π(1) does not belong to a satisfied pair. The expected
number of satisfied pairs among the remaining boys and girls is at most
vn. Therefore, the expected number of satisfied pairs in case (ii) is at
most vn. �
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