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Abstract

Walrasian prices, if they exist, have the property that one can assign every buyer some bundle
in her demand set, such that the resulting assignment will maximize social welfare. Unfortu-
nately, this assumes carefully breaking ties amongst different bundles in the buyer demand set.
Presumably, the shopkeeper cleverly convinces the buyer to break ties in a manner consistent
with maximizing social welfare. Lacking such a shopkeeper, if buyers arrive sequentially and
simply choose some arbitrary bundle in their demand set, the social welfare may be arbitrar-
ily bad. In the context of matching markets, we show how to compute dynamic prices, based
upon the current inventory, that guarantee that social welfare is maximized. Such prices are set
without knowing the identity of the next buyer to arrive. We also show that this is impossible
in general (e.g., for coverage valuations), but consider other scenarios where this can be done.
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1 Introduction

A remarkable property of Walrasian pricing is that it is possible to match buyers to bundles, such
that every buyer gets a bundle in her demand set (i.e., a set of items S maximizing v;(5) =3 ;cq P;),
and the resulting allocation maximizes the social welfare, ). v;(.S;) (S; being the bundle allocated
to buyer 7). However, Walrasian prices cannot coordinate the market alone; it is critical that ties
be broken appropriately, in a coordinated fashion.

Consider the following scenario: two items, a and b, and two unit demand buyers, Alice and
Bob. Alice has value R for item a and value one for item b, Bob has value one for each of the two
items a and b. There are many Walrasian pricings in this setting, for example a price of R — 1 for
item a and 0 for item b. Indeed, assigning item a to Alice and item b to Bob under these prices
maximizes simultaneously the individual utility of each buyer and the social welfare.

However, in real markets, buyers often arrive sequentially, in some unknown order, and get no
guidance as to how to break ties. For these prices, (p(a) = R — 1 and p(b) = 0), if Bob arrives first
then he will indeed choose item b, leaving item a for Alice to purchase, resulting in a social welfare
maximizing allocation. If, however, Alice arrives first, she has equal utility (= 1) for both a and b
and may select item b, so Bob will walk away without purchasing any item, which results in social
welfare 1, compared with the optimal social welfare of R 4+ 1. We furthermore remark that setting
prices of p(a) = R and p(b) = 1, which are also Walrasian prices, could result in both Alice and
Bob walking away, and resulting in zero social welfare.

One may suspect that we choose the wrong Walrasian pricing. It is known that in matching
markets the minimal Walrasian prices coincide with VCG payments [Leo83|. In this example the
minimal Walrasian prices are to charge zero for both item a and item b. Indeed, if Alice arrives first,
she will choose item a, and when Bob arrives he will choose item b, and this is the social welfare
maximizing allocation. However, if Bob arrives first, he will be indifferent between the two items
and may choose item a — again — this achieves a social welfare of 2 compared with the optimal
social welfare of R+ 1. Moreover, there exist markets that admit unique Walrasian prices, yet may
achieve zero welfare. For example, consider a single item valued at 1 by both Alice and Bob. The
unique Walrasian price is 1, which may result in both buyers walking away without purchasing the
item.

In fact, we can show that no static prices (and thus no Walrasian prices) can give more than 2/3
of the social welfare for buyers that arrive sequentially. Consider unit demand buyers Alice, Bob,
and Carl, and items a, b, and c. Alice values a and b at one, and has zero value for ¢, symmetrically,
Bob values b and ¢ at one and a at zero, and Carl values ¢ and a at one, and b at zero. A two
line proof shows that no static pricing scheme, p(a), p(b), and p(c) can achieve more than 2/3 of
the optimal social welfare. Assume all prices are strictly less than one, and assume, without loss
of generality, that p(a) > p(b) > p(c). Now, Alice arrives and chooses item b, Carl arrives and
chooses item ¢, and finally Bob arrives — but there are no items left for which Bob has a non zero
valuation. Note that if p(a) > 1 then item a will not be sold as whomever is to buy it may decide
simply to walk away, the same holds for items b and ¢ so assuming that all prices are strictly less
than one holds without loss of generality, given that one assumes that the prices achieve > 2/3 of
the optimal social welfare.

However, consider the following twist, which changes the prices after the first buyer arrives. In
the scenario above, when Alice arrives first and chooses (without loss of generality) item a, change
the prices so that Bob will choose b and Carl will choose c. This is easily done by setting new prices



P/ (b) < p'(c). Irrespective of whomever arrives after Alice, the prices will ensure that all items get
sold and social welfare be maximized.

Obtaining optimal social welfare is trivial via dynamic pricing if the pricing mechanism knew
which buyer was to arrive next. The dynamic pricing mechanism could make use of infinite prices
to reduce the choices available to incoming buyer so that only a bundle consistent with optimal
social welfare can be selected. The key difficulty arises because the prices need be set before the
preferences of the next buyer to arrive are known.

Thus, this paper studies the issues of static and dynamic pricing for sequentially arriving buyers.
Our main result is the following:

Main Theorem: For any matching market (i.e., unit demand valuations), we give a poly-time dy-
namic pricing scheme that achieves the optimal social welfare, for any arrival order and irrespective
of any tie breaking chosen by the buyers.

We show that the existence of Walrasian prices does not, by itself, imply that there exist
dynamic pricing schemes that optimize social welfare. In particular, we give an example (Section
of a market with coverage valuations (a strict subclass of submodular valuations), which has a
unique optimal solution, and where Walrasian prices do exist, and yet no dynamic pricing scheme
(static or dynamic) can get the optimal social welfare.

We offer some remedies for this impossibility result.

e We show that a market with gross substitutes valuations that has a unique optimal allocation
always admits a static item pricing scheme that achieves the optimal welfare (Section @H

e Moreover, while full efficiency is in general impossible, we argue that for any profile of val-
uations, there exists a static pricing scheme that achieves at least a half of the optimal
social welfare. This result can be viewed as a generalization of the Combinatorial Walrasian
Equilibrium of [FGLI13|. In fact we adapt the static bundle prices computed in [FGLI5| for
Bayesian agents to achieve the one half guarantee of the optimal social welfare, for any class
of valuations.

e We identify additional classes of valuations that admit dynamic pricing schemes that obtain
the optimal social welfare: (1) where buyer i seeks up to k; items, and valuations depend on
the item, and (2) for superadditive valuations.

The following remark is in order. Gross substitutes valuations are known to be the frontier for
the guaranteed existence of a Walrasian equilibrium [GS99]. They are also the frontier with respect
to computational tractability [NS06]: one can compute the allocation that maximizes social welfare
in polynomial time. Are gross substitutes valuations also the frontier for achieving optimal welfare
via a dynamic pricing scheme? More formally:

Main Open Problem: Does any market with gross substitutes valuations have a dynamic pricing
scheme that achieves optimal social welfare?

n a talk by Aaron Roth at the Simons Institute on October 16, 2015, attended by some of the authors, he
mentioned that unique optimal allocations for gross substitute allocations allow “no conflict pricing”, this immedi-
ately implies that such prices will give optimal social welfare for sequentially arriving buyers. This was obtained
independently by us.



1.1 Related Work

This paper combines issues of online computation and markets.

Walrasian equilibrium, where prices are such that optimal social welfare is achieved, and the
market clears, given appropriate tie-breaking of preferences in the demand set dates back to 1874
[Wal74]. The existence of Walrasian prices for matching markets and more generally for gross
substitutes valuations appears in [KJC82, [GS99]. We give a definition of these valuations in Section
@ Competitive analysis of online matchings were first studied in [KVV90] where a randomized
1 — 1/e approximation to the size of the maximal matching was given.

The use of bundle pricing for Combinatorial Walrasian Equilibria (and no envy amongst buyers),
while achieving one half of the social welfare, was given in [FGL13]. The use of static item prices
for buyers arriving via a Bayesian process, with XOS valuations, which also achieves 1/2 of the
optimal social welfare, was given in [FGLI15].

The performance of posted price mechanisms was also studied under the objective of maximizing
revenue in Bayesian settings, where it was shown to extract a constant fraction of the optimal
revenue for single item settings [BHOS| as well as for matching markets [CHKO7, [CHMS10, [CMS10].

More generally, some motivation for this paper is to find more applications of the framework of
pricing dynamic decisions [CEEFJ15], a general approach to setting dynamic prices on future selfish
decisions so as to achieve some predefined goal. In particular, this has been done in the context
of minimizing the costs of selfish metrical matchings, selfish metrical task systems, and the selfish
k-server problem.

1.2 The Structure of this Paper

In section [2| we describe several types of pricing schemes for sequential buyers, static and dynamic,
item prices and bundle prices.

In section [3] we give a dynamic pricing scheme that achieves optimal social welfare, irrespective
of how agents break ties, and for any order of arrival. We include a running example to help in
clarifying the concepts and algorithms involved.

In section [4] we show that dynamic pricing schemes cannot achieve optimal social welfare even
if all of the following hold simultaneously: (1) Walrasian prices exist, (2) The socially optimal
allocation is unique, and (3) The valuation is a coverage valuation.

In section [5| we argue that the ideas in [FGL13| [FGL15] allow us to compute static prices that
achieve 1/2 of the optimal social welfare, for any order of arrival, and any valuation.

In section [6] we show how to compute static item prices that achieve optimal social welfare for
sequentially arriving buyers if the valuation class is gross substitutes and the optimal allocation is
unique.

In section [7] we show how to compute static bundle prices that achieve optimal social welfare
for sequentially arriving buyers if the valuation class is super additive.

In section [A] we show how to compute dynamic bundle prices that achieve optimal social welfare
for sequentially arriving buyers if the valuation class is such that bidder 7 seeks up to k; items, and
the item values depend only on the item.



2 Model and Preliminaries

Our setting consists of a set I of m indivisible items and a set of n buyers that arrive sequentially
in some arbitrary order.

Each buyer has a valuation function v; : 2/ — R>( that indicates his value for every set of
objects, and a buyer valuation profile is denoted by v = (v1,...,v,). We assume valuations are
monotone non-decreasing and normalized (i.e., v;((}) = 0). We use v;(A|B) = v;(AU B) — v;(B) to
denote the marginal value of bundle A given bundle B. An allocation is a vector of disjoint sets
x = (z1,...,Ty), where z; denotes the bundle associated with buyer i € [n| (note that it is not
required that all items are allocated). The social welfare (SW) of an allocation x is SW(x,v) =
>, vi(w;), and the optimal welfare is denoted by OPT(v). When clear from context we omit v
and write SW and OPT for the social welfare and optimal welfare, respectively.

An item pricing is a function p : I — R0 that assigns a price to every item. The price of item
j is denoted by p(j). Given an item pricing, the utility that buyer i derives from a set of items S
is u;(S,p) = vi(S) — >_cgp(i). The demand correspondence D;(I,p) of buyer i contains the sets
of objects that maximize buyer ¢’s utility; i.e., D;(I, p) = argmaxgc;ui(S, p)-

A bundle pricingis a tuple (B, p), where B = {By, ..., By} is a partition of the items into bundles
(where |J; B; = I and for every i # j, BN\ B; = 0), and p : B — R=2Y is a function that assigns
a price to every bundle in B. The price of bundle B; is denoted p(Bj). Given a bundle pricing
(B, p), the utility that buyer ¢ derives from a set of bundles S is u;(S, p) = v;(S) — ZBJ_GSp(Bj).
The demand correspondence D;(I,p) of buyer ¢ contains the sets of bundles that maximize buyer
i’s utility; i.e., D;(I, p) = argmaxgc jui(S, p)-

We consider several types of pricing schemes: static item pricing, dynamic item pricing, static
bundle pricing, and dynamic bundle pricing.

In static pricing schemes, prices are assigned (to items or bundles) initially, and never change
then. In contrast, in dynamic pricing schemes, new (item or bundle) pricing may be set before the
next buyer arrives. Item pricing schemes assign prices to items, whereas bundle pricing schemes
can partition the items to bundles and assign prices to bundles that are elements of the partition.
Thus, the four types of pricing schemes are described as follows.

Static Item Pricing Scheme:
1. Item prices, p, are determined once and for all.
2. Buyers arrive at some arbitrary order, the next buyer to arrive chooses a bundle in her demand
set from among the items not already allocated (and pays the sum of the corresponding prices).
Static Bundling Pricing Scheme:
1. Bundles, and their prices, (B, p), are determined once and for all.

2. Buyers arrive at some arbitrary order, the next buyer to arrive chooses a set of bundles in
her demand set from amongst the bundles not already allocated (and pays the sum of the
corresponding prices).

Dynamic Item Pricing Scheme:
e Before buyer ¢t = 1,...,n arrives (and after buyer ¢t — 1 departs, for ¢t > 1):

1. Ttem prices, pt, are set (or reset) before buyer ¢ arrives, prices are set for those items
that have not been purchased yet.



2. When buyer t arrives she purchases a set of items S in her demand from among the
items not already allocated (and pays the sum of the corresponding prices according to

Pt)-
Dynamic Bundle Pricing Scheme:

e Before buyer ¢t = 1,...,n arrives (and after buyer ¢ — 1 departs, for ¢t > 1):

1. A partition into bundles and bundle prices, (B, pt), is determined for the items that have
not been purchased yet.

2. When buyer t arrives she purchases a set of bundles S in her demand set from among
the bundles on sale (and pays the sum of the corresponding prices according to py).

We say that a pricing scheme achieves optimal (respectively, a-approximate) social welfare if
for any arrival order and any manner in which agents may break ties, the obtained social welfare
is optimal (resp., at least « fraction of the optimal welfare).

3 Optimal Dynamic Pricing Scheme for Matching Markets

In this section we consider matching markets. Every agent seeks one item, and may have different
valuations for the different items. Whereas this setting admits Walrasian prices, such prices are
not applicable to the setting where agents arrive sequentially, in an unknown order, and choose an
arbitrary item in their demand set.

We now describe a dynamic item pricing scheme for matching markets that maximizes social
welfare — the sum of buyer valuations for their allocated items is maximized. The process we
consider is as follows:

e The valuations of the buyers are known.

e The buyers arrive in some arbitrary order unknown to the pricing scheme.

e Prices are posted, they may change after a buyer departs but cannot depend upon the next
buyer.

[Running example] To illustrate the process, we consider a running example of a match-
ing market, buyers Alice, Bob, Carl, and Dorothy, items a, b, ¢ and d. The valuations
are given in Figure (a), where squares represent buyers, circles represent items, and
A, B,C, D stand for Alice, Bob, Carol and Dorothy. The minimal Walrasian pricing is
p(a) = 1,p(b) = 7,p(c) = 7,p(d) = 0. Under the minimal Walrasian pricing, or any static
pricing, unless ties are broken in a particular way, sequential arrival of buyers will not
produce optimal social welfare (see Lemma [B.1)).

An example of the use of dynamic pricing that follows from our dynamic pricing scheme
is given in Figure Every row represent a phase in the process, where a single buyer
arrives. The LHS graph in every row represents the valuations of the remaining buyers
and items, thinks edges represent a maximal matching. The RHS graph represents the
graph of edges, upon which prices are calculated by Algorithm Price-ltems. Directed
cycles of length 0 (if any) are represented by think edges. The arriving buyer along with
the items they pick are specified in the right column.




The input consists of the graph G = (N, I,v). G is a complete bipartite weighted graph, where
N is the set of agents, I is the set of items, and for every agent a € N and item b € I, the weight of
an edge (a,b) is the value that agent a gives item b, vq(b) (vq : I — R>( is the valuation function
for agent a).

Without loss of generality, one may assume that in G we have that |I| > |N|, otherwise, we add
dummy vertices to the I with zero weight edges to the vertices of the N side until |I| = |N|. OPT
is the weight of the maximum weighted matching in G (alternatively, the optimal social welfare).
Let M € N x I be some matching in G, we define SW(M) =3~ ;e ps va(b) to be a function that
takes a matching and returns the social welfare (value) of the matching.

We now continue to describe the dynamic pricing scheme. At time ¢t € 0,...,|N| (after the ¢-th
agent departs), we define the following;:

e M; C N x I is the partial matching consisting of [a subset] of the first ¢ agents to arrive,
and the item of their choice, amongst the items available for sale upon arrival. The size of
M; may be less than ¢ as not all buyers may be matched as their demand set may be empty
when they arrive.

e Ny C N and I; C I are the first ¢ agents to arrive and the items matched to them in the
matching M;.

e Noy = N\ Ny and Is; = I\ I; are the remaining agents (to arrive at some time > t) and the
items remaining after the departure of the ¢t-th agent. Define G-; to be the graph G where
agents N; and items [; have been discarded. Le., G>; = (Is¢, N>y, V).

o We define p;y1 : Isy — R>p to be the prices set by the dynamic pricing scheme after the
departure of agent ¢ (but before the arrival of agent ¢ + 1).

To compute the function pyy; we first construct a so-called “relation graph”, and then perform
various computations upon it. The vertices of the relation graph are all goods yet unsold, Is, the
edges and their weights are as follows:

1. Compute M~; C Is; X Ns¢, a maximum weight matching of the graph G~; which matches
all vertices of I>tE] For every item b € I~y, let v.(b) denote the value of item b to the agent
matched to item b in the matching M~;.

2. The edges of R~;, denoted by Es;, are a clique on the vertices Is;, and their weights W, :
E<; — R are computed as follows: Let M~; be a maximum weight matching of remaining
goods and agents as defined above. For every pair (a,b) € My, and for every b’ € I, \ {b}
create an edge (b,b’). The weight of the edge (b,b’),

Weor((b, 1)) = va(b) — va (V).

[Running example| The initial graph G~¢ of our running example is given in Figure
[f(a), where a maximal matching M~ is indicated by the thick edges. The graph R~ is
given in Figure[4(b). For example, the weight of the edge (a, b) is vaice (@) —v aice (b) = —6.

We give the following structural property of R;:

ZNote that such a maximum weight matching exists because initially |N| < ||, and since every agent takes at most
one item, |Ns¢| < |Is¢| continues to hold. Since all edge weights are non-negative, and Gs; is a complete bipartite
graph, every maximum weight matching can be extended to produce a matching with the same weight which matches
all of the vertices in I-:.



Lemma 1 There are no directed cycles of negative weight in R~;.

Proof:  Assume there exists a negative cycle of length ¢. Assume the cycle is comprised of
(b1,b2), (ba,b3),...,{(be—1,be), (bg, b1). This cycle corresponds to a cycle of alternating edges in G,
(b1,a1) (a1,b2) , (b2, a2) ... (ar—1,be), (b, ar) , (ag, b1), where for every j € {1,...,0}, (bj,a;) € M;
and (CLj,bj.H) g Mt.

For ease of notation, we define £ +1 = 1. According to the definition of weights in R~;, we

know that ,

L
ZW>t(<bj7bj+1>) = Z (va, (bj) — va, (bj41)) <0,
j=1 j=1

and therefore, 25:1 Va; (bjy1) > Z§:1 va; (b;). We get that the matching M’, which is constructed
by removing the set {(b;,a;)}jc1,.. ¢ from Ms; and adding the set {(bj+1,a;5)}je1,... 0, is of larger
weight, in contradiction to M~ being a maximum weight matching.

We now process the relation graph R~;:

1. Let A be the smallest total weight of a cycle with strictly positive total weight in R~;, and
let € = TTEs] | —7- Mark all edges in E¢ that take part in some directed cycle of weight 0 in
R-¢. Delete all marked edges. For every remaining edge e, set W.,(e) = Wsy(e) —e. Let
RL, = (Isy, EL,;, WL,) be the resulting graph.

2. Find a solution to the set of equations in Figure [l by running algorithm Price-ltems (see
Figure ' ) with R., as the input graph. Set p;11 = p where p is the output of Price-Items.

To show that indeed, R., can be used as an input for Price-ltems, we show the following:
Lemma 2 All the directed cycles in R's; are strictly positive.

Proof: Let R be the graph which is obtained from R~; by removing all the edges that take part
in a directed cycle of weight 0. Since according to Lemma [1| R~; has no negative weight cycles,
all the cycles in R are of strictly positive weight. By the definition of A, every simple cycle has
a weight of at least A. R's; is constructed by taking R and decreasing all the edge weights by
€ = 251 | o Therefore, the weight of every simple cycle in R could have decreased by no more than
|Is¢| € < A, which means that all the cycles in R's; are of strictly positive weight. |

[Running example] In Figure [|b), the thick edges form a directed cycle of weight 0.
We remove these edges and subtract € from every remaining edge. We then run Algorithm
Price-Items on the obtained graph, which gives the prices presented in red next to each
item in Figure [|b). In this case, the only negative edge (after removing the cycle of
length 0) is the edge (d, a), whose price is set to —W'({d,a)) = —(—1 —¢€) = 1 + €. Since
all other shortest paths are positive, prices of other items do not change (recall the new
price is the maximum between the old price and the negation of the shortest path). When
Alice arrives, she picks the unique item in her demand set — item a. Similarly, graphs
Gs¢, R>¢ of all iterations t = 0,1, 2,3 are demonstrated in Figure [4]c)-(h)




voels, p(b) >0 (1)
V(b1,b2) € EL,  p(b1) — p(b2) < Wsi((b1,b2)) (2)
Vb e Isy :vs4(b) >0 p(b) < v=¢(b) (3)

Figure 1: The set of equations that ensures every greedy agent would choose an edge of some
maximum weight matching.

Price-ltems
Input: A directed graph G = (I, E, W) where all cycles are strictly positive.
Output: a pricing function p : I — R>¢ such that p(b')—p(b) > —W ((b,¥')) for every (b,b') € E.

1. Set p(b) + 0 for every b € I.

2. Run all-pairs-shortest-paths on G (there are no negative cycles in G). For every b, b € I,
let d(b,b’) denote the length of the shortest path from b to ¥'.

3. For every b € I

(a) For every b’ € I, set p(t') + max{p(b'), —d(b,t')}.

Figure 2: Pricing algorithm.

Consider a directed edge (b1, bs) and some cycle it belongs to. The edge (b1, bs) came about
because we choose a maximal matching where item b; was assigned to some buyer a, whereas by was
not. If all such cycles have strictly positive total weight, then the edge weights, and the associated
prices computed via Price-ltems, ensure that agent a prefers by to bo, effectively removing choices
for “wrong” tie breaking. Contrawise, if the edge (b1, b2) does belongs to some cycle of total weight
zero, this implies that the maximum matching is not unique. Ergo, whenever some item along this
cycle is first chosen, it is still possible to extend the matching to a maximal weight matching. This
is exactly where the dynamic pricing creeps in, subsequent to this symmetry breaking, new prices
have to be computed to avoid wrong tie breaking decisions.

We now show that setting prices that satisfy the constraints in Figure [1| ensures that after all
agents arrive, the social welfare achieved is maximized.

Theorem 3.1 A dynamic pricing scheme which calculates prices satisfying the constraints pre-
sented in Figure|l| achieves optimal social welfare (a mazimum weight matching of G).

Proof:  Recall that M; is the matching which results from the first ¢ € {0,1,...,|N|} agents
taking an item which maximizes their utility and that G, is the graph of the remaining agents and
items after the first ¢ agents arrived and purchased some items. Let M~; be a maximum weight
matching of G-, where M~ is a matching that maximizes the social welfare of all the agents, and
M- |n) = ). We prove by induction that for every i € {0,1,...,[N[}, SW(M;) +SW(M>,) = OPT.
It follows that the matching M)y yields optimal social welfare.

For t = 0, this claim trivially holds since SW(Msg) = OPT. Assume that for some ¢t — 1,
SW(M;—1) +SW(Ms;—1) = OPT. Let M~y be the maximum weight matching we compute at step
of the pricing scheme. When agent t arrives, consider the following cases:



e Agent t does not take any item. From the constraints of type , the only case where an
has no positive utility from any item is if she is matched to an item in M;_; with an edge of
weight 0. In this case, SW(M;) = SW(M;_1), and by taking M-, to be the same matching as
M-~y without the edge the ¢-th agent is matched to, SW(Msx;) = SW(Msy—1). We get that
SW(M,;) + SW(Msy) = SW(M;—1) + SW(Ms;—1) = OPT.

e Agent t takes the item which she is matched to in M~;_1. Let v be the value of the ¢-th agent
for the item. Clearly, SW(M;) = SW(M;_1) + v. By taking M~; to be the same matching as
M- without the edge the t-th agent is matched to, we get SW(Mst) = SW(Msi—1) — v.
We get that SW(M;) + SW(Ms;) = SW(M;—1) + v+ SW(Ms4—1) —v = OPT.

e Agent t a € N-;_1 takes an item b’ € I-;_1 which is different than b € I-;_1, the item which
she is matched to in M<;_1. Therefore,

va (V') = pr—1(V) = va(b) — pr—1(b). (4)

Let (b,b/) € Fs;—1 be the directed edge from b to b’ in Rs;—1. Its weight W.({b,V')) =
Ve (b) — va(b). If (b,V/) would have been in R., ;, then according to constraint (2), we
would have had that p;_1(b) — pi—1 (V') < Wsi((b,')) = v4(b) — v4(b'). Rearranging gives us
Va(b') — pr—1(V') < v4(b) — py—1(b), which contradicts (4). Therefore, (b, b') was removed from
R’'~;_1, which can only happen if the edge is part of a directed cycle of weight 0 in R~; 1.
Let by = b, by = V' and let (bg,b1), (b1,b2), ..., (bs_1,bp), (be,bo) be a simple directed cycle of
length ¢ + 1 and weight 0 in R~; 1 in which (b,b’) takes part. This cycle corresponds to a
cycle of alternating edges in G's4_1,

(bo = b,ag = a) (ao,br =V), (b1, a1) ... (ag—1,bs) , (be, ag) , (a, bo)
where
(bj,(lj) € M~;_1 and (aj, bj+1 mod g) ¢ M~y for every j € {O, . ’E}

Since the directed cycle is of weight 0, we get that

14

Y4
> Wor((b)bit1 moa o) =D (va;(b;) = va; (Bj1 mod ¢)) =0,
=0 =0

which means that the value of the unmatched edges in the directed cycle, Zﬁ‘:o Va; (bj41 mod ¢),
is equal to the value of the matched edges, Z?:o Va; (b5)-

Let M;t 1 be the matching which is a result of taking M~ 1, removing the edges in the set
{(a;,b )}36{0,1, &> and adding the edges of {(d bj+1 mod g,a])}]E{O,L s Note that (a,b) =
(ap,b1) € M>t 1 Since the edges we added to M>t 1 are of the same value as the edges we
removed, SW(M>t_1) + SW(M;—1) = SW(Msy—1) + SW(M,;_1) = OPT. We define M~ to
be a matching comprised of the same edges as M>t,1 except (a,b’). Therefore, SW(M~;) =
SW(Msi—_1) — va(V). Clearly, we have that SW(M;) = SW(M;_1) + va(b'). We get that
SW( M)+ SW(M;) = SW(Msi_1) — va (b)) + SW(M;_1) +va(b') = OPT. This completes the
proof of the induction and the theorem.



|

It remains to show that Price-ltems satisfies all the constraints in Figure [I| First, we observe

that constraints of type are trivially satisfied since all prices are initially set to 0 by Price-ltems
and prices can only increase.

Observation 3.2 Price-ltems returns an assignment which satisfies constraints of type (|1)).
The following property is helpful in proving that constraints of type ([2)):

Lemma 3 Let G = (I, E,W) be the input graph of Price-ltems and let p : I — R>q be its output.
For every (b1,bs) € E we have that p(by) — p(by) > —W ({b1,b2)).

Proof: We first show that after all the iterations of step [3| of Price-Iltems, for any two vertices
b1,ba € I, p(b2) — p(b1) > —d(b1,b2). by was chosen as b at step 3 of a some iteration of the loop.
Let by be some vertex reachable from by (otherwise, d(b1,b2) = oo and the claim trivially holds).
If p(by) = 0 after all iterations, then when b; was chosen as b in step [3| p(ba) > —d(b1,be) =
p(b1) — d(b1, b2), implying that p(b2) — p(b1) > —d(b1,b2). Since p(b1) stayed the same and p(bs)
did not decrease, the inequality still holds.

If p(b1) > 0, let b be the vertex which was chosen in step |3|in the iteration where the current

p(by) was set. At the iteration where the current p(by) was set, we have that p(b;) = —d(b,b1) and

p(b2) = —d(b,bo)

—(d(b,b1) + d(b1,b2))
= p(b1) — d(b1,b2),

where the inequality follows since the shortest path satisfies the triangle inequality. We get that
at the iteration where the current p(by) was set, p(ba) — p(b1) > —d(b1,b2). Since p(b1) stayed the
same until the current iteration, and p(b2) did not decrease, the inequality still holds.
Since d(by, b2) < W ((b1,b2)), we get the desired result. |
We can now establish that constraints of type hold.

v

Lemma 4 Price-ltems returns an assignment which satisfies constraints of type (2)).

Proof: By Lemma [3| we get that for a given (bi,b2) € EL,, p(ba) — p(b1) > —WZL,((b1,b2)) =
—(Wst({b1,b2)) — €). Therefore, p(b1) — p(b2) < Wsi({b1,b2)) — € < Ws((b1,b2)), as desired. M

For establishing that constraints of type are met by the prices p(b)’s computed by Price-Items,
we need the following Lemma.

Lemma 5 Let by be some vertex with p(by) > 0. Let by be the vertex chosen at the iteration of the
loop in Price-Items where p(by) was set, and let (by,b1), (b1,b2),...,{(be—1,be) be a shortest path from
b to by. For everyi € {0,1,...,¢}, p(b;) = —d(bo, b;).

Proof: Let b; a vertex on the shortest path from by to b, such that p(b;) > —d(bg,b;) (notice
that step [3a| of Price-ltems ensures that p(b;) > —d(bo,b;)). This can only happen if there exists
some b such that d(b,b;) < d(bo,b;). Since b; is on the shortest path from by to by, we know that
d(bo, by) = d(bg, b;) + d(b;, bg). We get that

d(b, by) d(b,b;) 4 d(b;, by)
d(bo, b;) + d(b;, by)
= d(bg, by),

<
<
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of Price-Items, step [3a| ensures that p(be) > —d(b, bs) > —d(bo, by). Since by was set in the iteration
where by was chosen at step [3] we also get that p(by) = —d(bo, by), a contradiction. [

We get the the following two corollaries.

where the first inelity is due to the triangle inequality. Therefore, when b is chosen in step

Corollary 3.3 p(by) = 0.
Corollary 3.4 For everyi € {0,1,...,0—1}, p(b;) — p(bit1) = Wsi((bi, bit1)) — €.

Proof:  Since every subset of a shortest path is also a shortest path, we get that d(bg,b;+1) =
d(bo, bi) + WL ((bi, biy1)). From Lemma [5| we get that p(b;) = —d(bo, b;) and

p(bi+1) = —d(bo,bi+1)
= —d(bo,b;) — WL, ((bi, bit1))
= p(bi) = Wse((bi, biy1)) — €),

where the last equality follows by the definition of WZ,. |
We now prove that all the constraints of type are met.

Lemma 6 For every b € I~ which is matched in M=, by a non-zero weight edge, p(b) < vs4(b).

Proof: Assume for the purpose of reaching a contradiction that there exists some b = by which
is matched in M; via an edge of strictly positive weight for which where p(b) > v~.(b). Let by be
the vertex that was selected at the iteration of the loop in Price-ltems where p(b) was set, and let
(bo,b1), (b1,b2), ..., (by_1,bs) be a shortest path from by to by in R's;. According to Corollary
for every ¢ € {0,1,...,¢— 1}, p(b;) — p(b;) = Ws((bi, bi+1)) — €. Summing over all i’s gives us

/-1

Z Wot((bis biv1)) = p(bo) — p(be) + be < —p(b) + A, (5)
=0

where the inequality stems from the fact that p(bg) = 0 (Corollary , by = b, £ < |Is¢| and
€= ﬁ. Let a be the vertex that b is matched to in M~;. According to the definitions of the
weights of edges in R~¢, we get that the weight of the edge (b,by) € E; in R~ is

Wt ((be; bo)) = va(b) = va(bo) < vs4(b) < p(b), (6)

where the first inequality is due to the definition of v~.(b), and the second inequality is due to our
initial assumption. Combining with @ yields that the weight of the cycle

<bg, bl>, <b1, bg>, ey <bg,1, b@>, <bg, b0> in R>t is 25:0 W>t(<bi, bi+1 mod g>> < A. Since A is the
minimal weight of a positive cycle in R~;, we get that either the weight of the cycle is negative,
which contradicts Lemma [l}, or the cycle is of weight 0, contradicting the fact the we delete every
edge that takes part in some cycle of weight 0 in R~; from R’'s;. |
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4 No Optimal Dynamic Pricing Scheme for Coverage Valuations

We show an instance with agents with coverage Valuationsrf] for which no dynamic pricing scheme
guarantees an optimal allocation. Interestingly, this instance admits Walrasian prices and has a
unique optimal allocation, so no combination of these conditions is sufficient to imply optimal
dynamic pricing schemes.

Theorem 4.1 There exists an instance with agents with coverage valuations such that no dynamic
pricing scheme guarantees more than a fraction %’ of the optimal social welfare. This instance
admits Walrasian prices.

Proof: Let I = {a,b,c,d} be a set of items and N = {1,2,3,4} be a set of agents. Agents 2,3
and 4 are unit demand with the following valuation functions:

UZ(S):{Q Sﬂ{a,b};«é@’vg(s):{Z Sﬂ{a,c};&@’wl(s):{l Sn{dy#0

0 otherwise 0 otherwise 0 otherwise

In addition, agent 1 has the following coverage valuation:

2 S ={b},s ={c}

3 S ={a},s={d}

v1(S) =<35 S ={a,b},S ={a,c},S={d,b},S={d,c},S ={a,d} .
3.75 S ={a,b,d},S ={a,c,d}

4 {b,c} C S

\

Coverage valuation: To see that this is a coverage valuation, consider the following explicit
representation. Let {ej, eq, €3, €4, €5, €6, €7, €g} be the set of elements, with weights w(e1) = w(es) =
5/4 and w(e;) = 1/4 for i # 1,5. Item a covers the set {e1,ea,es5,e4}, item b covers the set
{e1,e2,e3,€e4}, item c covers the set {es, g, €7, e}, and item d covers the set {ej,eq, €5, €5}

Unique optimal allocation: The unique optimal allocation is to allocate item a to agent 1, item
b to agent 2, item ¢ to agent 3 and item d to agent 4. This allocation obtains social welfare of 8.

Walrasian prices: One can easily verify that the unique optimal allocation along with pricing
each item at 1 is a Walrasian equilibrium.

We now show that no dynamic pricing scheme guarantees more than a fraction % of the optimal
allocation. In order to guarantee an optimal allocation, the following conditions must be satisfied:

e Agent 4’s utility from item d should be strictly positive; i.e.,
p(d) < vg(d) = 1. (7)

e Agent 1 should strictly prefer item a over item d, i.e.,

vi(a) = p(a) > vi(d) — p(d) = p(a) < p(d). (8)
e Agent 2 should strictly prefer item b over item a, i.e.,
v2(b) = p(b) > va(a) — p(a) = p(b) < p(a). (9)

3The class of coverage valuations is a strict subclass of submodular valuations.
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e Agent 3 should strictly prefer item c over item a, i.e.,:

p(c) < p(a). (10)
e Agent 1 should strictly prefer item a over the bundle {b,c}, i.e.,
vi(a) = p(a) > vi({b, c}) — p(b) — p(c) = p(b) + p(c) —p(a) > 1. (11)

Combining Equations and implies that p(a) < 1, while combining Equations @, and
yields p(a) > 1. Therefore, for every prices one might set, the adversary can set an order for
which the first agent picks a different item than the one allocated to her in the optimal allocation.

Remark: note that the valuation function of agent 1 is not gross substitutes. In particular,
her demand under prices p(a) = p(c) = p(d) = 0 and p(b) = € is {b, ¢}, but if the price of item ¢
increases to 2, then the unique bundle in the demand of agent 1 is {a,d}. |

5 A 1/2-Approximate Static Pricing Scheme for any Class of Val-
uations

In this section we show that, given a partition of the items into bundles, pricing each bundle
half of its value to the buyer guarantees half of the social welfare of the partition. Let B =
{B1,Ba,...,By} € (21)n be a partition of the items such that |J, B; = I and for every i # j
B,NBj=0. Let W =), v;(B;). We have the following:

Theorem 5.1 Let p : B — R>o be static bundle prices such that for every i, p(B;) = vi(B;)/2.
This pricing scheme achieves a welfare of at least W/2.

Proof: Let x be an allocation which is a result of agents arriving at an arbitrary order, each
taking their favorite bundles. Notice that the utility of an agent for acquiring the bundles in x;
is ui(w;, P) = vi(Upey, B) — 2 pes, P(B). Let I; be an indicator which gets 1 if bundle B; was
acquired by some agent and 0 otherwise. Rearranging and summing over all the agents gives us:

SulUB| = 3 |u@.p+ Y wB)

7 BGIEZ' BG:EZ'

= D uiai, P) + Lip(By). (12)

We show that for every i, u;(z;, P) + Lip(B;) > v;(B;)/2. Using this is enough to prove the
claim. For some i, either bundle B; is purchased by some agent, in which case I;p(B;) = v;(B;)/2.
Otherwise, when agent ¢ arrived, she could have purchased bundle B;, for which she would have
gotten a utility of v;(B;) — p(B;) = v;i(B;)/2. Since she bought the bundles which maximized her
utility, her utility can only be greater than that, meaning u;(x;,p) > v;(B;)/2. |

6 Optimal Pricing Schemes for Gross Substitutes Valuations for
Unique Optimal Allocations

In Section [4] we have shown a case where there is a unique optimum, there exist Walrasian prices
over the items, and no dynamic bundle pricing scheme can guarantee an optimal outcome. We first
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show that in case of a unique optimum, there is no need to search for a dynamic pricing scheme
that retrieves the optimal allocation, since that the existence of such a scheme implies static prices
that guarantee an optimal allocation.

Observation 6.1 Let v = (vy,...,v,), where v; : 21— Rsq, and let (v, I) be an instance where
B = {Bi,...,B,} is the unique partition of items that mazximizes social welfare. If there exists
an optimal dynamic bundle-pricing scheme, then there must exist an optimal static bundle-pricing
scheme.

Proof:  Let p; : B — R>¢ be the initial prices the optimal dynamic pricing scheme gives to
the bundles. We claim that sticking to these prices throughout the process guarantees an optimal
allocation as well. Without loss of generality, assume that agents with lower index arrive earlier
and that the i-th agent to arrive is the first agent whose choice X # {B;} (could be that X = {B;},
J # 1, could be that = {B;, Bj, ...}, j # i, and could be that X = 0).

It must be the case that u;(p1, X) > wu;(p1, B;). Therefore, if this agent arrives first, she is
not guaranteed to take {B;} since this not the unique bundle that maximizes her utility. This
contradicts the optimality of the dynamic pricing scheme. |

We previously showed that Walrasian prices do not imply the existence of optimal static prices
in the case of a unique optimal allocation. However, for gross substitute valuations, the canonical
valuation class for which Walrasian equilibrium is guaranteed to exist, if there exists a unique
optimal allocation, optimal static prices do exist. We show how to compute such prices via a
combinatorial algorithm inspired by Murota [Mur96al, Mur96b]E|

Given some set of items A C I, we define the sets of item local to A as following Local(A4) =
{B#ACI:|B\A|l<land |A\ B| <1} We present the following alternative definition of gross
substitute valuations [GS99]:

Definition 6.1 A waluation v : 21 — R>q satisfies the gross substitute condition if for every item
prices p : I — R>o, if there exists some A C I such that A ¢ D(I,p) then there exists B € Local(A)
such that u(B,p) > u(A,p).

We refer to this characterization as the local improvement property (LI).
Given a set of gross-substitute valuations and items (v, I), let B = {Bj,..., B,} be the unique
optimal allocation. We compute the prices p : I — J>¢ as follows:

1. Let D = {d,...,d,} be a set of dummy items (one for each agent), I’ = I U D be the set
of items after we added the dummy items. We extend every valuation function v; to the
domain 2!, where v;(X) = v;(X N M) (i.e., the dummy items have no effect on the value
of the bundle). Define B’ = {Bj,..., B} } where every bundle B] = {B; U {d;}} receives an
additional dummy item.

2. Let R=(V=IECVXV,W:E — R) (the exchange graph) be a weighted directed graph
where:

o E={(a,b) € M?:a € B}, b€ M\ B! for every i} \ D% Le., there is an edge from every
item in some bundle B] to every item not in B, unless the two items are dummy items.

4See [Lem14] for a concise description on how Murota’s work relates to the computation of Walrasian prices for
GS valuations.
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e Let e = (a,b) where a € B} of some agent ¢ be an edge in the graph. W (e) = v;(B]) —
vi(Bl —a+0), i.e., the value of the agent from bundle B, minus the value she gets if she
exchanges item a for item b.

3. Let § > 0 be the weight of minimum weight cycle in R (by Lemma E all the cycles in R are
of strictly positive weight). Let v > 0 be the weight of the minimum weight path out of all
the paths from any vertex to any dummy vertex (all such paths are of strictly positive weight

(o
by Lemma. Let € = %

4. Update the weights by setting W (e) - W (e) — € for every edge e in the graph.

5. Price the items using algorithm Price-Items (Figure [2)) with graph R as input.

Lemma 7 All the cycles in the graph R described in step [ of the above price computation are of
strictly positive weight.

Proof: Let ¢ be some agent (recall that B; the bundle allocated to her in the unique optimal
allocation). Let 6 = miny+g{SW(B,v)—SW(x,V)} be the difference in welfare between the optimal
allocation, and the second best allocation. § > 0 since the optimal allocation is unique. For some
item b € I\ B; define the modified valuation vgb) ol R>o as follows:

(b) _ vi(S)+9d be S
<s>—{w(s) e (13)

Let v®) = (v_y, vi(b)). For some arbitrary allocation x # B we have
SVV(X, V(b)) = Ui(b) (I‘z) + Zvj(xj)
J#
< i) +6+ ) vj(ag)
J#

SW(B,v)

= SW(B,v),

(b)

and therefore, B is still an optimal allocation for profile v(®). We next claim that v,

substitute. We use the characterization of Reijnierse et al. [RvGP02|:

is gross

Definition 6.2 A waluation v : 2! — R>q is gross substitute if and only if v is submodular, and
for every S C I and by,be, b3 ¢ S:

V(S U b1, bo}) + v(S U {bs}) < max{o(S U {b1}) + v(S U {ba, b3}), v(S U {ba}) + v(S U {br, b3})}.(14)

First we show that vgb) is submodular. Let S C T two sets of items, and let ¥’ be some item. if b’ # b,

then we know that v\” (1/|S) = v;(¥'|S) < v;(t/|T) = v (V/|T). Otherwise, v\” (1/|S) = v;(V'|S)+6 <
v;(V|T)+ 0 = vl(b)(b’]T). Next, we verify 1| Let S be some set of items and b1, bo, b3 some items
not in S. Since, v; is GS, we know that (14) holds. Without loss of generality, let us assume that
0;(SU{b1,b2}) +vi(SU{bs}) < v;(SU{b1})+vi(SU{b2,b3}), which is equivalent to v;(ba|SU{b1}) <
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’UZ(62|SU{b3}) If by #bthenv (b2|SU{bl}) —’Ul(bg‘SU{bl}) < Uz(b2|SU{b3}) _’U (b2|SU{b3})
and otherwise v\”) (b S U {b1}) = v;(ba| S U {b1}) + 6 < v3(ba|S U {bs}) + & = v (bo]S U {bs}). This
implies that v” (S U {b1,bs}) + v (S U {bs}) < v (S U {B1}) + 0P (S U {ba, b3 }).

Since v(®) is a gross substitute valuation profile, it admits a Walrasian equilibrium (B',p). We
claim that (B',p) is also a Walrasian equilibrium for v. This is true since v;(B]) = vl(b)(Bg), and
for every S, v;(S) < vi(b)(S).

For some item b’ € I', we denote by N(b') the function that returns the agent j for which
b e B;-. Consider a cycle in R that uses edge (a,b) for some cycle in R. Let (bg,b1,...,be—1,bp)
denote the cycle, where by = a and by = b. We denote by = by. Since (B',p) is a Walrasian
equilibrium for v(%), we know that

o (B]) — p(BY)

vi(Bi) — p(Bj) i

2 3

(
(

> (Bl —a+b)—p(B.—a+b)
= vi(Bj—a+b)+6—p(B;—a+b)
> v (B, —a+0b)—p(B.—a+b).

Rearranging gives us
W((bo,b1)) = W((a,b))
= v(B)) —vi(Bi —a+0b)
> p(B) —p(Bj—a+D)

= pla) —p(b)
= p(bo) — p(b1). (15)
Since (B',p) is a Walrasian equilibrium for v as well, we get that for every j € 1,...,¢—1,

uNG) (Bie,)) — P(Bhw,)) 2 vNe,) (Bie,) — bi +bj+1) — P(Bi,) — bj + bjza).

Rearranging gives us

W((bj.bj+1)) = vn@,)(Bie,) = Une) B, — b+ bjt1)
> p(bj) = p(bjt1). (16)

Summing inequality with inequalities of type for all j € 1,...,¢ —1 gives us that the
weight of the cycle (bg,b1,...,be—1,bo) is

S W(bibip)) > Y. (pby) = p(bis)) =0.

je{0,....0—1} j€{0,...,0—1}

Since agent ¢ is an arbitrary agent and item b is an arbitrary (non-dummy) item, we get that all
the cycles in R that use an edge which ends in a non-dummy item must be strictly positive. Since
there are no edges who between two dummy items in R, we get that all cycles must use at least
one edge which ends in a non-dummy item, hence, must be strictly positive. |

We now show a property which is crucial in establishing that the price of every dummy node is
Zero.
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Lemma 8 Let R be the graph described in step | of the above price computation. For every agent
i, dummy node d; and every item b € I' \ {d;}, distr(b,d;) > 0.

Proof: Let d; be a dummy item added to the bundle of some agent i. Let b be some item in
I'\ {d;}. For some dummy item d; # d;, let Ry, 4, be the graph established by taking graph R
(after step [2), and adding an edge (d;, d;) of weight W ((d;,d;)) = V(B)) — V(B} — d; + d;) = 0.
First notice using a similar argument to the one presented in the proof of Lemma [7} it is not hard
to see that all the cycles in the graph Ry, 4, are of strictly positive weight for any choice of d;.
We use b ~~ d; and W (b ~ d;) to denote some simple path from b to d; and its weight. We now
consider the following cases:

e bisin I\ B;: In this case, consider the cycle obtained by adding edge (d;, b) to b ~» d;. Since
every cycle in R is of strictly positive weight, we have that W (b ~~ d;) + W ({d;, b)) > 0. Since
W ((d;,b)) = vi(B;) — vi(B; + b) <0, it must be the case where W (b ~~ d;) > 0.

e b is some dummy item d; # d;: Consider the graph Ry, 4; and the cycle obtained by adding
edge (d;,d;) to d;j ~» d;. Since every cycle in Ry, 4, is of strictly positive weight, we have
W(dj ~ dl) + W(<dz,dj>) = W(d] ~ dl) > 0.

e b € B;: Consider the graph Ry, 4,. Consider the cycle obtained by adding edges (d;, d;), (d;, b)
to dj ~ d;. We have that the weight of the cycle is

Wb~ d;) + W ((d;,dj)) + W((d;,b)) = W(dj ~ d;) + W({dj,b)) > 0.
Since W ({(d;,b)) = v;(B;) —v;(Bj +b) <0, we get W (b~ d;) > 0.

Since W (b ~ d;) > 0 for every simple path from b to d;, and there are no negative cycles in R, we
have that distg(b,d;) > 0.
|

From Lemmas [7] and [§] and by carefully choosing € in step [4] we immediately get:

Corollary 6.2 After updating the edge weights (step all the cycles in R are of strictly positive
weight, all the paths ending in a dummy vertex are of a strictly positive weight.

It is crucial that we have the following:
Corollary 6.3 For every dummy item d;, p(d;) = 0.

Proof: By the way Price-ltems operates, an item d; has a price greater than 0 only if there exists
a path of negative weight from some vertex to d;. By Corollary this cannot happen. |
The next lemma shows that every for “local” change an agent may perform, her utility decreases.

Lemma 9 For every agent i, for every bundle C' € Local(B;), we have u(p, B;) > u(p,C).

Proof: Let C be some bundle in Local(B;). We inspect the following cases:

e A\C = {a} and C'\ A = {b}: In this case, there is a directed edge in (a,b) € E of weight
vi(Bi)—vi(Bi—a+b)—e = vi(Bi)~v;(C) —e. By Lemmal] p(C)—p(B;) > —vi(B;)+vi(C)+e >
v;(C) — v;(B;). Rearranging gives us u(p, B;) = v;(B;) — p(B;) > v;(C) — p(C) = u(p, B;).
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e A\C ={a} and C'\ A = 0: There is an edge between a and some dummy item d; of weight
vi(B;) —vi(Bi —a+dj) — e = vi(B;) — vi(B; — a) — € = v(B;) — v;(C) — e. Again, by Lemma
3| we get that u(p, B;) > u(p, B;).

e A\C =0 and C\ A = {b}: There is an edge between d; and b of weight v;(B;) — v;(B; —
di +b) — e = vi(B;) —vi(B; +b) — € = v;(B;) — v;(C) — €. Again, by Lemma [3| we get that

The following property of gross substitute valuations shows that the above lemma is enough to
show that the prices achieve optimal social welfare.

Lemma 10 Let v : I — R>¢ be a valuation that satisfies the gross substitute property, let P : 1 —
R>o be some item pricing and let A be some set of items in D(I,p). If |D(I,p)| > 1 then there
exists some B € Local(A) such that B € D(I,p).

Proof: Let A besome set in D(I,p) and let us assume that |D(I,p)| > 1 and D(I,p)NLocal(A) =
(). Let us define the following set:

Localt(p, A) = {B € Local(4) : 3C # A € D(I,p) s.t. |BAC| < |AAC|},

that is, the set of local sets to A that are more similar to another set in D(I,p) than A is. Since
|D(I,p)| > 1, Local™ (p, A) is non empty. Let B = arg il y ey ocatt (p,4) L8P A) —u(p, X)}, let C #
A be the set in D(I,p) such that [BAC| < [AAC| and let § = minycyocai(a){u(p, 4) — u(p, X)}.
d > 0 by our assumption. We define the following item pricing p':

e If |B\ A| =1, then for a € B\ A set p'(a) = p(a) —0/2 and p/(b) = p(b) for all other b € I —a.

e Otherwise, let a be an item in A\ B. Set p'(a) = p(a) + /2 and p'(b) = p(b) for all other
bel—a.

Notice that C € D(I,p’), A ¢ D(I,p’) and D(I,p') C D(I,p). Therefore, Local™(p, A)
Local™ (p, A). If |[B\ A] = 1 then for every set X € Local(A), we have that u(p', A) = u(p, A)
u(p, X) 4+ 0 > u(p’, X). Otherwise, for every X € Local(A), u(p’, A) = u(p, A) —6/2 > u(p, X) +
d/2 > u(p’, X). Therefore, A ¢ D(I,p), and there is no local improvement, contradicting the LI
property of gross substitute valuations. |

-
>

Theorem 6.4 Item prices p computed above achieve an optimal welfare.

Proof: By Lemma [J] for every agent i u;(p, B;) > u;(p, X) for every X € Local(B;). By the LI
property of v;, we have that B; € D;(I,p). By Lemma [10] we get that D;(I,p) = {B;}. |
7 An Optimal Static Bundle Pricing Scheme for Super-additive

Valuations

A valuation v : 21 — R> is said to be super-additive if for every two disjoint sets of items A, B C I,
v(AUB) > v(A)+v(B). We show that in the case where all agents have super-additive valuations,
it is possible to come up with bundles and bundle-prices such that for every arrival order of the
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agents, the resulting welfare is optimal. Let B = {B;, Bs,...,B,} € (2I)n be a partition of the
items such that | J; B; = B and for every ¢ # j BiN B; = 0. Let W = >, v;(B;). We present an
algorithm that given a bundling B, computes a bundling of the items and appropriate prices that
guarantee a welfare of at least W.

Given bundling B = {B'1, B3, ..., B’,} and a pricing over bundles p : B’ < R>(, we denote
utility of agent i for a collection of bundles = € 28" by u;(B/,p,z) = v; (Uprex B) = X pres p(B).
We assume we have access to demand oracles of the given agents, i.e., we can find for each
agent i a collection of bundles z; € argmax, o {u;i(B',p,x)}. We denote the function that re-
turns such a set of a maximal size by D;(B’,p) (meaning there is no 2/ D x; such that 2/ €
argmax,{u;(B',p,z)}). We also assume that given some bundle B’ € argmax,{u;(z)}, we can

find min {u;(B,p,{B'}) — w;(B,p,xz)}. We denote the function which computes this by
ze28 :x3B#B’

mindiff;(B’, B/, p).

Price-Super-Additive

Input: Additive valuations vy, ..., vy, initial bundling B = {B1, Be, ..., B, } with welfare W.
Output: Bundling B/ = {B’1,By,...,B’,} and pricing p : B’ — R>( with welfare guarantee
>W.

1. Initialize B’; + B; and p(B';) < v;(B’;) for every i.
2. While 3B’ # B’; € D;(B/, p) for some agent i:

(a) z; < Di(B',p); B'i = U B
B/ECCZ'
(b) Vj # i such that B'; € z;, B'j < 0.

(c) p(B';) = v;(B’';) for every agent j.

3. Let 0 + min; mindiff;(B’;, B/, p); e = 2.

n

4. For every i, set p(B';) + p(B';) —e.

Figure 3: Computing bundle prices for super-additive valuations.

The following lemma shows that all the items remain allocated at all time.
Lemma 11 For every x; selected in step we have that B'; € z;.

Proof: Assume not. Then

ui(B',p,z; U{B';}) v |Biu | B'| —pBi)- > p(B)

B'ex; B'ex;
> v(By)—pB)+u| |J B |- pB)
Bl'ex; Bl'ex;
= ui(Blvaxi)v
where the inequality follows from super-additivity. This contradicts the maximality of x;. |
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The following lemma shows that the resulting bundling B’ has a welfare at least as high as the
initial bundling B.

Lemma 12 Let B’ = {B'y,..., B’} be the bundling computed by Price-Super-Additive, we have
that Zz Ui(Bli) >W.

Proof:
Let By = {B'],...B'.} and By = {B'},... B2}, and p;, ps be the bundles and pricing func-
tions before and after some iteration. Let Ay = {j : B’ ; + (Z)/\B’? = ()}. Since agent i received a set

of bundles in his demand, it must be the case that v; [ |J B’]l- B> S m (B’}) =3y vj(B’}).
JEAY JEAY JEAp

Therefore, v; (B’?) v |BiuU U B’jl- =v; <B’l-1>+vi < U B’]1-|B'}> > v (B’%)%— > vj(B’Jl»).
JEAg JEAg JEAy

We get that the value of agent ¢ for her bundle after the iteration is greater than her value before

the iteration plus the sum of values of all the agents whose bundle has changed during the iteration.

Clearly, > v; (B'?) > > vi(B ;) Since this holds after every iteration, it must be that the welfare

out of the final bundling is at least the welfare out of the initial bundling. |

Finally, we show that every agent i strictly prefers B’; to every other outcome.

Lemma 13 Let B’ and p be the bundling and price over bundles computed by Price-Super-Additive.
For every agent i, {B';} is the only item in argmax, {u;(B',p,x)}.

Proof:  First, note that w;(B',p,B’;) = ¢ > 0. Let p’' : B® — R>( be a pricing over bundles

such that p/(B’;) = v;(B’;) for every i (i.e., the prices before they were changed on the last step of

Price-Super-Additive). Let 2 # {B’;} be some non-empty set of bundles in 28" By the definition of

§, we have that u;(B',p',x) = w;(B',p',x) — w;(B',p',{B’;}) < —4. Therefore, for pricing function

p we have that u;(B',p,z) < u;(B,p,z) + ne < -6+ = 0. [ |
We get the following immediate corollary.

Corollary 7.1 In case the agents have super-additive valuations, there exists bundling and static
prices over bundles such that for any arrival order of the agents, the resulting allocation is optimal.

Proof: Given a SW maximizing bundling B, Price-Super-Additive returns an optimal bundling
B’ (Lemma . Moreover, bundle price p are such that every agent arriving agent ¢ takes exactly
bundle B’; (Lemma [13)). |
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8 Figures

t =
t=1

Dorothy « d
t=2

Carl < a
t=3

Bob« c

(9) (h)

Figure 4: Phasest = 0, 1, 2, 3 of our running example. Squares represent items and circles represent
buyers. Every row represent a phase in the process, where a single buyer arrives. On the left one
sees the graph representing the valuations of the remaining buyers and items (grap;hs labeled (a),
(b), (c) and (d), where thick edges represent a maximal matching in the graph. Graphs labeled (b),
(d), (f) and (h) give the graphs R~; from Which the dynamic are computed. Directed cycles of
length O (if any) are represented by thick edges, after they are discarded prices are computed via
Algorithm Price-ltems. On the very right one sees the next buyer to arrive as well the item they
choose (based upon the pricing, and breaking ties for the sake of this example.
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A Optimal Social Welfare for k-Demand Item-Dependent Valua-
tions

Let G = (N UI, E,v) be a bipartite graph. We say that v : 2/ — R is k-demand if there exists
some bound k on the number of items an agent can benefit from — the agent’s value out of getting

bundle B is
B) = .
v(B) Xcrga§|<k;(v(b)

We say that a valuation profile v = {v1,...,v,} is item-dependent if there exists some function
w : I — R>p such that for every agent i and every item b, v;(b) € {0,w(b)}. Finally, we say that a
valuation profile is k-demand item-dependent for some vector k = (k1, ..., ky) if v is item-dependent
and for every i v; is k;-demand. Our main result of this section is

Theorem A.1 For any vector k = (ki,...,ky) and for every valuation profile which is k-demand
item-dependent there exists an optimal dynamic bundle-pricing scheme.

We say that a partition By of goods into bundles respects another partition B; of good into
bundles if for any two items u, v that belong to a bundle By € By, there exists a bundle By € B
that contains both » and v.

Given an allocation of bundles to the agents, we define the relation directed graph R = (V, E)
as follows. Let B; be the set of items assigned to agent 7. For each such bundle B;, V contains a
vertex s;. There is an edge from vertex s; to vertex s; in E if v;j(B;) = v;(B;). Note that in any
optimal allocation, there is no clients 7, j such that v;(B;) < vi(B;).

Let € < minyesv(u). The algorithm at time 0, starts with a bundle for each good.

For each time ¢,

Price-k-Demand

Input: A set of bundles B;—1 and a set of agents IN;_; and the valuation v; : B,_1 — R>¢ for
each agent 1.

Output: A set of bundles B; which respects B;_1 and an assignment of prices p; to the bundles
of Bt.

1. Compute an optimal allocation x; of the bundles of B; to the agents of N;_1.
2. For each set B(z,1) of bundles assigned to agent i in ¢, create a bundle B! < B(w,1).

3. Construct the relation graph R; from the bundles and greedily remove cycles to obtain a
DAG, DAG;: Remove each edge of R; that takes part in at least one directed cycle of R;.

4. Apply a topological sort to D. It defines an ordering o of the bundles.
5. For any bundle of rank r in o, define py(B!) + v(B;) — €".

6. Return {Bf,..., B!} and p;

Figure 5: A pricing algorithm for the Vertex Weighted k; Unit Demand case.
We first prove several invariants of Procedure
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Lemma A.2 For any time t, for any s;,s; € DAG, if there is an edge < s;,s; >€ DAG; then
wi(B;) > ui(Bj) for the pricing p;.

Proof: Suppose that s; is at rank r in o and s; at rank ' > r. We have that u;(B;) =
vi(B;) — v(B;) + € and ui(B;) = v;(Bj) — v(B;) + €. Since there is an edge < s;,5; >€ DAGy,
we have v;(Bj) = v;(Bj) = v(Bj). Moreover, v;(B;) = v(B;). It follows that w;(B;) = € and
’LLZ(B]) = GT,. Hence, ’LLZ(Bl) > ul(Bj) |

Lemma A.3 At any time t, the arriving agent © only picks bundles whose corresponding vertices
sj have ingoing edges from s; in Ry or B;.

Proof: Assume toward contradiction that this is not the case and that agent i picks a bundle
Bj whose corresponding vertex s; has no ingoing edge from s; in R;. If there is no edge from
s; to s; then v;(B;) > vi(Bj) + minyerv(u). Moreover, p(B;j) > v(Bj) — €. It follows that
wi(Bj) = vi(Bj) — pe(Bj). Hence, u;(B;) < vi(Bj) — vj(Bj) + €. Therefore, by the choice of e,
ui(Bj) < 0, a contradiction.
|
We now proceed to the proof of Theorem

Proof: [Proof of Theorem Consider a time t and let {ag,...,a;—1} be the set of agents that
arrived at times 0, ...,t—1. Moreover, let B(a;) be the set of bundles that agent a; € {ao, ..., a1}
bought when he arrived at time j and let a:f‘ '8 denote the allocation of the bundles definied by
{(ao, B(ap)), ..., (at—1, B(at—1))}. We aim at proving the following invariant.

At any time t, there exists an optimal allocation OPT; which respects xf .

This is trivially true for ¢ = 0 and we show by induction that it remains true for any time ¢ > 0.
Consider a time ¢ and the agent ¢ arriving at time t. We show that there exists an allocation that
assigns to agent ¢ the same bundles that agent ¢ buys at time ¢ and which achieves an optimal
social welfare. Let z denote an allocation of the bundles of optimal social welfare before ¢ arrives.
Such an allocation is guaranteed to exist by induction hypothesis. Let B; denote the set of bundles
that agent ¢ picks when it arrives.

We consider the set § C B; which contains the bundles whose corresponding vertices have an
ingoing edge from s; in R;. We define a new allocation z*, where each bundle of § is assigned
to agent ¢ in addition to bundle B; and any other agent j is assigned B; \ 3. We argue that z*
achieves a social welfare value of at least the social welfare value of . Recall that for any bundle
B; € B, vi(Bj) —v(Bj) > 0. We now compare the cost of z* and z: the difference of value received

by agent 7 is
> ui(B) = D> w(By),

BjE,B BjGﬁ

and for any agent j such that B; is in 3, we have
—v;(Bj) = —v(Bj).

Combining and summing over all each client j such that B; € 3, we obtain that the social welfare
of allocation z* is at least the social welfare value of x. Hence, if B; is included in B;, then by

Lemma we are done.
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Now, suppose B; is not in B;. Then, there exists a bundle B; whose corresponding vertex s;
has an ingoing edge in R; from s; which does not appear in DAGy, i.e: which was removed at step
3 of Procedure [5] as otherwise, B; would lead to a better utility for agent i, by Lemma[A.2]

For such a bundle Bj, there exists a directed cycle C' which contains the edge < s;,s; > in R;.
We now consider the allocation & where agent i receives the same bundles than in z* minus bundle
B;. Moreover for each edge < s;, s, >¢€ C, bundle By, is assigned to agent j instead of agent k. For
the other agent, the assignment is the same as in x*.

We argue that this allocation achieves a social welfare value of at least the social welfare value
of z*. Indeed for any edge < si, sy >€ C, we have that vy (By) > v(By) > ve(By). By summing
over all k such that s is a vertex of C', we obtain that the total difference between the the social
welfare values of allocations Z and z* is greater or equal to 0. Therefore, the induction hypothesis
is met and the Theorem follows. |

B No Static Prices for the Running Example (Figure [4)

Lemma B.1 There is no static pricing scheme for the running erample that achieves optimal
welfare.

Proof:  Note that in any welfare maximizing allocation for the example, all items should be
allocated. We consider pricing Let Dajice, DBob and, Dgar denote the demand sets of Alice, Bob,
and Carl, respectively, under pricing p.

Suppose that |Dajice] = 2. Then if ¢ ¢ Dpop, U Dcanl, then Do, = {b} and Dcay = {a}. We
consider the following sequence: Carl arrives first and takes a, Bob arrives second and takes b and
so ¢ is not picked, a contradiction. So suppose ¢ belongs to Dpep, then we consider the following
order of arrival: Bob arrives first and takes ¢, Alice arrives second and takes a and so b is not
picked, a contradiction. Similarly if ¢ € Dga1, we consider the arrival where Carl arrives first and
takes ¢, Alice arrives second and takes b and so at least one of a or d is not picked, a contradiction.
Symmetrically, the above argument applies to the cases where |Dpop| = 2 or |Dgarl| = 2.

Then, suppose that | Dajicel, | DBobl, [ Dcar| = 1. Suppose first that Dajice = {a} and so, Dpop, =
{b} and Dcan = {c}. Then 6 — p(a) > 12 — p(b), 8 — p(b) > 8 — p(c) and 10 — p(c) > 4 — p(a).
Combining we obtain, 6 + p(a) > p(c) > p(b) > 6 + p(a) a contradiction. Suppose then that
Djice = {b} and so, Dpop, = {c} and D¢y = {d}. Then 12 — p(b) > 6 — p(a), 8 — p(c) > 8 — p(b)
and 4 — p(a) > 10 — p(c¢). Combining, 6 + p(a) > p(b) > p(c) > 6 + p(a), a contradiction. The
assertion of the lemma follows. |
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