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Abstract

We study network games in which each player wishes to connect his source and sink, and the cost of each edge is shared among
its users either equally (in Fair Connection Games—FCG’s) or arbitrarily (in General Connection Games—GCG’s). We study
the existence and quality of strong equilibria (SE)—strategy profiles from which no coalition can improve the cost of each of its
members—in these settings. We show that SE always exist in the following games: (1) Single source and sink FCG’s and GCG’s.
(2) Single source multiple sinks FCG’s and GCG’s on series parallel graphs. (3) Multi source and sink FCG’s on extension parallel
graphs. As for the quality of the SE, in any FCG with n players, the cost of any SE is bounded by H(n) (i.e., the harmonic sum),
contrasted with the Θ(n) price of anarchy. For any GCG, any SE is optimal.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Computational game theory has introduced the issue of incentives to many of the classical combinatorial optimiza-
tion problems. The view that the actions taken by the players often are not under the control of a central authority that
optimizes the global performance, but rather influenced by strategic considerations of the individual players, has led
already to many important insights. In this paper we study the problem of network construction from a game theoretic
perspective.

Consider the problem of constructing a large network serving strategic users, who wish to connect their terminal
as cheaply as possible. Examples of such networks are water distribution systems, telecommunication services and
multicast transmission. In such cases, users make global structural decisions about building and maintaining edges
throughout the network and incur the associated costs. Such problems can naturally arise also in the design of large
computer networks, such as the Internet, which are built, operated and used by a large number of independent au-
tonomous systems, attempting to optimize their own performance.
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Fig. 1. Graph topologies. In (a), each edge is labeled by a letter, and the associate number is its cost.

Here, we study network design games in which users choose paths to connect their terminals, and incur a cost that
is determined by some pre-defined sharing rule. More formally, there is an underlying directed graph with edge costs,
and each of n users has a specified source node and sink node he wishes to connect, while paying as little as possible.
For example, in the underlying network depicted in Fig. 1, user 1 wishes to connect node s1 with node t1, and needs to
choose between the paths {e, c} and {a, b, c}. Similarly, user 2 wishes to connect nodes s2 and t2, and needs to choose
between the paths {b,f } and {b, c, d}. We assume that each user has to guarantee the connectivity between his source
and sink nodes.

A crucial question in such settings is how to allocate the edge costs among the users. Sharing of joint costs among
heterogeneous agents is a common problem, and a large number of mechanisms (sharing rules) have been proposed
for this problem, each associated with different incentives and fairness properties (Moulin and Shenker, 1992, 2001;
Herzog et al., 1997). Here, our focus is not on the mechanism design point of view. Rather, we analyze two specific
sharing rules with respect to equilibrium existence and equilibrium quality. The first model we study is the fair con-
nection game (Anshelevich et al., 2004), which corresponds to the fair cost-sharing rule (Herzog et al., 1997). The
second is the general connection game (Anshelevich et al., 2003), corresponding to an arbitrary allocation of costs
between the users.

In fair connection games, each player selects a path from its source to its sink, and the cost of each edge is split
evenly amongst all players whose path contains it. The total cost of each player is the sum of its costs on the edges
it selected. For example, in the example depicted in Fig. 1, suppose player 1 chooses the path {a, b, c} and player 2
chooses the path {b, c, d}, then, players 1 and 2 pay fully for edges a and d respectively, and the costs of edges b and
c are split among them equally, such that each player pays 1.5 to each of these edges. The total cost of each player
in this case is 4. The fair cost sharing scheme is simple and has several basic economic motivations. It corresponds
to the Shapley value (Shapley, 1953) of the problem, and is also attractive from a mechanism design point of view
(Moulin and Shenker, 2001). In addition, the resulting game is a congestion game, and thus always possesses a pure
Nash equilibrium (Rosenthal, 1973; Monderer and Shapley, 1996).

The general connection game allows each player to offer prices for edges. In this game an edge is bought if the
sum of the offers at least covers its cost, and the cost of a player is the sum of its offers on the bought edges. We
assume that each player can only offer prices for edges on one path from its source to its destination.1 For example,
in Fig. 1, suppose player 1 offers to pay 1,2.5,1 for edges a, b, c, respectively, and player 2 offers to pay 0.5,2,1
for edges b, c, d , respectively. Then, the edges a, b, c, d are bought, and each player pays the sum of its offers on the
edges. Note that in this model the strategy space of a player is more complex than in the fair connection game, where
a player should only specify his chosen path.

When considering individual incentives, one needs to discuss the appropriate solution concept. Much of the re-
search in game theory has focused on the classical notion of Nash equilibrium (NE), where the strategy of each player
is a best response to the strategies of all the other players. Indeed, Nash equilibrium is a powerful tool for predicting

1 Without this assumption, some of the results on the equilibrium quality are trivial, as will be specified below.
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outcomes of competitive games and has many benefits, most importantly, it always exists (in mixed strategies). Yet,
a natural objection to Nash equilibrium is that it is only resilient to unilateral deviations, and thus not sustainable in
the face of coordinated strategies. In many reasonable situations of network construction, agents may be able to co-
ordinate their actions, and thus NE might not be an appropriate solution concept. To address the issue of coordinated
actions, we adopt the strong equilibrium solution concept.

A strong equilibrium (SE) (Aumann, 1959) is a state from which no coalition (of any size) can deviate and improve
the utility of every member of the coalition (while possibly lowering the utility of players outside the coalition). This
resilience to deviations by coalitions of the players is highly attractive, and one can hope that once a strong equilibrium
is reached it is highly likely to sustain.

A major downside of strong equilibrium is that most games do not admit any strong equilibrium. While some
families of games have been recently shown to always possess a SE (Andelman et al., 2007), even simple classical
games like the prisoner’s dilemma do not possess any strong equilibrium (which is also an example of a congestion
game that does not possess a strong equilibrium). This unfortunate fact is perhaps one of the reasons for the relatively
limited literature on strong equilibrium (or the related notion of coalition-proof Nash equilibrium; Bernheim et al.,
1987), despite its highly attractive properties.

Our approach is to identify under what conditions the existence of a strong equilibrium in cost sharing games is
guaranteed. We identify families of acyclic graph topologies that possess a strong equilibrium for any assignment of
edge costs. One can view this separation between the graph topology and the edge costs as a separation between the
underlying infrastructure and the costs the players observe to purchase edges. While one expects the infrastructure to
be stable over long periods of time, the costs the players observe can be easily modified over short time periods. Thus,
if a network designer restricts the network topology of his underlying infrastructure to the topologies characterized
here, he ensures the existence of a SE (and thus stability) in his network, independent of the specific costs on the
edges.

Topological characterizations for network games have been recently provided for various equilibrium properties,
including equilibrium existence (Milchtaich, 2006b; Holzman and Law-Yone, 1997, 2003), equilibrium uniqueness
(Milchtaich, 2005) and equilibrium efficiency (Roughgarden, 2002; Milchtaich, 2006a; Epstein et al., 2007). Milch-
taich (2006b) studied the existence of pure Nash equilibrium in single-commodity network congestion games with
player-specific costs or weights. The existence of strong equilibrium was studied in both utility-decreasing (e.g.,
routing) and utility-increasing (e.g., fair cost-sharing) congestion games. Holzman and Law-Yone (1997) and Holz-
man and Law-Yone (2003) provided a full topological characterization for a SE existence in single-commodity
utility-decreasing congestion games, and showed that a SE always exists if and only if the underlying graph is
extension-parallel. Rozenfeld and Tennenholtz (2006) showed that in single-commodity utility-increasing conges-
tion games, the topological characterization is essentially equivalent to parallel links. In addition, they showed that
these results hold for correlated strong equilibria as well (in contrast to the decreasing setting, where correlated strong
equilibria might not exist at all). Note that the fair connection game we study is a utility increasing network congestion
game as well. Yet, we obtain different conditions than Rozenfeld and Tennenholtz (2006) due to the different assump-
tions regarding the players’ action space. More specifically, Rozenfeld and Tennenholtz (2006) allow to restrict some
players from using certain links, even though the links exist in the graph, while we assume that the available strategies
for players are fully represented by the underlying graph.

Our results are as follows. We first study the existence of strong equilibrium in acyclic networks. For the single
commodity case (all the players have the same source and sink), there is a strong equilibrium in any graph (in both
fair and general connection games). Moreover, the strong equilibrium is also the optimal solution (namely, the players
share a shortest path from the common source to the common sink). For the case of a single source and multiple
sinks (for example, in a multicast tree, where a single sender broadcasts a message to many receivers), we show that
in both fair and general connection games, there is a strong equilibrium if the underlying graph is a series parallel
graph, and we show an example of a non-series parallel graph that does not admit a strong equilibrium. For the case
of multi-commodity (multiple sources and sinks), we show that in a fair connection game, if the graph is an extension
parallel graph then there is always a strong equilibrium, and we show an example of a series parallel graph (which is
not an extension parallel graph) that does not have a strong equilibrium. As far as we know, we are the first to study
the existence of strong equilibrium in multi-commodity and single-source network games.

The second issue we study here is the quality of the obtained solution. When attempting to quantify the performance
of some solution, one needs to define an objective function. A natural objective function in our case is the total
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cost of the constructed network. In the studied models, this cost function has a particularly natural meaning, as it is
exactly the sum of the individual costs of all the players. Once an objective function is defined, we can quantify the
inefficiency of equilibria. Papadimitriou (2001) and Koutsoupias and Papadimitriou (1999) coined the term price of
anarchy (PoA), referring to the ratio between the cost of the worst-case Nash equilibrium and the optimal solution.
This notion has been extensively studied in various settings, including job scheduling (Koutsoupias and Papadimitriou,
1999; Christodoulou et al., 2004; Czumaj and Vöcking, 2002; Awerbuch et al., 2003), network design (Albers et
al., 2006; Anshelevich et al., 2004, 2003; Fabrikant et al., 2003), network routing (Roughgarden and Tardos, 2002;
Roughgarden, 2002; Awerbuch et al., 2005; Christodoulou and Koutsoupias, 2005) and more. Similarly, Andelman et
al. (2007) defined the strong price of anarchy (SPoA) as the ratio between the cost of the worst-case strong equilibrium
and the optimal solution. In addition, the k-SPoA is defined analogously for the cost of a k-SE (i.e., a profile that is
resilient to deviations of coalitions of size up to k). Since every k-SE is a NE but not vice versa, k-SE has a potential
to reduce the PoA. The notion of SPoA has been studied in job scheduling and network formation settings (Andelman
et al., 2007; Fiat et al., 2007; Leonardi and Sankowski, 2007), and it was shown that in many of these settings the
SPoA is significantly lower than the PoA. Here, we show that for any fair connection game, if there exists a strong
equilibrium, it is at most a factor of H(n) = ∑n

i=1 � 1 + lnn from the optimal solution, where n is the number of
players. This should be contrasted with the Θ(n) bound that exists for the price of anarchy (Anshelevich et al., 2004).2

We also show that the k-SPoA is at most n
k
·H(k), and provide an almost tight lower bound. We prove that these results

can be extended to any fair connection game with nondecreasing concave edge cost functions. For general connection
games, we show that any strong equilibrium is optimal. Here, the contrast with the Θ(n) price of anarchy is even more
significant than in fair connection games.

It should be noted that other approaches have been taken to study the effect of coalition formation in network
games (Hayrapetyan et al., 2006; Fotakis et al., 2006; Kuniavsky and Smorodinsky, 2007). For example, Hayrapetyan
et al. (2006) studied the effect of collusion among fixed sets of coalitions (according to an exogenous partition over
the set of agents) that attempt to maximize their collective welfare, and found that in such settings, the quality of the
solution can deteriorate by an arbitrarily high factor in the presence of coalitions.

2. Model

2.1. Game theory definitions

A game Λ = 〈N, (Σi), (ci)〉 has a finite set N = {1, . . . , n} of players. Player i ∈ N has a set Σi of actions, the
joint action set is Σ = Σ1 × · · · × Σn and a joint action S ∈ Σ is also called a profile. The cost function of player i

is ci :Σ → R
+, which maps the joint action S ∈ Σ to a non-negative real number. Let S = (S1, . . . , Sn) denote the

profile of actions taken by the players, and let S−i = (S1, . . . , Si−1, Si+1, . . . , Sn) denote the profile of actions taken
by all players other than player i. Note that S = (Si, S−i ). The social cost of a game Λ is the sum of the costs of the
players, and we denote by OPT(Λ) the minimal social cost of a game Λ. That is, OPT(Λ) = minS∈Σ costΛ(S), where
costΛ(S) = ∑

i∈N ci(S).
A joint action S ∈ Σ is a pure Nash equilibrium if no player i ∈ N can benefit from unilaterally deviating from

its action to another action, i.e., ∀i ∈ N ∀S′
i ∈ Σi : ci(S−i , S

′
i ) � ci(S). We denote by NE(Λ) the set of pure Nash

equilibria in the game Λ.

Resilience to coalitions: A pure deviation of a set of players Γ ⊆ N (also called coalition) specifies an action for
each player in the coalition, i.e., γ ∈ ×i∈Γ Σi . A joint action S ∈ Σ is not resilient to a pure deviation of a coalition Γ

if there is a pure joint action γ of Γ such that ci(S−Γ , γ ) < ci(S) for every i ∈ Γ (i.e., the players in the coalition can
deviate in such a way that each player in the coalition reduces its cost). A pure Nash equilibrium S ∈ Σ is a k-strong
equilibrium, if there is no coalition Γ of size at most k, such that S is not resilient to a pure deviation by Γ . We denote
by k-SE(Λ) the set of k-strong equilibria in the game Λ. We denote by SE(Λ) the set of n-strong equilibria, and call
S ∈ SE(Λ) a strong equilibrium (SE).

2 In what follows, as well as in the remainder of this paper, we use the Big-Theta, Big-O and Big-Omega notations, which are used to describe
the asymptotic behavior of functions. We denote g(n) = O(f (n)) if ∃c such that g(n) � c · f (n) ∀n � 1. We denote g(n) = Ω(f (n)) if ∃c such
that g(n) � c · f (n) ∀n � 1. Finally, we denote g(n) = Θ(f (n)) if ∃c1, c2 such that c1 · f (n) � g(n) � c2 · f (n) ∀n � 1.
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Next we define the price of anarchy (PoA) (Koutsoupias and Papadimitriou, 1999) and the k-strong price of anarchy
(k-SPoA) for the game Λ. The Price of Anarchy (PoA) is the ratio between the maximal cost of a pure Nash equilib-
rium (assuming one exists) and the social optimum, i.e., maxS∈NE(Λ)

costΛ(S)
OPT(Λ)

. Similarly, the Price of Stability (PoS)

is the ratio between the minimal cost of a pure Nash equilibrium and the social optimum, i.e., minS∈NE(Λ)
costΛ(S)
OPT(Λ)

.
The k-Strong Price of Anarchy (k-SPoA) is the ratio between the maximal cost of a k-strong equilibrium (assuming
one exists) and the social optimum, i.e., maxS∈k-SE(Λ)

costΛ(S)
OPT(Λ)

. The SPoA is the n-SPoA. Similarly, the Strong Price
of Stability (SPoS) is the ratio between the minimal cost of a pure strong equilibrium and the social optimum, i.e.,
minS∈SE(Λ)

costΛ(S)
OPT(Λ)

. Note that both k-SPoA and SPoS are defined only if some strong equilibrium exists.

2.2. Cost sharing connection games

A cost sharing connection game has an underlying directed graph G = (V ,E) where each edge e ∈ E has an
associated finite cost ce � 0. In a connection game each player i ∈ N has an associated source si and sink ti .

In a fair connection game, the actions Σi of player i include all the paths from si to ti . The cost of each edge is
shared equally by the set of all players whose paths contain it. Given a joint action, the cost of a player is the sum
of its costs on the edges it selected. More formally, the cost function of each player on an edge e, in a joint action S,
is fe(ne(S)) = ce

ne(S)
, where ne(S) is the number of players that selected a path containing edge e in S. The cost of

player i, when selecting path Qi ∈ Σi is ci(S) = ∑
e∈Qi

fe(ne(S)).
In a general connection game, the actions Σi of player i is a payment vector pi , where pi(e) is how much player i

is offering to contribute to the cost of edge e.3 Given a profile p, any edge e such that
∑

i pi(e) � ce is considered
bought, and Ep denotes the set of bought edges. Let Gp = (V ,Ep) denote the graph bought by the players for profile
p = (p1, . . . , pn). Clearly, each player tries to minimize its total payment which is ci(p) = ∑

e∈Ep
pi(e) if si is

connected to ti in Gp , and infinity otherwise.4 We denote by c(p) = ∑
i ci(p) the total cost under the profile p. For a

subgraph H of G we denote the total cost of the edges in H by c(H).
A symmetric connection game is a game in which all the players share the same source and sink nodes. We also call

a symmetric connection game a single source single sink connection game, or a single commodity connection game.
A single source connection game is a game in which all the players share the same source. Finally, a multi-commodity
connection game implies that each player has its own source and his own sink.

2.3. Extension parallel and series parallel directed graphs

Our directed graphs would be acyclic, and would have a source node (from which all nodes are reachable) and a
sink node (which every node can reach). We first define the following actions for composition of directed graphs.

• Identification: The identification operation allows to collapse two nodes to one. More formally, given graph G =
(V ,E), we define the identification of a node v1 ∈ V and v2 ∈ V forming a new node v ∈ V as creating a new
graph G′ = (V ′,E′), where V ′ = V − {v1, v2} ∪ {v} and E′ includes the edges of E where the edges of v1 and v2
are now connected to v.

• Parallel composition: Given two directed graphs, G1 = (V1,E1) and G2 = (V2,E2), with sources s1 ∈ V1 and
s2 ∈ V2 and sinks t1 ∈ V1 and t2 ∈ V2, respectively, we define a new graph G = G1 ‖ G2 as follows. Let G′ =
(V1 ∪ V2,E1 ∪ E2) be the union graph. To create G = G1 ‖ G2, we identify the sources s1 and s2, forming a new
source node s, and identify the sinks t1 and t2, forming a new sink t .

• Series composition: Given two directed graphs, G1 = (V1,E1) and G2 = (V2,E2), with sources s1 ∈ V1 and
s2 ∈ V2 and sinks t1 ∈ V1 and t2 ∈ V2, respectively, we define a new graph G = G1 → G2 as follows. Let G′ =
(V1 ∪V2,E1 ∪E2) be the union graph. To create G = G1 → G2 we identify the vertices t1 and s2, forming a new
vertex u. The graph G has a source s = s1 and a sink t = t2.

• Extension composition: A series composition when one of the graphs, G1 or G2, is composed of a single directed
edge is an extension composition, and we denote it by G = G1 →e G2.

3 We limit the players to select a path connecting si to ti and payments only on those edges.
4 This implies that in equilibrium every player has its sink and source connected by a path in Gp .
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An extension parallel graph (EPG) is a graph G consisting of either: (1) a single directed edge (s, t), (2) a graph
G = G1 ‖ G2 or (3) a graph G = G1 →e G2, where G1 and G2 are extension parallel graphs. A series parallel graph
(SPG) is a graph G consisting of either: (1) a single directed edge (s, t), (2) a graph G = G1 ‖ G2 or (3) a graph
G = G1 → G2, where G1 and G2 are series parallel graphs.

An undirected SPG is defined similarly to a directed SPG, with the difference that the edges are undirected. Thus,
an underlying undirected graph of a directed SPG is an undirected SPG.

Given a path Q and two vertices u,v on Q, we denote the subpath of Q from u to v by Qu,v . The following lemma
would be the main topological tool in the case of single source graphs. Its proof appears in Appendix A.

Lemma 2.1. Let G be an SPG with source s and sink t . Given a path Q, from s to t , and a vertex t ′, there exists
a vertex y ∈ Q, such that for any path Q′ from s to t ′, the path Q′ contains y and the paths Q′

y,t ′ and Q are edge

disjoint. (We call the vertex y the intersecting vertex of Q and t ′.)

3. Fair connection games

This section derives our results for fair connection games.

3.1. Existence of strong equilibrium

Since any fair connection game is a congestion game, it always admits a Nash equilibrium in pure strategies. Yet,
this is not necessarily the case for a strong equilibrium. In this section, we study the existence of strong equilibrium
in fair connection games. We begin with a simple case, showing that every symmetric fair connection game possesses
a strong equilibrium. This observation can be also derived as a special case of Proposition 3 of Rozenfeld (2007), and
we give here the proof for completeness.

Theorem 3.1. Every symmetric fair connection game admits a strong equilibrium.

Proof. Let s′ be the source and t ′ be the sink of all the players. We show that a profile S in which all the players choose
the same shortest path Q (from the source s′ to the sink t ′) is a strong equilibrium. Suppose by contradiction that S

is not a SE. Then there is a coalition Γ that can deviate to a new profile S′ such that the cost of every player j ∈ Γ

decreases. Let Q′
j be a new path used by player j ∈ Γ . Since Q is a shortest path, it holds that c(Q′

j \ (Q ∩ Q′
j )) �

c(Q \ (Q ∩ Q′
j )), for any path Q′

j . Therefore for every player j ∈ Γ we have that cj (S
′) � cj (S). However, this

contradicts the fact that all players in Γ reduce their cost. (In fact, no player in Γ has reduced its cost.) �
While every symmetric fair connection game admits a SE, it does not hold for every fair connection game. In what

follows, we study the acyclic network topologies that admit a strong equilibrium for any assignment of edge costs,
and give examples of topologies for which a strong equilibrium does not exist. The following lemma, the proof of
which appears in Appendix A, plays a major role in our proofs of the existence of SE.

Lemma 3.2. Let Λ be a fair connection game on a series parallel graph G with source s and sink t . Assume that
player i has si = s and ti = t and that Λ has some SE. Let S be a SE that minimizes the cost of player i (out of all SE),
i.e., ci(S) = minT ∈SE ci(T ) and let S∗ be the profile that minimizes the cost of player i (out of all possible profiles),
i.e., ci(S

∗) = minT ∈Σ ci(T ). Then, ci(S) = ci(S
∗).

The next lemma considers a parallel composition.

Lemma 3.3. Let Λ be a fair connection game on a graph G = G1 ‖ G2, where G1 and G2 are series parallel graphs.
If every fair connection game on the graphs G1 and G2 possesses a strong equilibrium, then the game Λ possesses a
strong equilibrium.

Proof. Let G1 = (V1,E1) and G2 = (V2,E2) have sources s1 and s2 and sinks t1 and t2, respectively. Let Ti be the
set of players with an endpoint in Vi \ {s, t}, for i ∈ {1,2}. (An endpoint is either a source or a sink of a player.) Let
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T3 be the set of players j such that sj = s and tj = t . Let Λ1 and Λ2 be the original game on the respective graphs
G1 and G2 with players T1 ∪ T3 and T2 ∪ T3, respectively.

Let S′ and S′′ be the SE in Λ1 and Λ2 that minimizes the cost of players in T3, respectively. Assume w.l.o.g. that
ci(S

′) � ci(S
′′), where player i ∈ T3. (Note that all the players in T3, in a SE, follow the same path and therefore have

the same cost.) In addition, let Λ′
2 be the game on the graph G2 with players T2 and let S̄ be a SE in Λ′

2.
We will show that the profile S = S′ ∪ S̄ is a SE in Λ. Suppose by contradiction that S is not a SE. Then, there is

a coalition Γ that can deviate such that the cost of every player j ∈ Γ decreases. By Lemma 3.2 and the assumption
that ci(S

′) � ci(S
′′), a player j ∈ T3 cannot improve its cost. Therefore, Γ ⊆ T1 ∪ T2. But this is a contradiction to S′

being a SE in Λ1 or S̄ being a SE in Λ′
2. �

Lemma 3.3 will serve us in our analysis of fair connection games. We first state our existence result for the case of
single source fair connection games.

Theorem 3.4. Every single source fair connection game on a series-parallel graph possesses a strong equilibrium.

Proof. We prove the theorem by induction on the network size |V |. The claim obviously holds if |V | = 2. We show
the claim for a series composition, i.e., G = G1 → G2, and for a parallel composition, i.e., G = G1 ‖ G2, where
G1 = (V1,E1) and G2 = (V2,E2) are SPG’s with sources s1, s2, and sinks t1, t2, respectively.

Series composition. Let G = G1 → G2. Let T1 be the set of players j such that tj ∈ V1, and T2 be the set of
players j such that tj ∈ V2 \ {s2}.

Let Λ1 and Λ2 be the original game on the respective graphs G1 and G2 with players T1 ∪ T2 and T2, respectively.
For every player i ∈ T2 with action Si in the game Λ, let Si ∩E1 be its induced action in the game Λ1, and let Si ∩E2
be its induced action in the game Λ2. Thus, in the game Λ1 the sinks of all players in T2 are set to t1 and in the
game Λ2 the sources of all players in T2 are set to s2.

Let S′ be a SE in Λ1 that minimizes the cost of players in T2 (such a SE exists by the induction hypothesis and
Lemma 3.2). Let S′′ be any SE in Λ2. We will show that the profile S = S′ ∪ S′′ is a SE in the game Λ, i.e., for player
j ∈ T2 we use the profile Sj = S′

j ∪ S′′
j .

Suppose by contradiction that S is not a SE. Then, there is a coalition Γ that can deviate such that the cost of every
player j ∈ Γ decreases. Next, we distinguish between two cases:

Case 1: Γ ⊆ T1. This is a contradiction to S′ being a SE.
Case 2: There exists a player j ∈ Γ ∩T2. By Lemma 3.2, player j cannot improve its cost in Λ1 so the improvement

is due to Λ2. Consider the coalition Γ ∩ T2, it would still improve its cost. However, this contradicts the fact that S′′
is a SE in Λ2.

Parallel composition. Follows directly from Lemma 3.3. �
We next provide sufficient topological conditions for the existence of SE in multi-commodity fair connection

games.

Theorem 3.5. Every fair connection game on an extension parallel graph possesses a strong equilibrium.

Proof. We prove the theorem by induction on the network size |V |. Let Λ be a fair connection game on an EPG G =
(V ,E). The claim obviously holds if |V | = 2. If the graph G is a parallel composition of two EPG graphs G1 and G2,
then the claim follows from Lemma 3.3. It remains to prove the claim for extension composition. Suppose the graph G

is an extension composition of the graph G1 consisting of a single edge e = (s1, t1) and an EPG G2 = (V2,E2) with
terminals s2, t2, such that s = s1 and t = t2. (The case that G1 is an EPG and G2 is a single edge is similar.) Let T1
be the set of players whose source and sink are s1 and t1, respectively (i.e., their path is in G1). Let T2 be the set of
players whose source and sink are in G2. Finally, let T3 be the set of players whose source is s1 and whose sink is in
V2 \ t1.

Let Λ1 and Λ2 be the original game on the respective graphs G1 and G2 with players T1 ∪ T3 and T2 ∪ T3,
respectively. Let S′, S′′ be SE in Λ1 and Λ2, respectively. We will show that the profile S = S′ ∪ S′′ is a SE in the
game Λ. Suppose by contradiction that S is not a SE. Then, there is a coalition Γ of minimal size that can deviate
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Fig. 2. Example of a single source fair connection game that does not admit a SE.

such that the cost of every player j ∈ Γ decreases. Clearly, T1 ∩ Γ = ∅, since players in T1 have a single strategy.
Hence, Γ ⊆ T2 ∪ T3. Since no player j ∈ T2 ∪ T3 can improve its cost in Λ1, any player j ∈ T2 ∪ T3 improves its cost
in Λ2. However, this contradicts the fact that S′′ is a SE in Λ2. �

In the following theorem we provide a few examples of slightly more general topologies in which a strong equilib-
rium does not exist.

Theorem 3.6. The following connection games exist: (1) There exists a multi-commodity fair connection game on a
series parallel graph that does not possess a strong equilibrium. (2) There exists a single source fair connection game
that does not possess a strong equilibrium.

Proof. For claim (1), consider the graph depicted in Fig. 1(a). This game has a unique NE,5 where S1 = {e, c}, S2 =
{b,f }, and each player has a cost of 5. However, consider the following coordinated deviation S′, where S′

1 = {a, b, c},
and S′

2 = {b, c, d}. In this profile, each player pays a cost of 4, and thus improves its cost.
For claim (2), consider a single source fair connection game on the graph depicted in Fig. 2. There are two players.

Player i = 1,2 wishes to connect the source s to its sink ti and the unique NE6 is S1 = {a, b}, S2 = {a, c}, and each
player has a cost of 2. Then, if both players can deviate to S′

1 = {h,f, d} and S′
2 = {h,f, e} they decrease their costs

to 2 − ε/2. �
Unfortunately, our topological conditions for the existence of SE are only sufficient, but not necessary. The Braess

graph in Fig. 5 (where the edges are directed from the source to the sink and the middle edge is arbitrarily directed)
with a single source s and multiple sinks is an example of a non-series parallel graph with a single source that always
admits a SE. Similarly, the graph in Fig. 1(b) is an example of a non-extension parallel graph which always admits a
strong equilibrium.

3.2. Strong price of anarchy

The price of anarchy in fair connection games can be as high as n. The following theorem shows that the strong
price of anarchy is bounded by H(n) = ∑n

i=1
1
i
� 1 + lnn.

Theorem 3.7. The strong price of anarchy of a fair connection game with n players is at most H(n).

5 In every NE of the game, player 1 will buy the edge e and player 2 will buy the edge f . This is since the alternate path, in the respective part,
will cost the player 2.5. Thus, player 1 (player 2) will buy the edge c (edge b) alone, and each player will have a cost of 5.

6 We can show that this is the unique NE by a simple case analysis: (i) If S1 = {h,f, d} and S2 = {h,f, e}, then player 1 can deviate to S′
1 = {h,g}

and decrease its cost. (ii) If S1 = {h,g} and S2 = {h,f, e}, then player 2 can deviate to S′
2 = {a, c} and decrease its cost. (iii) If S1 = {h,g} and

S2 = {a, c}, then player 1 can deviate to S′
1 = {a, b} and decrease its cost.
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Proof. Let Λ be a fair connection game on the graph G. We denote by Λ(Γ ) the game played on the graph G by a
set of players Γ , where the action space of player i ∈ Γ remains Σi (the same as in Λ). Let S = (S1, . . . , Sn) be a
profile in the game Λ. We denote by S(Γ ) = SΓ the induced profile of players in Γ in the game Λ(Γ ). Let ne(S(Γ ))

denote the load of edge e under the profile S(Γ ) in the game Λ(Γ ), i.e., ne(S(Γ )) = |{j | j ∈ Γ, e ∈ Sj }|. We use
the potential function for congestion games specified in (Rosenthal, 1973; Monderer and Shapley, 1996). We denote
by Φ(S(Γ )) the potential function of the profile S(Γ ) in the game Λ(Γ ), where Φ(S(Γ )) = ∑

e∈E

∑ne(S(Γ ))
j=1 fe(j),

and define Φ(S(φ)) = 0. In our case, it holds that

Φ(S) =
∑
e∈E

ce · H (
ne(S)

)
. (1)

Let S be a SE, and let S∗ be the profile of the optimal solution. We define an order on the players as follows. Let
Γn = {1, . . . , n} be the set of all the players. For each k = n, . . . ,1, since S is a SE, there exists a player in Γk , w.l.o.g.
call it player k, such that

ck(S) � ck

(
S−Γk

, S∗
Γk

)
. (2)

In this way, Γk is defined recursively, such that for every k = n, . . . ,2 it holds that Γk−1 = Γk \ {k}. (That is, after the
renaming, Γk = {1, . . . , k}.)

Let ck(S(Γk)) denote the cost of player k in the game Λ(Γk) under the induced profile S(Γk). It is easy to see that
ck(S(Γk)) = Φ(S(Γk)) − Φ(S(Γk−1)).7 Therefore,

ck(S) � ck

(
S−Γk

, S∗
Γk

)
� ck

(
S∗(Γk)

) = Φ
(
S∗(Γk)

) − Φ
(
S∗(Γk−1)

)
. (3)

Summing over all players, we obtain:
∑
i∈N

ci(S) � Φ
(
S∗(Γn)

) − Φ
(
S∗(φ)

)

= Φ
(
S∗(Γn)

) =
∑
e∈S∗

ce · H (
ne(S

∗)
)

�
∑
e∈S∗

ce · H(n) = H(n) · OPT(Λ),

where the first inequality follows since the sum of the right-hand side of Eq. (3) telescopes, and the second equality
follows from Eq. (1). �

Next we bound the SPoA when coalitions of size at most k are allowed.

Theorem 3.8. The k-SPoA of a fair connection game with n players is at most n
k

· H(k).

Proof. Let S be a SE of Λ, and S∗ be the profile of the optimal solution of Λ. To simplify the proof, we assume
that n/k is an integer. We partition the players to n/k groups T1, . . . , Tn/k each of size k. Let the game Λj be the
subgame induced by the profile S on the graph G played by the set of players Tj , i.e., the profile of the players in
N \ Tj is fixed to S−Tj

and only the players in Tj play. The obtained edge cost functions in the game Λj are concave
and nondecreasing. Let S(Tj ) denote the profile of the k players in Tj in the game Λj induced by the profile S of the
game Λ. Since Theorem 3.7 holds for nondecreasing concave edge cost functions (see Theorem 3.10), it follows that
for each game Λj , j = 1, . . . , n/k,

costΛj

(
S(Tj )

) =
∑
i∈Tj

ci(S) � H(k) · OPT(Λj ) � H(k) · OPT(Λ),

where the first equality follows since for each game Λj , the cost of player i ∈ Tj is ci(S).

7 This follows since for any strategy profile S, if a single player k deviates to strategy S′
k

, then the change in the potential value Φ(S)−Φ(S′
k
, S−k)

is exactly the change in the cost to player k.
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Summing over all games Λj , j = 1, . . . , n/k, we obtain:

costΛ(S) =
n/k∑
j=1

costΛj

(
S(Tj )

)
� n

k
· H(k) · OPT(Λ). �

The following theorem shows an almost matching lower bound. The lower bound is at most H(n) from the upper
bound and both for k = O(1) and k = Ω(n) the difference is only a constant.

Theorem 3.9. For fair connection games with n players, k-SPoA � max{n
k
,H(n)}.

Proof. For the lower bound of H(n), we observe that in the example presented in Anshelevich et al. (2004), the
unique Nash equilibrium is also a strong equilibrium, and therefore k-SPoA = H(n) for any 1 � k � n. For the lower
bound of n/k, consider a graph composed of two parallel links of costs 1 and n/k. Consider the profile S in which
all n players use the link of cost n/k. The cost of each player is 1/k, while if any coalition of size at most k deviates
to the link of cost 1, the cost of each player is at least 1/k. Therefore, the profile S is a k-SE, and k-SPoA = n/k. �

The results of Theorems 3.7 and 3.8 can be extended to concave cost functions. Consider the extended fair connec-
tion game, where each edge has a cost which depends on the number of players using that edge, ce(ne). We assume
that the cost function ce(ne) is a nondecreasing, concave function. Note that the cost of an edge ce(ne) might increase
with the number of players using it, but the cost per player fe(ne) = ce(ne)

ne
decreases when ce(ne) is concave.

Theorem 3.10. The strong price of anarchy of a fair connection game with nondecreasing concave edge cost functions
and n players is at most H(n).

Proof. The proof is analogues to the proof of Theorem 3.7. For the proof we show that cost(S) � Φ(S∗) � H(n) ·
cost(S∗). We first show the first inequality. Since the function ce(x) is concave, the cost per player ce(x)

x
is a non-

increasing function. Therefore, inequality (3) in the proof of Theorem 3.7 holds. Summing inequality (3) over all
players we obtain cost(S) = ∑

i ci(S) � Φ(S∗(Γn))−Φ(S∗(φ)) = Φ(S∗). The second inequality follows since ce(x)

is nondecreasing and therefore
∑ne

x=1
ce(x)

x
� H(ne) · ce(ne). �

Using the arguments in the proof of Theorem 3.10 and the proof of Theorem 3.8 we derive,

Theorem 3.11. The k-SPoA of a fair connection game with nondecreasing concave edge cost functions and n players
is at most n

k
· H(k).

Since the set of strong equilibria is contained in the set of Nash equilibria, it must hold that SPoA � PoA, meaning
that the SPoA can only be improved compared to the PoA. However, with respect to the price of stability, the opposite
direction holds, that is, SPoS � PoS. We next show that there exists a fair connection game in which the inequality is
strict.

Theorem 3.12. There exists a fair connection game in which SPoS > PoS.

Proof. Consider a single source fair connection game on the graph depicted in Fig. 3 (which is a variation of the
example given in Anshelevich et al., 2004). Player i = 1, . . . , n wishes to connect the source s to its sink ti . Assume
that each player i = 1, . . . , n − 2 has its own path of cost 1

i
from s to ti and players i = n − 1, n have a joint path of

cost 2
n

from s to ti . Additionally, all players can share a common path of cost 1 + ε for some small ε > 0. The optimal
solution connects all players through the common path of cost 1+ ε, and this is also a Nash equilibrium with total cost
1 + ε. It is easy to verify that the solution where each player i = 1, . . . , n − 2 uses his own path and users i = n − 1, n

use their joint path is the unique strong equilibrium of this game with total cost
∑n−2

i=1
1 + 2 = Θ(logn). �

i n
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Fig. 3. Example of a network topology in which SPoS > PoS.

While the example above shows that the SPoS may be greater than the PoS, the upper bound of H(n) = Θ(logn),
proven for the PoS (Anshelevich et al., 2004), serves as an upper bound for the SPoS as well. This is a direct corollary
from Theorem 3.7, as SPoS � SPoA by definition.

Corollary 3.13. The strong price of stability of a fair connection game with n players is at most H(n) = Θ(logn).

4. General connection games

In this section, we derive our results for general connection games.

4.1. Existence of strong equilibrium

We begin with a characterization of the existence of a strong equilibrium in symmetric general connection games.
Similar to Theorem 3.1 (using a similar proof) we establish,

Theorem 4.1. In every symmetric general connection game there exists a strong equilibrium.

While every single source general connection game possesses a pure Nash equilibrium (Anshelevich et al., 2003),
it does not necessarily admit some strong equilibrium.8

Theorem 4.2. There exists a single source general connection game that does not admit any strong equilibrium.

Proof. Consider a single source general connection game with 3 players on the graph depicted in Fig. 4. Player i

wishes to connect the source s with its sink ti . We need to consider only the NE profiles: (i) If all three players use the
link of cost 3, then there must be two agents whose total sum exceeds 2, thus they can both reduce cost by deviating
to an edge of cost 2 − ε. (ii) If two of the players use an edge of cost 2 − ε jointly, and the third player uses a different
edge of cost 2 − ε, then, the players with non-zero payments can deviate to the path with the edge of cost 3 and reduce
their costs (since before the deviation the total payments of the players is 4 − 2ε). We showed that none of the NE are
SE, and thus the game does not possess any SE. �

Next we show that for the class of series parallel graphs, there is always a strong equilibrium in the case of a single
source.

Theorem 4.3. Every single source general connection game on a series-parallel graph admits a strong equilibrium.

Proof. Let Λ be a single source general connection game on an SPG G = (V ,E) with source s and sink t . We
present an algorithm that constructs a specific SE. We first consider the following partial order between the players.

8 We thank Elliot Anshelevich, whose similar topology for the fair-connection game inspired this example.
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Fig. 4. Example of a single source general connection game that does not admit a strong equilibrium. The edges that are not labeled with costs have
a cost of zero.

For players i and j , we have that i �→ j if there is a directed path from ti to tj . We complete the partial order to a full
order (in an arbitrary way), and w.l.o.g. we assume that 1 �→ 2 �→ · · · �→ n.

The algorithm COMPUTE-SE, considers the players in an increasing order, starting with player 1. Each player i

will fully buy a subset of the edges, and any player j > i will consider the cost of those (bought) edges as zero.
When COMPUTE-SE considers player j , the cost of the edges that players 1 to j − 1 have bought is set to zero, and
player j fully buys a shortest path Qj from s to tj . Namely, for every edges e ∈ Qj \ ⋃

i<j Qi we have pj (e) = ce

and otherwise pj (e) = 0. We next show that the algorithm COMPUTE-SE computes a SE.
Assume by way of contradiction that the profile p is not a SE. Then, there exists a coalition that can improve the

costs of all its players by a deviation. Let Γ be such a coalition and let player i = max{j ∈ Γ }. For a player j ∈ Γ

let Q̄j and p̄j be the path and payment of player j after the deviation, respectively. Let Q′ be a path from the sink
of player i, i.e. ti , to the sink of G, i.e. t . Then Q = Q̄i ∪ Q′ is a path from the source s to the sink t . For any player
j < i, let yj be the intersecting vertex of Q and tj (by Lemma 2.1 one is guarantee to exist). Let y be the furthest
vertex on the path Q such that y = yj for some j < i. The path from the source s to node y was fully paid for by
players j < i in p (before the deviation). We show that player i’s cost after the deviation, i.e. ci(p̄), is at least its cost
before the deviation, i.e. ci(p), contradicting the fact that player i improved its cost. Recall that given two vertices
u,v on path Q̄ we denote by Q̄u,v the subpath of Q̄ from u to v.

Before the deviation of the coalition Γ , a path from s to y was fully paid for by the players j < i. Next we show
that no player k > i pays for any edge on any path from s to ti . Consider a player k > i and let Q′

k = Qk ∪ Q′′
k , where

Q′′
k is a path connecting tk to t . Let yk be the intersecting vertex of Q′

k and ti . Since there exists a path from s to yk

that was fully paid for by players j < k before the deviation, in particularly the path Qi
s,yk

, player k will not pay for

any edge on any path connecting s and yk . Therefore player i fully pays for all edges on the path Q̄i
y,ti

, i.e., p̄i(e) = ce

for all edges e ∈ Q̄i
y,ti

. Now consider the algorithm COMPUTE-SE at the step when player i selects a shortest path

from the source s to its sink ti and determines its payment pi . At this point, player i could have bought the path Q̄i
y,ti

,
since a path from s to y was already paid for by players j < i. Hence, ci(p̄) � ci(p). This contradicts the fact that
player i improved its cost and therefore not all the players in Γ reduced their cost. This implies that p is a strong
equilibrium. �
4.2. Strong price of anarchy

Anshelevich et al. (2003) showed that the price of anarchy can be as large as n, even for two parallel edges. Here,
we show that in contrast to Nash equilibrium, any strong equilibrium in general connection games yields the optimal
cost.

Theorem 4.4 considers the case of single-source games, and Theorem 4.5 considers any general connection game
(i.e., multi-commodity). Although the former is a special case of the latter, we present the two results separately due
to the added value of each proof technique.
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Theorem 4.4. In single source general connection game, if there exists a strong equilibrium, then the strong price of
anarchy is 1 (i.e., it is an optimal solution).

Proof. Let p = (p1, . . . , pn) be a strong equilibrium, and let T ∗ be the minimum cost Steiner tree of all players,
rooted at the (single) source s. Let T ∗

e be the subtree of T ∗ disconnected from s when edge e is removed, and let
Γ (Te) be the set of players which have sinks in Te and have non-zero payments (i.e., for any player i, ci(p) > 0).
For a set of edges E, let c(E) = ∑

e∈E ce. Finally, let P(Te) = ∑
i∈Γ (Te)

ci(p). Assume by way of contradiction that
c(p) > c(T ∗). We will show that there exists a sub-tree T ′ of T ∗, that connects a subset of players Γ ⊆ N , and a
new set of payments p̄, such that for each i ∈ Γ , ci(p̄) < ci(p). This will contradict the assumption that p is a strong
equilibrium.

First we show how to find a sub-tree T ′ of T ∗, such that for any edge e ∈ T ′, the payments of players with sinks
in T ′

e is strictly more than the cost of T ′
e ∪ {e}. To build T ′, define an edge e to be bad if the cost of T ∗

e ∪ {e} is at
least the payments of the players with sinks in T ∗

e , i.e., c(T ∗
e ∪ {e}) � P(T ∗

e ). Let B be the set of bad edges. We
define T ′ to be T ∗ − ⋃

e∈B(T ∗
e ∪ {e}). Note that we can find a subset B ′ of B such that

⋃
e∈B(T ∗

e ∪ {e}) is equal to⋃
e∈B ′(T ∗

e ∪ {e}) and for any e1, e2 ∈ B ′ we have T ∗
e1

∩ T ∗
e2

= ∅. (The set B ′ will include any edge e ∈ B for which
there is no other edge e′ ∈ B on the path from e to the source s.) Considering the edges in e ∈ B ′ we can see that
any subtree T ∗

e we delete from T ∗ cannot decrease the difference between the payments and the cost of the remaining
tree. Therefore, for every edge e in T ′, it holds that c(T ′

e ∪ {e}) < P (T ′
e ).

Now we have a tree T ′ and our coalition will be Γ (T ′). It just remains to find payments p̄ for the players in Γ (T ′)
such that they will buy the tree T ′ and every player in Γ (T ′) will lower its cost, i.e., ci(p) > ci(p̄) for i ∈ Γ (T ′).
(Recall that the payments have the restriction that player i can only pay for edges on the path from s to ti .)

We will now define the coalition payments p̄. Let ci(p̄, T ′
e ) = ∑

e′∈T ′
e
p̄i (e

′) be the payments of player i for the
subtree T ′

e . We will show that for every subtree T ′
e , ci(p̄, T ′

e ∪ {e}) < ci(p), and hence ci(p̄) < ci(p). Consider the
following bottom up process that defines p̄. We assign the payments of edge e in T ′, after we assign payments to all
the edges in T ′

e . This implies that when we assign payments for e, we have that the sum of the payments in T ′
e is equal

to c(T ′
e ) = ∑

i∈Γ (T ′
e )

ci(p̄, T ′
e ). Since e was not a bad edge, we know that c(T ′

e ∪{e}) = c(T ′
e )+ce < P (T ′

e ). Therefore,

we can update the payments p̄ of players i ∈ Γ (T ′
e ), by setting p̄i(e) = ce

Δi∑
j∈Γ (T ′

e) Δj
, where Δj = cj (p)− cj (p̄, T ′

e ).

After the update we have for player i ∈ Γ (T ′
e ),

ci

(
p̄, T ′

e ∪ {e}) = ci

(
p̄, T ′

e

) + p̄i(e)

= ci

(
p̄, T ′

e

) + Δi

ce∑
j∈Γ (T ′

e )
Δj

= ci(p) − Δi

(
1 − ce

P (Γ (T ′
e )) − c(T ′

e )

)
,

where we used the fact that
∑

j∈Γ (T ′
e )

Δj = P(Γ (T ′
e ))−c(T ′

e ). Since ce < P (Γ (T ′
e ))−c(T ′

e ) it follows that ci(p̄, T ′
e ∪

{e}) < ci(p). �
We now present a stronger result, showing that the above result holds for multi-commodity games as well.

Theorem 4.5. In any multi-commodity general connection game, if there exists a strong equilibrium, then the strong
price of anarchy is 1 (i.e., it is an optimal solution).

Proof. Let p = (p1, . . . , pn) be a strong equilibrium, and suppose by contradiction that costΛ(p) > OPT(Λ). For
every player i and edge e, let p′

i (e) = pi(e) · OPT(Λ)
costΛ(p)

. We slightly abuse notation and denote by ci(p) = ∑
e∈E pi(e)

the total payment of player i under the profile p (even if si is not connected to ti ). By the assumption that costΛ(p) >

OPT(Λ), p′
i (e) < pi(e) for every i ∈ N and

∑
i ci(p

′) = OPT(Λ). We will reach a contradiction to p being a SE.
Let G denote the graph of the optimum solution, and fix a path Pi in it for each player i ∈ N . A payment vector p

is said to be valid for G if ∀i, e, pi(e) > 0 ⇒ e ∈ Pi (i.e., each player pays only for edges in his path). Let P be the
set of all payment vectors that buy G s.t. each player i pays ci(p

′). All the payment vectors in P are invalid by the
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assumption that p is a SE (otherwise, all the players can deviate to G and pay less than in p, contradiction). Let p′′
be a payment vector in P that minimizes the sum of invalid payments.

Given G and p′′, we construct a directed graph Ḡ = (V̄ , Ē), in which V̄ = N , and Ē = {(i, j) | ∃e ∈ Pi s.t. p′′
j (e) >

0}. That is, the nodes of Ḡ are the players, and there is an edge from i to j in Ḡ if there exists an edge in i’s path in G

for which j pays a positive amount. An edge (i, j) ∈ Ḡ is said to be bad if ∃e ∈ Pi s.t. e /∈ Pj , and p′′
j (e) > 0. Since

p′′ is invalid, Ḡ must have at least one bad edge.
Let us look at the graph G′ representing the maximal strongly connected components (MSCC) of Ḡ (i.e., every

MSCC in Ḡ is represented by a node in G′). G′ is acyclic, and therefore has a sink node (according to the topological
order) with only incoming edges, call it Γ (we denote by Γ both the MSCC and the set of players it represents).
We will show that this component represents the deviating coalition. First, since it has no outgoing edges, no player
outside of Γ pays for edges of players in Γ . It is thus left to show that there is no bad edge in Γ .

Suppose in contradiction there is a bad edge (i, j) in Γ . Since Γ is a MSCC, there must exist a path from node j

to node i, thus a cycle containing edge (i, j). For every edge (k, �) in this cycle, there exists an edge e ∈ Pk s.t.
p′′

� (e) > 0. But for every such edge, we can update the payments of players k and � to be: p′′′
� (e) = p′′

� (e) − ε, and
p′′′

k (e) = p′′
k (e)+ ε for some small ε. For every node v in the cycle, cv(p

′′′) = cv(p
′′), but the sum of invalid payments

decreased. This is in contradiction to the minimality of p′′.
Thus, the players in Γ buy their edges in G using their valid payments in p′′, and ci(p

′′) � ci(p
′) < ci(p), contra-

dicting p is a SE. �
Appendix A

A.1. Proof of Lemma 2.1

Lemma 2.1 is a direct corollary of the following lemma.
In the lemma we use the following definition of vertex disjoint paths. Let (u1, v1) and (u2, v2) be two pairs of

vertices, let P1 be a path from u1 to v1 and let P2 be a path from u2 to v2. We say that the paths P1 and P2 are vertex
disjoint, if P1 \ {u1, v1} and P2 \ {u2, v2} have no common vertice.

Lemma A.1. Let G be an SPG with source s and sink t . For any path, Q, from s to t , and any pair of vertices (s′, t ′),
one of the following holds:

(1) Any path from s′ to t ′ and the path Q are vertex disjoint.
(2) There exist two vertices x, y ∈ Q, such that for any path Q′ from s′ to t ′, Q′

s′,x and Q are vertex disjoint, and
similarly, Q′

y,t ′ and Q are vertex disjoint. (We call the vertices x, y the intersecting vertices with respect to Q.)

Proof. The proof requires the following definition of embedding and lemma which appear in Milchtaich (2006a) for
undirected graphs. We start with the definition.

Definition A.2. A graph G′ is embedded in a graph G if G can be obtained from G′ by applying the following
operations: (1) subdivision of an edge: replaces an edge (u, v) by two edges with a single common new vertex, i.e.,
(u,w) and (w,v) where w is a new vertex; (2) addition of a new edge joining two existing vertices; (3) extension
composition.

Note that if G′ is embedded in a sub-graph of G, it is also embedded in G. The graph in Fig. 5 is called a Braess
graph. The proof requires the following lemma.

Lemma A.3. (See (Milchtaich, 2006a).) A graph G is an SPG if and only if the Braess graph is not embedded in G.

It follows from the lemma that the SPG G does not embed a Braess graph when viewed as an undirected graph,
since a (directed) SPG is an SPG when viewed as an undirected graph.

Consider a path Q from s, the source of G, to t , its sink. If every path from s′ to t ′ is vertex disjoint to Q we are
done (since condition (1) of the lemma holds). Otherwise, consider a path Q′ from s′ to t ′ that is not vertex disjoint
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Fig. 5. Braess graph.

to Q. Let x be the first common vertex and y the last common vertex (note that Q′ contains both x and y). Then,
Q′

s′,x and Q are vertex disjoint, and similarly, Q′
y,t ′ and Q are vertex disjoint. Consider an additional path Q′′ that

connects s′ and t ′, and let Q̄′′ be its extension to a path connecting s and t .
If Q′′ is vertex disjoint to Q, and s′ /∈ Q or t ′ /∈ Q, then the undirected graph induced by H = Q̄′′ ∪Q′

s′,x ∪Q′
y,t ′ ∪Q

embeds a Braess graph. Otherwise, let z be the first common vertex and w the last common vertex. Then, Q′′
s′,z and Q

are vertex disjoint, and similarly, Q′′
w,t ′ and Q are vertex disjoint. Assume by contradiction that {x, y} �= {z,w} (note

that if {x, y} = {z,w}, then condition (2) of the lemma holds). If x �= z then the undirected graph induced by H =
Q̄′′

s,z ∪ Q′
s′,x ∪ Q embeds a Braess graph. Otherwise, y �= w, the undirected graph induced by H = Q′

y,t ′ ∪ Q̄′′
w,t ∪ Q

embeds a Braess graph. �
A.2. Proof of Lemma 3.2

For the proof of Lemma 3.2 we will use the following notation. Given a joint action R, we denote by Qi(R) the path
of player i in the profile R (note that Qi(R) is essentially Ri ). Recall that, given two vertices u,v on the path Qi(R),
Qi

u,v(R) is the subpath of Qi(R) from u to v and we denote by ci
u,v(R) the cost of player i on the subpath Qi

u,v(R).
Let MIN-COSTi be the set of profiles that minimize the cost of player i among all profiles and let min-costi be

their cost to player i. That is, min-costi = minT ∈Σ ci(T ) and MIN-COSTi = {T | ci(T ) = min-costi}.
Recall that S is a strong equilibrium that minimizes the cost of player i, i.e., S = arg minT ∈SE ci(T ). Let S̄ be a

profile in MIN-COSTi that is obtained from S by a deviation of a coalition with a minimal number of players, and if
one of the minimal coalitions contains player i, we choose that profile. Let Γ be the set of players deviating. (Note
that given T ∈ MIN-COSTi and S, the coalition to deviate from S to T is ΓS,T = {j : Sj �= Tj }.)

For any j ∈ Γ , let xj , yj denote the two intersecting vertices of sj and tj with respect to Qi(S̄) (whose existence is
guaranteed by Lemma A.1). Note that such intersecting vertices exist for any player j ∈ Γ (otherwise, we can remove
from the coalition Γ players that do not have intersecting vertices, as they do not affect player i’s cost, contradicting
the minimality of the coalition Γ ).

Let S∗ be the profile obtained from S by the coalition Γ , when each player j ∈ Γ deviates to Qj(S∗) = Q
j
sj ,xj

(S)∪
Qi

xj ,yj
(S̄) ∪ Q

j
yj ,tj

(S). First we argue that S∗ is optimal for player i.

Claim A.4. Profile S∗ minimizes the cost of player i, i.e., S∗ ∈ MIN-COSTi .

Proof. For every player j ∈ Γ we have Q
j
xj ,yj

(S∗) = Qi
xj ,yj

(S̄) ⊇ Q
j
xj ,yj

(S̄) ∩ Qi
xj ,yj

(S̄). Therefore Qj(S∗) ∩
Qi(S∗) = Qi

xj ,yj
(S̄) ⊇ Qj(S̄) ∩ Qi(S∗). This implies that ci(S

∗) � ci(S̄), and since ci(S̄) = min-costi the claim
follows. �

Now we assume by way of contradiction that ci(S
∗) = min-costi < ci(S). There are two cases.

Case a: If for every player j ∈ Γ , cj (S
∗) < cj (S), it contradicts that S is a SE.

Case b: Otherwise, there exists a player j such that cj (S
∗) � cj (S). Our main goal is to show that one can construct

a new coalition of a smaller size or a minimal coalition containing player i, where player i /∈ Γ , whose deviation will
lead to a minimal cost path for player i. In both cases we reach a contradiction to our choice of the coalition Γ .
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Let Q′ = Qi
s,xj

(S∗) ∪ Q
j
xj ,yj

(S) ∪ Qi
yj ,t (S

∗). Note that Q′ is a path connecting the source s to the sink t and

utilizing Q
j
xj ,yj

(S). Let Γ ′ be the set of players k ∈ Γ for which there exists a path that edge intersects Q
j
xj ,yj

(S),
and let x′

k, y
′
k denote the two intersecting vertices w.r.t. Q′ (whose existence is guaranteed by Lemma A.1). For any

player k ∈ Γ ′, we define x′′
k (respectively, y′′

k ) to be the latter (former) of the two vertices xj and x′
k (yj and y′

k) on Q′.
Consider the profile S′, obtained as follows. For any player k ∈ Γ ′, Qk(S′) = Qk

sk,x
′′
k

(S∗)∪Q
j

x′′
k ,y′′

k

(S)∪Qk
y′′
k ,tk

(S∗),

and for any player k /∈ Γ ′, Qk(S′) = Qk(S∗). Note that we are guarantee that there is at least one edge in Q
j

x′′
k ,y′′

k

(S).

Note that Qj(S′) = Qj(S) and therefore player j is not part of the coalition required to deviate from S to S′. If we
can show that S′ ∈ MIN-COSTi we will reach a contradiction to the minimality of the coalition Γ that deviated from
S to some profile in MIN-COSTi . The following two lemmas would be required to complete our proof.

Lemma A.5. It holds that c
j
xj ,yj

(S′) � c
j
xj ,yj

(S).

Proof. It is sufficient to prove that for every player k ∈ Γ ′

Qk(S) ∩ Q
j
xj ,yj

(S) ⊆ Qk(S′) ∩ Q
j
xj ,yj

(S). (A.1)

There are four cases:

Case a: xj � x′
k , and y′

k � yj . Then, the following hold:

Qk
sk,x

′
k
(S′) ∩ Qj(S) = ∅,

Qk
y′
k,tk

(S′) ∩ Qj(S) = ∅,

Qk
x′
k,y

′
k
(S′) = Q

j

x′
k,y

′
k

(S),

and Eq. (A.1) follows.

Case b: x′
k � xj and yj � y′

k . Then, it holds that Qk
xj ,yj

(S′) = Q
j
xj ,yj

(S), and Eq. (A.1) follows.

Case c: x′
k � xj and y′

k � yj . Then, it holds that:

Qk
xj ,y′

k
(S′) = Q

j

xj ,y′
k

(S),

Qk
y′
k,tk

(S′) ∩ Qj(S) = ∅,

and Eq. (A.1) follows.

Case d: xj � x′
k , and yj � y′

k . This case is symmetric to case c. Hence, Eq. (A.1) follows. �
Lemma A.6. It holds that

c
j
xj ,yj

(S) � c
j
xj ,yj

(S∗). (A.2)

Proof. Since cj (S) � cj (S
∗), it is sufficient to show that

c
j
sj ,xj

(S) = c
j
sj ,xj

(S∗),

c
j
yj ,tj

(S) = c
j
yj ,tj

(S∗).

For every player k ∈ Γ , if there exists a vertex vk,j which is reachable from both sj and sk , and xj is reachable
from vk,j , then xk = xj , and from the construction of the profile S∗ it follows that Qk

sk,xk
(S∗) = Qk

sk,xk
(S). Otherwise,

no path of k can intersect a path from sj to xj , and therefore k’s action has no influence on the cost of this subpath.

Therefore c
j
sj ,xj

(S) = c
j
sj ,xj

(S∗). Similarly we obtain c
j
yj ,tj

(S) = c
j
yj ,tj

(S∗). �
To complete the proof we have two cases, depending on whether player i is in Γ .
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Case b1: Assume Qi
xj ,yj

(S′) = Q
j
xj ,yj

(S′). (This holds if either player i ∈ Γ or Qi
xj ,yj

(S) = Q
j
xj ,yj

(S) in S.) In
this case we have

ci
xj ,yj

(S′) = c
j
xj ,yj

(S′) � c
j
xj ,yj

(S) � c
j
xj ,yj

(S∗) = ci
xj ,yj

(S∗),

where the first equality follows from the construction of S′, the first inequality follows from Lemma A.5, the second
inequality follows from Lemma A.6 and the second equality follows from the construction of S∗. Thus, ci(S′) �
ci(S∗), and hence S′ ∈ MIN-COSTi . This is in contradiction to the minimality of the coalition Γ size that deviates
from S to some profile in MIN-COSTi .

Case b2: Assume that Qi
xj ,yj

(S′) �= Q
j
xj ,yj

(S′). Thus, player i /∈ Γ . Here we will reach a contradiction to the fact
that player i /∈ Γ .

Consider the profile S′′ that is obtained from S′ by the following deviation of player i: Qi(S′′) = Qi
s,xj

(S′) ∪
Q

j
xj ,yj

(S′) ∪ Qi
yj ,t (S

′), i.e., player i deviates to the subpath Q
j
xj ,yj

(S′) from xj to yj . Then, we get

ci
xj ,yj

(S′′) = c
j
xj ,yj

(S′′) � c
j
xj ,yj

(S′) � c
j
xj ,yj

(S) � c
j
xj ,yj

(S∗) = ci
xj ,yj

(S∗),

where the first equality follows from the construction of S′′, the first inequality follows from the fact that player i joins
the path Q

j
xj ,yj

(S′), the second inequality follows from Lemma A.5, the third inequality follows from Lemma A.6
and the last equality follows from the construction of S∗. Thus, we get that ci(S′′) � ci(S∗), where the profile S′′ is
obtained by deviation of the minimal coalition Γ \ {j} ∪ {i}. Contradicting the fact that player i is not in the minimal
coalition Γ .
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