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Abstract—We study the communication complexity of wel-
fare maximization in combinatorial auctions with m items
and two players with subadditive valuations. We show that
outperforming the trivial 1/2-approximation requires expo-
nential communication, settling an open problem of Dobzinski,
Nisan and Schapira [STOC’05, MOR’10] and Feige [STOC’06,
SICOMP ’09].

To derive our results, we introduce a new class of subadditive
functions that are “far from” fractionally subadditive (XOS)
functions, and establish randomized communication lower
bounds for a new “near-EQUALITY” problem, both of which
may be of independent interest.

I. INTRODUCTION

Combinatorial auctions have been a driving force of

Algorithmic Game Theory (AGT) since its inception: how

should one allocate goods among interested parties? In a

combinatorial auction, a central designer has a set M of m
indivisible goods to allocate, and each of n players has a

valuation (set) function vi : 2M → R+, which is private

(known only to player i). We wish to partition the items in

a way that maximizes the social welfare
∑

i vi(Si), where

Si denotes the items received by player i in the partition.

This fundamental problem has received significant atten-

tion in various models: with or without incentives, with or

without restrictions on valuations, with or without compu-

tational limits on the players, etc. In this paper we prove

standard communication lower bounds when two players

have subadditive valuations.1 That is, our lower bounds rule

out the existence of good mechanisms even when players

honestly follow the intended protocol, are computationally

unbounded, and are assumed to have subadditive valuation

functions. Subadditive set functions are central to Algorith-

mic Game Theory as the frontier of complement-freeness

(e.g. [FFGL13], [RW15], [CM16], [CZ17]), and are natural

1A valuation function is subadditive if for all S, T v(S ∪ T ) ≤ v(S) +
v(T ).

mathematical objects of study in algorithm design broadly

(e.g. [BDF+12], [RS17]).

Previous work: The study of combinatorial auctions

through the lens of communication complexity was pio-

neered by Blumrosen, Nisan, and Segal, motivated by the

fact that communication lower bounds sidestep challenging

debates on what can be assumed about players’ behav-

ior [Nis00], [BNS07], [NS06]. A high-level overview of this

early literature appears in Section I-B.

The current state-of-the-art is fairly remarkable: Without

any restrictions on the valuations, a max{1/n, 1/O(
√
m)}-

approximation to the optimal welfare can be achieved in

poly(n,m) communication [LS11]; and this is tight [NS06].

For fractionally subadditive (XOS) valuations (a strict sub-

class of subadditive),2 a (1 − (1 − 1/n)n)-approximation

can be achieved in poly(n,m) communication [Fei09]; and

this is tight [DNS10]. For subadditive valuations, a 1/2-
approximation can be achieved in poly(n,m) communica-

tion [Fei09]; and no better than a (1/2+1/2n)-approximation

can be achieved in poly(n,m) communication [DNS10], so

this is tight as n → ∞.

The two-player case: While Feige’s 1/2-approximation

is tight as n → ∞, the gap between 1/2 and 3/4 for the

two-player case was posed as an open problem in [Fei09],

[DNS10]. At first glance, it seems quite unusual for the n =
2 case to be singled out in this way when the asymptotics are

resolved. Yet in our context, there is a substantial difference

in the merits of a 1/2-approximation for n = 2, and a 1/2-
approximation for n > 2: Feige’s 1/2-approximation for n >
2 employs an incredibly sophisticated LP rounding, but for

n = 2 the same guarantee is achieved by multiple trivial

algorithms.

For concreteness, consider the following simple 1/2-

2A valuation is fractionally subadditive if it can be written as a maximum
over additive functions.
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approximation algorithms: (a) allocate all of the items in

M to a uniformly random player; or (b) allocate each item

independently to a uniformly random player; or (c) ask each

player to report vi(M) and award M to the highest bidder.

Note that methods (a) and (b) are particularly trivial in that

they are completely oblivious to the valuations, and methods

(a) and (c) are particularly trivial in that they maintain their

guarantee even without subadditivity. All three can trivially

be made into truthful auctions — methods (a) and (b) don’t

even solicit input and are therefore truthful, and (c) is simply

a second-price auction on the grand bundle M .

By the above discussion, resolving the gap between 1/2
and 1/2+1/2n = 3/4 for n = 2 is not just a question of deter-

mining the optimal constant. The question is really whether

or not it is possible to achieve any non-trivial guarantees
for two subadditive valuations. As Feige notes, “finding
matching upper and lower bounds for this case may lead to
new insights about subadditive functions.”3 The main result

of this paper rules out non-trivial guarantees, while shedding

new light on subadditivity and developing new randomized

communication lower bounds — see Section I-A.

Main Result (Informal). For two subadditive players, a 1/2-
approximation of the maximum social welfare is optimal
among all protocols with subexponential communication.

Implications: Before overviewing our construction and

discussing extensions of our main result beyond subad-

ditivity, we wish to highlight immediate implications for

combinatorial auctions with strategic bidders, via two recent

reductions that underscore the significance of the n = 2 case.

(1) The power of truthful vs. non-truthful
communication-efficient protocols: The central driving

theme of algorithmic mechanism design is understanding

the relative power of truthful vs. non-truthful “efficient”

protocols [NR01]. For combinatorial auctions, when

“efficient” refers to poly(n,m)-communication, no

separation is known to exist — for any valuation class

nor any number of players. This is despite significant gaps

in the state-of-the-art approximation ratios, as described

in Section I-B. Recent work of [Dob16b] provides a

deep structural connection between truthful communication-

efficient combinatorial auctions and their simultaneous, non-

truthful communication-efficient counterparts, specifically
when n = 2.4 This immediately proposes extensive study

of the n = 2 case to search for the first separation for

truthful vs. non-truthful combinatorial auctions. On this

front, our result proves that in fact no separation exists for

subadditive players, as the aforementioned trivial protocols

(now proved to be optimal) are also truthful.

(2) Price of anarchy of simple mechanisms: The central

measure by which the performance of non-truthful combina-

torial auctions is quantified in strategic settings is the price

3See Conclusions Section in [Fei09].
4There are also implications when n > 2, but not quite as strong as for

n = 2.

of anarchy (PoA). In the Bayesian version (BPoA), this is de-

fined as the worst-case ratio between the expected welfare of

the worst equilibrium on one hand, and the optimal expected

welfare on the other. The PoA and BPoA of various simple

combinatorial auction formats have been studied extensively

in recent years. For subadditive valuations, simultaneous

first-price auctions are known to have BPoA at least 1/2
[FFGL13]. The work of [CKST16] shows this is tight even

for two players. Can auction formats other than first-price
do better? Roughgarden [Rou14] shows that the key to

simultaneously bounding BPoA over all auction formats is

communication lower bounds. Applying his framework to

our new lower bound reveals that there is no auction format

with sub-doubly-exponentially many strategies and BPoA

better than 1/2. We conclude that simultaneous first-price

auctions are optimal among this class of auctions, for all

values of n.

A. Results and Intuition

Main Theorem. Any (randomized) protocol that guarantees
a 1/2 + 6/log2(m)-approximation to the optimal welfare for
two monotone subadditive bidders requires communication
Ω(e

√
m).

In this section we provide intuition for the main proof

steps. The first step (Section III) is the construction of a

new class of subadditive functions. Given previous work

on fractionally-subadditive valuations, if our new class is

to demonstrate a stronger hardness result than 3/4, clearly it

cannot be fractionally-subadditive. Feige [Fei09] shows how

to construct such subadditive, non-fractionally-subadditive

valuations from instances of set cover, but this is the only

known general such construction in the literature.5 More-

over, to move away from 3/4, our new class must be “far”

from fractionally-subadditive.

Our first contribution is to identify a key property that

every v(·) in our class must have on top of being far from

fractionally-subadditive in order to demonstrate hardness

stronger than 1/2 + ε: for all subsets T , v(T ) + v(T̄ )
must belong to the range [v(M), (1 + 3ε)v(M)]. In other

words, v(·) must essentially appear additive at the large
scale. In Section III we show that without this property

for (say) player 1’s valuation, there exists a simple protocol

guaranteeing a (1/2+ε)-approximation (specifically, the best

of allocating either T or T̄ uniformly at random to player 1

and the rest to player 2, or allocating everything to player 2).

The necessity of this property means we cannot use Feige’s

set cover construction as is. The main idea behind our new

construction is then to hard-code v(T ) + v(T̄ ) = v(M) for

all T into the appropriate far-from-fractionally-subadditive

instances, while carefully ensuring that subadditivity is not

violated. This construction itself may be of independent

5While every valuation v for which v(S) ∈ {1, 2} for any S �= ∅ is
subadditive, such functions trivially admit a 3/4-approximation and so don’t
serve as a useful starting point.
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interest due to the scarcity of subadditive classes that are

far from fractionally-subadditive.

In Section IV, we show that the new construction is rich

enough to encode the EQUALITY problem.6 The property

v(T ) + v(T̄ ) = v(M) turns out to be extremely conve-

nient as it immediately implies that OPT(v1, v2) = v1(M)
whenever v1(·) = v2(·). To complete the reduction from

EQUALITY, we establish a doubly-exponentially-large subset

V of valuations from our class such that for every nonequal

v(·) �= w(·) ∈ V , it holds that: (a) v(M) = �; and

(b) OPT(v, w) ≈ 2�. By the convenient property, beating a
1/2-approximation when both players have valuations from

this subset is exactly deciding whether or not v1(·) = v2(·).
Finally, we prove our full lower bound for random-

ized protocols in Section V. There, we first very briefly

overview why our construction is unlikely to admit a re-

duction from canonical problems known to require expo-

nential randomized communication (such as DISJOINTNESS

or GAP-HAMMING-DISTANCE). Instead, we propose a new

“near-EQUALITY” problem that we call EXIST-FAR-SETS,

and directly prove that it requires exponential randomized

communication via the information complexity approach

of [BJKS04], [Bra12], [BGPW13]. To our knowledge, this

is the first application of these modern communication

complexity tools within Algorithmic Game Theory. The

randomized hardness of EXIST-FAR-SETS may therefore be

of independent interest.

Extensions beyond subadditive: Our main result con-

cerns subadditive valuations. In Section VI, we consider

the space between fractionally-subadditive and subaddi-

tive valuations, and between their respective 3/4- and 1/2-
approximations. We apply a natural parameterization of

this space called the Maximum-over-Positive-Hypergraphs

(MPH) hierarchy [FFI+15]. Fractionally-subadditive valua-

tions are equivalent to MPH-1 (level 1 in the hierarchy), and

all subadditive functions lie in MPH-m/2 (level m/2 in the

hierarchy). For any 2 ≤ k ≤ m/2, we establish a protocol

for welfare maximization as follows:

Theorem. There exists a protocol with poly(m) communi-
cation that guarantees 1/2+ 1/O(log k) of the optimal welfare
for 2 bidders whose valuations are subadditive and MPH-k.

Our protocol is an oblivious rounding of the well-known

configuration linear program (LP).7 The key property we use

to establish our guarantee for MPH-k is a generalization of a

result of [Fei09] for MPH-1 (see Lemma VI.4). Our results

may be useful for obtaining a better understanding of the

space between fractionally-subadditive and subadditive set

6In EQUALITY, Alice and Bob are each given a k-bit string as input,
and are asked to decide whether their strings are equal or not. EQUALITY

is known to require communication of k to solve deterministically, but to
admit efficient randomized protocols.

7That is, while communication is indeed needed to optimally solve the
configuration LP, no further communication is necessary in order to round
the resulting solution. See [FFT16] for further discussion on the merits of
oblivious versus non-oblivious rounding.

functions in the future.8

We conclude by noting the following interesting corollary

from combining the theorem on MPH-k with our main

result: since the main result proves that a (1/2 + 6/logm)-
approximation is impossible with subexponential communi-

cation, and as all subadditive functions are MPH-m/2, our

protocol and lower bound must be tight even up to lower-
order terms.

B. Related Work

Communication complexity of combinatorial auctions:
The works most related to ours concern the standard com-

munication complexity of combinatorial auctions. The tables

below summarize prior work for various valuation classes.

While the n = 2 table is most relevant for the present

paper, the general n table is included for reference. Note

that no separate row is needed for hardness of truthful

communication, because no such results are known (aside

from general communication hardness).9

For context, it is worth noting that all referenced (truthful

or not) communication protocols take one of two forms. The

first is via solving a particular LP relaxation (called the con-

figuration LP) and rounding the fractional optimum [FV10],

[Fei09], [LS11]. The second is via mechanisms which

randomly sample a fraction of bidders to gather statistics,

then run a posted-price mechanism on the remaining bid-

ders [Dob16a], [Dob07]. Both classes of mechanisms require

bidders to communicate demand queries. That is, bidders are

asked questions of the form: “For item prices p1, . . . , pm,

which set of items maximizes vi(S)−
∑

j∈S pj?” All of the

aforementioned protocols/mechanisms make polynomially

many demand queries, and have further polynomial-time

overhead.

Recent work of [Dob16b] proves a surprising connec-

tion between two-player truthful combinatorial auctions,

and two-player simultaneous (non-truthful) protocols. In

particular, any separation between the approximation guar-

antees achievable by communication-efficient protocols and

communication-efficient simultaneous protocols would con-

stitute the first separatation between truthful and non-truthful

communication-efficient combinatorial auctions. Such sepa-

rations were already known for large n [ANRW15], [Ass17],

but not for n = 2 (and therefore aren’t relevant to Dobzin-

ski’s framework). As such, the n = 2 setting is now

receiving extra attention, although the desired separation still

8For example, to claim lower bounds on the MPH levels of specific
functions: since our lower bound construction does not admit a (1/2 +
6/logm)-approximation in subexponential communication, it establishes the
existence of a constant C such that it is provably not in MPH-Cm.

9Note that [DN15] consider “multi-unit” auctions, where v(S) = v(T )
whenever |S| = |T |. Such valuations can be described with m numbers,
and therefore the VCG-auction is communication/computationally-efficient.
They show, however, that a (> 1/2)-approximation can be achieved signifi-
cantly faster (in poly(log(m)) communication) without incentives, while a
1/2-approximation is the best achievable in poly(log(m)) communication
by a truthful auction.
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n = 2 Submodular XOS Subadditive General

Communication hardness 17
18

[DV13] 3
4

[DNS10] 3
4

[DNS10] 1
2

[NS06]

Communication protocol 13
17

[FV10] 3
4

[Fei09] 1
2

[Trivial] 1
2

[Trivial]

Truthful comm. protocol 1
2

[Trivial] 1
2

[Trivial] 1
2

[Trivial] 1
2

[Trivial]

General n Submodular XOS Subadditive General

Comm. hardness 1− 1
2e

[DV13] 1− (1− 1
n
)n [DNS10] 1

2
+ 1

2n
[DNS10] max{ 1

n
, 1
Ω(

√
m)

} [NS06]

Comm. protocol 1− 1
e
+ 10−5 [FV10] 1− (1− 1

n
)n [Fei09] 1

2
[Fei09] max{ 1

n
, 1√

2m
} [LS11]

Truthful comm. 1
O(

√
logm)

[Dob16a] 1
O(

√
logm)

[Dob16a] 1
O(logm log logm)

[Dob07] max{ 1
n
, 1√

2m
} [LS11]

remains elusive [BMW18]. In particular, note that no non-

trivial approximation guarantees are known for two-player

combinatorial auctions via truthful communication-efficient

protocols, even when the valuations are submodular.

Related results on combinatorial auctions: As pre-

viously referenced, combinatorial auctions are studied via

other complexity lenses as well. The most popular alterna-

tive is the value-queries model, or standard computational

complexity. That is, each bidder is capable only of querying

their valuation function on a given set (value query), or

has access to the explicit (poly-sized) circuit which com-

putes a value query. In both models, a tight (1 − 1/e)-
approximation is known for submodular valuations [Von08],

[MSV08], [DV12b], and a tight Θ(1/
√
m)-approximation is

known for XOS and subadditive valuations [DNS10]. To

reconcile these latter impossibility results with the above-

referenced positive results, observe that it generally requires

exp(m) value queries (or is NP-hard with explicit circuit

access) to compute a demand query. Unlike the commu-

nication model, strong separations between guarantees of

truthful and non-truthful mechanisms are known in these

models [PSS08], [BDF+10], [BSS10], [DSS15], [Dob11],

[DV12a], [DV12b]. It is worth noting that some of these

approaches also yield communication lower bounds for

the restricted class of Maximal-in-Range/VCG-based proto-

cols [BDF+10], [DSS15], or for the “combinatorial public

projects” problem [PSS08]. For further details of these

results, see [DSS15, Table 1].

Communication complexity in AGT: Beyond combi-

natorial auctions, communication complexity has appeared

in the study of matching markets [GNOR15], [ABKS17],

fair division [BN19], voting theory [CS05], and most re-

cently equilibrium computation [RW16], [BR17], [GR18],

[BDN19]. The last sequence of works is notable for in-

troducing the AGT community to recent developments in

“lifting theorems.” In a similar vein, the present paper

applies recent developments in information complexity.

C. Summary

We study the communication complexity of welfare max-

imization in two-player combinatorial auctions. Our main

result is that the trivial 1/2-approximation is in fact optimal

among all (possibly randomized) protocols with subex-

ponential communication. Our key innovations are: (1) a

new class of subadditive functions far from fractionally-

subadditive with an “additive-at-the-large-scale” property,

and (2) a new “near-EQUALITY” problem with high random-

ized communication complexity, EXIST-FAR-SETS (both

of which may be of independent interest). In addition to

resolving an open question of [Fei09], [DNS10], our results

establish the following corollaries: (a) There is no gap

between the approximation ratios achievable by truthful and

not-necessarily-truthful mechanisms with poly(m) commu-

nication for two subadditive players; (b) For any number of

subadditive players, simultaneous first-price auctions achieve

the optimal price of anarchy (i.e., 1/2) among all auctions

with sub-doubly-exponentially-many strategies. We addi-

tionally develop a (1/2+ 1/O(log k))-approximation whenever

both players are subadditive and MPH-k. Therefore, our

lower bound is tight even up to lower order terms (i.e.,
1/2 + 1/O(logm) is achievable in poly(m) communication,

but no better).

II. PRELIMINARIES

We consider the following problem. There is a set M
of m items. Alice and Bob each have a valuation function

A(·) and B(·), respectively that takes as input subsets of

M and outputs an element of R+. Moreover, A(·) and B(·)
are both monotone (v(X ∪ Y ) ≥ v(X) for all X,Y ) and

subadditive (v(X∪Y ) ≤ v(X)+v(Y )). Alice and Bob wish

to communicate as little as possible about their valuation

functions in order to find a welfare-maximizing allocation

(that is, the X maximizing A(X) +B(M \X)). Formally,

we study the following decision problem – observe that this

is a promise problem for which if the input does not satisfy

the promise, any output is considered correct.

Definition II.1 (WELFARE-MAXIMIZATION(m,α)).
WELFARE-MAXIMIZATION is a communication problem
between Alice and Bob:

• Alice’s Input: A(·), a monotone subadditive function
over 2[m]; and a target C.

• Bob’s Input: B(·), a monotone subadditive function
over 2[m]; and a target D.

• Promise: C = D. Also, there either exists an S ⊆ [m]
satisfying A(S) + B(S) ≥ C, or for all S ⊆ [m],
A(S) +B(S) < αC.

• Output: 1 if ∃S ⊆ [m], A(S) +B(S) ≥ C; 0 if ∀S ⊆
[m], A(S) +B(S) < αC.
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We will sometimes drop the parameter m when it is
irrelevant. We will also refer to any protocol solving
WELFARE-MAXIMIZATION(m,α) as an α-approximation
for WELFARE-MAXIMIZATION(m).

Also of interest is the corresponding search problem,

which instead asks Alice and Bob to find an X max-

imizing A(X) + B(X) (and an α-approximation is a

protocol guaranteeing a Y satisfying A(Y ) + B(Y ) ≥
maxX⊆M{A(X) + B(X)}). It is easy to see that any

poly(m)-communication protocol for the search problem

implies a poly(m)-communication protocol for the decision

problem (with an extra round of communication). As such,

we will prove all lower bounds against the decision problem

(as they immediately imply to search as well), and develop

all protocols for the search problem (as they immediately

imply to decision as well).

III. MAIN CONSTRUCTION

In this section, we present our base construction. In

subsequent sections, we show how to leverage this construc-

tion to derive our lower bounds. We begin by considering

a collection of subsets S = {S1, . . . , Sk} where each

Si ⊆ M , and defining a useful property that S may possess.

Throughout this section, let � denote an even integer ≥ 4.

Most proofs are deferred to Appendix A.

Definition III.1 (�-sparse). We say that S is �-sparse if for

all T1, . . . , T�−1 ∈ S , ∪jTj �= M .

That is, S is �-sparse if there do not exist �− 1 elements

of S such that their union is the entire ground set M . We

now follow [Fei09], [BR11] in defining a class of valuation

functions parameterized by a collection of sets. Specifically,

let S = {S1, . . . , Sk} be an �-sparse collection. For X ⊆ M ,

define

σS(X) :=

{
min

{|Y | : Y ⊆ [k], X ⊆ ⋃
i∈Y Si

}
, Case 1;

max{�, k}, O/W;

where Case 1 occurs if X is covered by S , that is, if X ⊆⋃
i∈[k] Si. So σS(X) is the smallest number of sets from S

whose union contains X , or some large number max{�, k} if

there are no such sets. Let us now revisit the barrier to using

this construction as-is, before defining our new construction.

Lemma III.1. Let ε ≤ 1/2, and let there exist a set T and
player i for which vi(T ) + vi(T̄ ) ≥ (1 + ε)vi(M). Then
at least one of the following three allocations achieves a
1/2+ ε/3-approximation to WELFARE-MAXIMIZATION(m):
(a) give to player i the set T and to the other T̄ , (b) give
to player i the set T̄ and to the other player T , (c) give the
other player all items. Therefore, a 1/2 + ε/3-approximation
to WELFARE-MAXIMIZATION(m) exists with poly(m) com-
munication (simply check all three allocations and pick the
best).

Proof: Without loss of generality, let i = 1. Then

the three allocations, respectively, achieve welfare v1(T ) +

v2(T̄ ), v1(T̄ ) + v2(T ), and v2(M). Observe further that

choosing uniformly at random between the first two guar-

antees welfare:

1/2 · (v1 (T ) + v2
(
T̄
)
+ v1

(
T̄
)
+ v2 (T )

)
≥ 1/2 ((1 + ε) v1 (M) + v2 (M))

≥ 1/2 · OPT(v1, v2) + εv1(M).

Therefore, if v1(M) ≥ OPT(v1, v2)/3, the best of the first

two guarantees guarantees a 1/2+ε/3 approximation. On the

other hand, if v1(M) ≤ OPT(v1, v2)/3, then we have:

OPT(v1, v2) ≤ v1(M) + v2(M)

≤ OPT(v1, v2)/3 + v2(M)

=⇒ v2(M) ≥ 2/3 · OPT(v1, v2).

So in either case, the best of the three allocations guarantees

a 1/2 + ε/3 approximation.

Lemma III.1 implies that any hard instance must appear

additive at the large scale, but σS(·) generally lacks this

property (see Figure 1). Our new construction essentially

hard-codes this property onto σS(·). We now define our new

valuation function f �
S(·):

(a) If σS(X) < �
2 , then define f �

S(X) = σS(X) and

f �
S(X) = �− σS(X).

(b) For any X whose value is not defined in (a), f �
S(X) =

�
2 .

Figure 1: Example of �-sparse S. There are m = 6 items, k = 6 sets, and � = 4. The
set S = {S1, . . . , S6} is depicted by the rectangles. S is �-sparse, as no collection of
3 sets in S covers [m].

It is not immediately clear that f �
S(·) is well-defined;

indeed, if σS(X) and σS(X) are both < �
2 , then f �

S(X) is

doubly defined. Fortunately, this can never occur when S is

�-sparse.

Lemma III.2. If S is �-sparse, then f �
S(·) is well-defined.

Now, we would like to prove that f �
S is monotone and

subadditive whenever S is �-sparse (Corollary III.4). The

following facts about f �
S and σS highlight the key steps in

the proof.

Lemma III.3. Let S be �-sparse. Then:

(1) σS is monotone and subadditive.
(2) For all X , f �

S(X) = �− f �
S(X).
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(3) If σS(X) < �
2 or f �

S(X) < �
2 , then f �

S(X) = σS(X).
(4) If f �

S(X) > �
2 then f �

S(X) = �− σS(X).
(5) For all X , f �

S(X) ≤ σS(X).

Corollary III.4. If S is �-sparse, then f �
S(·) is monotone

and subadditive.

Functions of the form f �
S(·) will form the basis of our

lower bound constructions, which we overview in the follow-

ing sections. Figure 1 demonstrates one illustrative example

to help parse the construction: In this example, it holds

that σS({2}) = 1 < �/2, so f �
S({2}) = 1. It follows that

f �
S({1, 3, 4, 5, 6}) = �− σS({2}) = 3. As another example,

σS({1, 4, 5}) = 3 ≥ �/2 and σS({2, 3, 6}) = 3 ≥ �/2, so

f �
S({1, 4, 5}) = f �

S({2, 3, 6}) = �/2 = 2. Finally, observe

that σS({1, 4, 5}) + σS({2, 3, 6}) = 6 > 4 = σS(M), so

trying to use σS(·) directly would violate Lemma III.1, and

the modification to f �
S(·) is necessary for any traction.

IV. DETERMINISTIC PROTOCOLS FOR SUBADDITIVE

VALUATIONS

The construction in Section III gets us most of the way

towards our deterministic lower bound. The remaining step

is a reduction from EQUALITY. To briefly remind the reader,

Alice receives input a ∈ {0, 1}k, and Bob receives input

b ∈ {0, 1}k. Their goal is to output yes if ai = bi
for all i ∈ [k], and no otherwise. It is well-known (see,

e.g., [KN97]) that any deterministic protocol for EQUALITY

requires communication ≥ k.

Theorem IV.1. For any even integer � ∈ [4, log2(m)],
any deterministic communication protocol that guarantees a
(1/2+1/�)-approximation to WELFARE-MAXIMIZATION(m)
requires communication exp (m/�·2�). In particular, a guar-
antee of 1/2 + ε requires communication eεm/21/ε = eΩ(m),
and a guarantee of 1/2 + 2/log(m) requires communication
em

Ω(1)

.

Before proceeding with our construction, we’ll need one

more property of collections of sets:

Definition IV.1 ([KS73]). A collection S = {S1, . . . , Sk}
is �-independent if {T1, . . . , Tk} is �-sparse whenever Ti ∈
{Si, Si}.

In other words, S is �-independent if we can choose either

Si or Si independently, for each i, and form an �-sparse

collection no matter our choices. For example, while S in

Figure 1 is �-sparse for � = 4, it is not �-independent,

since, e.g., S̄5 ∪ S̄6 covers [m]. We now proceed with

our reduction, which relies on the existence of large �-
independent collections (such collections are known to exist;

at the end of this section we give a precise statement and a

proof appears in Appendix A for completeness).

Proposition IV.2. Let S be an �-independent collection with
|S| = k. Then any deterministic communication protocol
that guarantees a (1/2 + 1/2�−3)-approximation to the opti-

mal welfare for two monotone subadditive bidders requires
communication at least k.

Proof: Let S = {S1, . . . , Sk} be �-independent. For

each i, define S1
i := Si, and S0

i := Si. Now, consider an

instance of EQUALITY where Alice is given a and Bob is

given b. Alice will create the valuation function f �
A, where

A := {Sa1
1 , . . . , Sak

k } (i.e. Alice builds A by taking either

S1
i or S0

i , depending on ai). Bob will create the valuation

function f �
B, where B := {Sb1

1 , . . . , Sbk
k }. Observe first that

f �
A(·) and f �

B(·) are indeed well-defined, monotone, and

subadditive as S is �-independent (and therefore A and B
are both �-sparse).

Observe that if a = b, then A = B and moreover

f �
A(·) = f �

B(·). So immediately by part (2) of Lemma III.3,

the maximum possible total welfare is � (indeed, any parti-

tion of the items gives welfare �). On the other hand, if there

exists an i such that ai �= bi (without loss of generality say

that ai = 1 and bi = 0), we claim that welfare 2� − 2 is

achievable. To see this, consider the allocation which awards

Si to Alice and Si to Bob. Indeed, f �
A(Si) = 1 (as Si ∈ A),

so f �
A(Si) = �−1. Similarly, fB(Si) = 1, so fB(Si) = �−1,

achieving total welfare 2(�− 1).10

So assume for contradiction that a deterministic 1
2 +

1
2�−3 > �

2�−2 -approximation exists to the optimal welfare

for 2 monotone subadditive bidders with communication

< k. Then such a protocol would solve EQUALITY with

communication < k by the reduction above, a contradiction.

Finally, in the next lemma we show how large k can be

while guaranteeing an �-independent collection of size k to

exist. This suffices to complete the proof of Theorem IV.1.

The lemma is based on a known existential construction

using the probabilistic method, which we repeat for the sake

of completeness in Appendix A (explicit constructions of

comparable guarantees also exist [Alo86]).

Lemma IV.3. For all m, x > 1, and � = log2(m)−log2(x),
there exists a �-independent collection of subsets of [m] of
size k = ex/�.

Proof of Theorem IV.1: Combine Proposition IV.2 and

Lemma IV.3, and the observation that 2�− 3 ≥ � whenever

� ≥ 4. The “in particular” parts of the statement follow first

by taking � = 1/ε (implying � = log2(m) − log2(m/21/ε)

and k = eεm/21/ε , and then by taking � = log2(m)/2
(implying � = log2(m)− log2(

√
m)) and k = e2

√
m/ log(m).

10As an aside, note that welfare exceeding 2� − 2 is not possible, as
Alice and Bob each value all non-empty sets at least at 1, and therefore
value all strict subsets of M at most at � − 1 by (2). Therefore, the only
way Alice or Bob could have value exceeding � − 1 is to get all of M ,
meaning that the other player receives value 0.
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V. RANDOMIZED PROTOCOLS FOR SUBADDITIVE

VALUATIONS

The construction in Section IV carries the high-level intu-

ition for our randomized lower bound. However, we clearly

cannot reduce from EQUALITY and get a randomized lower

bound, as EQUALITY admits randomized communication-

efficient protocols. As such, we will instead directly show

that a certain “near-EQUALITY” problem requires exponen-

tial randomized communication. Our proof uses the informa-

tion complexity approach popularized in [BJKS04], [Bra12],

[BGPW13]. In order to introduce these tools to the AGT

community, we will provide a complete exposition starting

from the basics.

Let’s first be clear about what a randomized protocol looks

like. Alice and Bob have access to a public infinite string

of perfectly random bits, r. All messages sent by (e.g.)

Alice may therefore depend on her input, any messages

sent by Bob, and r. At the end of the protocol, Alice

and Bob will guess yes or no, and the answer should

be correct with probability 2/3.11 The protocol is only

“charged” communication for actual messages sent, and not

for randomness used. The main result of this section is as

follows:

Theorem V.1 (Randomized hardness). Any randomized
protocol that guarantees a (1/2 + 6/log(m))-approximation
to WELFARE-MAXIMIZATION(m) requires communication
complexity Ω(e

√
m).

Let’s now understand the issue with our previous con-

struction. Aside from the fact that the previous proof clearly

does not extend to a randomized lower bound, the construc-

tion itself admits a good randomized algorithm. Specifically,

let S be some �-independent set, and let exactly one of

{S, S} be in A for all S ∈ S (and also let exactly one

of {S, S} be in B). Let Alice have valuation f �
A(·) and Bob

have valuation f �
B(·). The problem is that Alice and Bob are

still just trying to determine whether or not A = B (that

is, if A = B, then the optimal welfare is at most �. If not,

then the optimal welfare is 2�− 2). Since A and B are both

subsets of 2M , the randomized algorithm for EQUALITY for

inputs of size 2m works.

The natural idea to try next is to reduce from a problem

like DISJOINTNESS instead (for which randomized protocols

indeed require exponential communication). Let’s see one

natural attempt from our previous construction and why

it fails (just for intuition, we will not exhaustively repeat

this for all possible reductions). Again let S denote an

�-independent collection, and again consider any instance

(A,B) of DISJOINTNESS of size k (recall that A and B
are bitstrings of length k and DISJOINTNESS asks to decide

whether or not there exists an index i with Ai = Bi = 1).

11As usual, the bound of 2/3 is arbitrary, as any protocol with success
probability ≥ 1/2 + 1/poly(m) can be repeated independently poly(m)
times to achieve a protocol with success probability 2/3 (and then further
repeated to achieve success 1− 1/exp(m)).

A first attempt at a reduction might be to let A contain Si

for all i such that Ai = 1, and B contain all Si such that

Bi = 1 (but A will never contain Si, and B will never

contain Si). Indeed, with this construction if there exists

any index i with Ai = Bi = 1, the optimal welfare will

be 2�− 2 (give Alice Si, and Bob Si). Unfortunately, even

if there does not exist an index for which Ai = Bi = 1,

the welfare can still be � − 1 + �/2. To see this, consider

any index i for which Ai = 1. Then f �
A(Si) = � − 1.

Moreover, as Si /∈ B, and S is �-independent, f �
B(Si) = �/2

(because S is �-independent, neither Si nor Si can be

covered with fewer than � − 1 of the other sets in B. As

such, f �
B(Si) = f �

B(Si) = �/2). So while in the “yes”

case, the welfare is indeed 2� − 2 just like our previous

reduction, the welfare in the “no” case will be 3�/2 − 1
as opposed to �, proving only that a 3/4-approximation

requires exponential randomized communication (which is

already known). Of course this is not a formal claim that

no reduction from DISJOINTNESS is possible, but provides

some intuition for why searching for one (or from GAP-

HAMMING-DISTANCE, etc.) is likely not the right approach.

The issue is that our construction is getting much of its

mileage from the fact that v(S) + v(S) = � for all S, and

reducing from any problem except EQUALITY fails to make

use of this. So the plan for our new construction is to observe

that if v(·) and w(·) are almost the same (in a precise sense

defined shortly), then we can still claim that v(S)+w(S) ≈ �
for all S.

The main idea of our construction is as follows: consider

still an �-independent set S . For each Si ∈ S , rather than

adding either Si or Si to A, we will add either Si ∪ {j}
or Si ∪ {j}, where j is a uniformly random element of M
(and ditto for B). Adding this random element to each set

barely changes the welfare, but makes it significantly harder

for Alice and Bob to figure out whether their valuations

are nearly identical or not. We now proceed with the

construction, followed by a complete proof.

Definition V.1. Two ordered collections of subsets X =
〈X1, . . . , Xk〉;Y = 〈Y1, . . . , Yk〉 of M are �-compatible if

(1) |Xi| = |Yi| = m
2 + 1 for all i.

(2) Either |Xi�Yi| = 2 or |Xi ∩ Yi| = 2 for all i.12

(3) X1, . . . , Xk are �-sparse, as are Y1, . . . , Yk.

(4) For any subset S ⊆ M of size less than �
2 , at least

one of X1, . . . , Xk contains S, as does at least one of

Y1, . . . , Yk.

The main idea is as follows: for any �-compatible X ,Y ,

consider the valuation functions f �
X (·) and f �

Y(·). If for

some i, |Xi ∩ Yi| = 2, this roughly corresponds to the

“not equal” case in the previous construction, and welfare

near 2� is achievable. If instead, for all i |Xi�Yi| = 2,

this roughly corresponds to the “equal” case in the previous

construction, and welfare near � is the best achievable. We

12� represents symmetric difference, |Xi ∪ Yi| − |Xi ∩ Yi|.
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first state this formally, and then follow with a proof that

randomized protocols require exponential communication to

distinguish these two cases. The proof of Lemma V.2 appears

in Appendix A.

Lemma V.2. Let X ,Y be �-compatible. If for some i,
|Xi ∩ Yi| = 2, then welfare 2(�− 1) is achievable between
f �
X (·) and f �

Y(·). Otherwise, the maximum achievable wel-
fare is at most �+ 1.

A. FAR-SETS and EXIST-FAR-SETS

Towards proving our lower bound, we’ll define the fol-

lowing two problems, which may themselves be of inde-

pendent interest, at least within the AGT community, as

a “near-EQUALITY” problem which requires exponential

randomized communication. Below, note that both FAR-

SETS and EXIST-FAR-SETS are promise problems: if the

input doesn’t satisfy any of the stated conditions, arbitrary

output is considered correct.

Definition V.2 (FAR-SETS(m)). FAR-SETS is a communi-

cation problem between Alice and Bob:

• Alice’s Input: X ⊆ M , with |X| = m/2 + 1.

• Bob’s Input: Y ⊆ M , with |Y | = m/2 + 1.

• Promise: Either |X�Y | = 2 or |X ∩ Y | = 2.

• Output: 0 if |X�Y | = 2; 1 if |X ∩ Y | = 2.

Definition V.3 (EXIST-FAR-SETS(m, k, �)). EXIST-FAR-

SETS is a communication problem between Alice and Bob:

• Alice’s Input: X = 〈X1, . . . , Xk〉. Each Xi ⊆ M .

• Bob’s Input: Y = 〈Y1, . . . , Yk〉. Each Yi ⊆ M .

• Promise: X and Y are �-compatible.

• Output:
∨

i∈[k] FAR-SETS(Xi, Yi). Observe that if

the EXIST-FAR-SETS promise above is satisfied, then

by definition the FAR-SETS promise is satisfied for

all (Xi, Yi) (but not necessarily vice versa — the

EXIST-FAR-SETS promise is strictly stronger due to

�-sparsity).

Observe that EXIST-FAR-SETS is exactly the problem

referenced in Lemma V.2 (we state this formally below).

Therefore, the goal of this section is to lower bound the ran-

domized communication complexity of EXIST-FAR-SETS.

Corollary V.3. Let C(m, k, �) be such that every random-
ized communication protocol which solves any given in-
stance of EXIST-FAR-SETS(m, k, �) with probability at least
2/3 has communication complexity at least C(m, k, �). Then
every randomized communication protocol which solves any
given instance of WELFARE-MAXIMIZATION(m, 1

2 + 1
�−1 )

with probability at least 2/3 has randomized communication
complexity at least C(m, k, �).

Our plan of attack follows Braverman’s lower bound on

the randomized communication complexity of DISJOINT-

NESS [Bra12]. The end result is Theorem V.18, which states

that EXIST-FAR-SETS requires communication exponential

in k.

B. Information Theory Preliminaries

Here, we provide some basic facts about information

theory and information complexity. These are the standard

preliminaries one would find in a paper on information

complexity (e.g. [BGPW13]). Below, when we refer to a

distribution μ, we use μ(ω) where ω is in the support

of μ to denote the probability of ω according to μ. All

logarithms taken in this section are base-2. Also for this

section, all distributions and random variables are supported

on a finite set Ω. If μ(ω) = 0 for some ω ∈ Ω, we let

0 · log2(1/0) := limx→0 x · log2(1/x) = 0.

Definition V.1 (Entropy). Let μ be a probability distribution
over a finite set Ω. The (Shannon) entropy of μ, denoted by
H(μ), is defined as H(μ) :=

∑
ω∈Ω μ(ω) log( 1

μ(ω) ). If A
is a random variable distributed according to μA, we also
write H(A) := H(μA).

Definition V.2 (Conditional Entropy). Let A and B be two
random variables supported on a finite set Ω. Then the
conditional entropy of A, conditioned on B is H(A|B) :=∑

b∈Ω Pr[B = b] ·H(A|B = b).13

Observe that as H(·) is a strictly concave function,

H(A|B) ≤ H(A) for all B (with equality iff A and B
are independent).

Fact V.4. H(A,B) = H(A) + H(B|A). Here, H(A,B)
denotes the entropy of the random variable (A,B).

Fact V.4 above intuitively says that the entropy of a tuple

of random variables is equal to the entropy of the first, plus

the entropy of the second conditioned on the first. Note

that if A and B are independent, then the joint entropy

H(A,B) = H(A) +H(B).

Definition V.3 (Mutual Information). For two random vari-
ables A,B, the mutual information between A and B,
denoted by I(A;B) is: I(A;B) := H(A) − H(A|B) =
H(B)−H(B|A).
Definition V.4 (Conditional Mutual Information). For three
random variables A,B,C, the mutual information between
A and B, conditioned on C is denoted by I(A;B|C), and
I(A;B|C) :=

∑
c∈Ω Pr[C = c] · I(A|C = c;B|C = c).

Fact V.5 (Chain Rule). Let A,B,C,D be random variables.
Then I(A,B;C|D) = I(A;C|D) + I(B;C|A,D).

Fact V.5 above intuitively says that the information

learned about (A,B) from C (conditioned on D) can be

broken down into the information learned about A from C
(conditioned on D), plus the information learned about B
from C (now conditioned on A in addition to D).

Definition V.5 (KL Divergence). We denote by D(A||B)
the Kullback-Leibler Divergence between A and B, which
is defined as D(A||B) :=

∑
ω∈Ω Pr[A = ω] · log Pr[A=ω]

Pr[B=ω] .

13To be clear, by H(A|B = b) we mean the entropy of the random
variable A, when drawn conditioned on the event B = b.
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Fact V.6. For any random variables A,B,C, I(A;B|C) =
Eb,c[D(Abc||Ac)]. Here, Abc denotes the random variable A
conditioned on B = b, C = c, and Ac denotes the random
variable A conditioned on C = c.

Fact V.7 (Pinsker’s Inequality). For any pair of random
variables A,B of finite support, ||P −Q||1 ≤ √

2D(P ||Q).
Here, ||P −Q||1 :=

∑
ω∈Ω |Pr[P = ω]− Pr[Q = ω]|.

Definition V.6 (Information Complexity). The (internal)
Information Complexity of a communication protocol π with
respect to a distribution μ over pairs (X,Y ) of inputs is
defined as follows. Let Π(X,Y ) denote the random vari-
able which is the transcript produced when Alice and Bob
participate in protocol π with inputs (X,Y ), when (X,Y )
are drawn from μ. Then ICμ(π) := I(Π(X,Y );Y |X) +
I(Π(X,Y );X|Y ).

Above, the “transcript” refers to all communication be-

tween Alice and Bob (including the order bits were sent,

who sent them, etc., and including any public randomness)

when participating in protocol π. In particular, it is always

possible to glean the output produced by π from viewing the

transcript (but possibly additional information). Informally,

the Information Complexity captures the amount of infor-

mation Alice learns about Bob’s input from participating in

π (given that she already knows her own input, the public

randomness, and that their joint input is drawn from μ), plus

what Bob learns about Alice’s input. Intuitively, it should be

impossible for a protocol to convey C bits of information

without C bits of communication. Indeed, this is the case:

Lemma V.8 ([BR14]). For any distribution μ and protocol
π, ICμ(π) ≤ CC(π) (where CC(π) denotes the worst-
case number of bits communicated during protocol π on
any input).

We conclude with a few more basic facts about com-

munication protocols. Lemma V.9 below captures one key

difference between communication protocols and algorithms

with access to the entire input. Lemma V.9 below refers to

private randomness, which are random bits which are known

only to Alice (but not Bob) and vice versa. Such bits are also

not counted towards the communication cost of the protocol

(unless Alice wishes to share her private randomness with

Bob).

Lemma V.9. Let Pπ(·, ·, ·) be a function where Pπ(z,X, Y )
denotes the probability that Alice with input X and Bob
with input Y produce transcript z when participating in a
protocol π over the randomness of any private randomness

used (as public randomness is already accounted for in the
transcript). Then there exist functions Qπ(·, ·) and Rπ(·, ·)
such that Pπ(z,X, Y ) = Qπ(z,X) ·Rπ(z, Y ).

The proof of Lemma V.9 is straightforward. Essentially,

Qπ(z,X) is the probability that Alice doesn’t deviate from

transcript z with input X , conditioned on Bob communicat-

ing according to transcript z so far. Similarly, Rπ(z, Y ) de-

notes the probability that Bob doesn’t deviate from transcript

z with input Y , conditioned on Alice communicating accord-

ing to transcript z so far. These probabilities are well-defined

because Alice must choose her future messages based only

on the transcript so far (including the public randomness)

and her input X (and Bob’s must be only on the messages

so far and Y ), as well as her private randomness. Once

confirming that these probabilities are well-defined, it is easy

to see that indeed Pπ(z,X, Y ) = Qπ(z,X) ·Rπ(z, Y ).

Finally, the lemma below states that lower bounds on the

information complexity of any protocol that only uses private

randomness also lower bound the information complexity of

any protocol which uses public randomness. This initially

may seem counterintuitive, since the opposite is true for

communication. Both simple claims below have “approxi-

mate” versions in the other directions (discussed in the cited

references), but we only use the easy directions.

Lemma V.10 (Folklore, see [New91], [BG14], [BBK+16]).
Let π be a protocol, and μ be a distribution over inputs.
Then:

• If π uses private randomness, there exists a protocol π′

using public randomness with exactly the same output
as π, and CC(π′) ≤ CC(π). But maybe ICμ(π

′) �
ICμ(π).

• If π uses public randomness, there exists a protocol π′

using private randomness with exactly the same output
as π, and ICμ(π

′) ≤ ICμ(π). But maybe CC(π′) �
CC(π).

Both claims in Lemma V.10 follow by simple reductions.

For the first bullet, simply use all odd bits of the public

randomness string as private randomness for Alice, and

all even bits of the public randomness string as private

randomness for Bob. Then the output of the protocol is

identical, and the communication has not changed. However,

Bob now knows Alice’s private randomness, so the protocol

may reveal significantly more information than previously

(one example to have in mind is that perhaps the protocol

has Alice output one uniformly random bit of her input.

With private randomness, Bob learns very little about Alice’s

input upon seeing the bit. With public randomness, Bob

learns exactly one bit of Alice’s input). For the second

bullet, simply use Alice’s private randomness as the public

randomness. That is, whenever the protocol requests random

bits, Alice outputs these bits from her private random string.

These bits are completely independent of her input, and

therefore reveal no additional information. However, the

communication might become enormous, as the randomness

is now being directly communicated, and counts towards the

communication cost. To use Lemma V.10, our lower bounds

proceed by first lower bounding the information complexity

of any protocol for EXIST-FAR-SETS with private random-

ness, using the second bullet of Lemma V.10 to lower bound

the information complexity of any protocol for EXIST-
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FAR-SETS with public randomness,14 using Lemma V.8

to lower bound the communication complexity of EXIST-

FAR-SETS with public randomness (if desired, we could

then use the first bullet of Lemma V.10 to further lower

bound the communication complexity of EXIST-FAR-SETS

with private randomness). The point is just that exponential

communication is required with either public or private

randomness.

C. From EXIST-FAR-SETS to FAR-SETS

In this section, we show how to lower bound the ran-

domized communication complexity of EXIST-FAR-SETS,

provided we have any lower bound on the information

complexity of (certain instances of) FAR-SETS. This section

follows a similar path as Section 7.2 of [Bra12].15 To

get started, we need some additional notation for promise

problems.

Definition V.7 (Promise problem). Let f be some func-
tion mapping {0, 1}m × {0, 1}m → {0, 1}, and let P ⊆
{0, 1}m×{0, 1}m. Then the communication problem solving

f under promise P refers to the communication problem
which requires Alice with input A and Bob with input B to
output f(A,B) whenever (A,B) ∈ P (and they may provide
arbitrary output otherwise).

Definition V.8 (b-compatible inputs). Say that an input
(X,Y ) is b-compatible with respect to f and P if (X,Y ) ∈
P and f(X,Y ) = b.

Definition V.9 ((k, z)-safe distributions). Say that a dis-
tribution μ over {0, 1}m × {0, 1}m together with a
promise P ⊆ {0, 1}m × {0, 1}m are (k, z)-safe with

respect to promise P ∗ ⊆ ({0, 1}m × {0, 1}m)k if for
all j ∈ [k], and all (Xj , Yj) ∈ P , the probability that
〈(X1, Y1), . . . , (Xk, Yk)〉 ∈ P ∗ is at least z, when (Xi, Yi)
are drawn i.i.d. from μ for all i �= j.

Below is the main tool from information complexity that

we’ll use, which provides a method for proving communica-

tion lower bounds for k-dimensional communication prob-

lems via information complexity lower bounds on a related

1-dimensional problem (plus some technical assumptions to

handle the promises).

Theorem V.11 (Follows from [Bra12]). Let f be some
function mapping {0, 1}m × {0, 1}m → {0, 1}, and let
P ⊆ {0, 1}m × {0, 1}m be some promised set of inputs.
Let F ∗ be defined so that

F ∗((X1, . . . , Xk), (Y1, . . . , Yk)) =
∨
i∈k

f(Xi, Yi).

14Indeed, the second bullet of Lemma V.10 states that if there exists a
protocol for EXIST-FAR-SETS with public randomness and low IC then
there exists such a protocol with private randomness, contradicting the first
lower bound in the chain.

15Also, because of the additional promise of EXIST-FAR-SETS, we are
unaware of prior work which could be cited as a black-box.

Let also P ∗ ⊆ ({0, 1}m × {0, 1}m)k be some promised set
of inputs such that P ∗ ⊆ P k (that is, every coordinate of
an element of P ∗ is in P ).

Let also μ be any distribution over inputs that are 0-
compatible with respect to f and P . Let also μ and P be
(k, z)-safe with respect to P ∗.

Then, if any protocol π that solves f under promise P
with probability at least q has ICμ(π) ≥ c, any randomized
protocol π∗ that solves F ∗ under promise P ∗ with proba-
bility at least q/z must have CC(π∗) ≥ kc.

Proof: We use the same reduction proposed in Section

7.2 of [Bra12] for DISJOINTNESS. The analysis requires

a little extra work to accommodate the promises. Assume

for contradiction that there exists a randomized protocol π∗

that solves F ∗ under promise P ∗ with probability at least

q/z and CC(π∗) < kc. We prove the contrapositive of the

theorem statement by providing a randomized protocol π
that solves f under promise P with probability at least q,

with ICμ(π) < c. Here is the reduction (recall that π∗ is

the assumed protocol for F ∗ under promise P ∗, and we will

use π to refer to the designed protocol):

• Alice and Bob are given input (X,Y ) ∈ P .

• Alice and Bob use the shared randomness to select an

i ∈ [k] uniformly at random. Let Xi := X and Yi := Y .

• Alice and Bob use shared randomness to publicly

sample X1, . . . , Xi−1 i.i.d. from μX , and Yi+1, . . . , Yk

i.i.d. from μY . Here, μX denotes the marginal of μ
restricted to X (ditto for μY ).

• Alice privately samples Xj from μX |Yj for all j > i.
That is, Alice samples Xj from μX , conditioned on Yj .

Bob privately samples Yj from μY |Xj for all j < i.
• Alice and Bob run protocol π∗ on input

(X1, . . . , Xk;Y1, . . . , Yk) (refer to this as (X ,Y)
for notational simplicity) and output the answer.

Let’s first observe the following about the correctness of

the above protocol: First, maybe (X ,Y) /∈ P ∗. In this case,

we have no guarantees about the success of the protocol

(because π∗ may behave arbitrarily). However, because

(μ, P ) are (k, z)-safe with respect to P ∗, we know that for

all (X,Y ), the resulting (X ,Y) is in P ∗ with probability at

least z.

Moreover, observe that, conditioned on (X ,Y) ∈ P ∗,

protocol π∗ is correct with probability at least q/z by def-

inition. Finally, we observe that because μ is 0-compatible

with respect to f and P , f(Xj , Yj) = 0 for all j �= i.

Therefore, f(X,Y ) =
∨k

j=1 f(Xj , Yj) = F ∗(X ,Y). So

whenever protocol π∗ is correct on (X ,Y), our protocol π is

correct on (X,Y ). At this point, we may conclude that our
protocol is correct with probability at least z · q/z = q.
The remaining step is to compute its information complexity

with respect to μ.

First, we wish to point out that indeed the communication
complexity of π can be quite high. Indeed, it is blowing

up what should be a one-dimensional problem into a k-
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dimensional problem before solving it. Intuitvely, though,

we’d like to say that only a 1/k-fraction of this communica-

tion is actually being used to solve our original instance. It’s

hard to make this a formal statement, but this intuition can be

made formal if we look at information complexity instead:

In expectation, only a 1/k-fraction of the information our
protocol learns is relevant to the original instance.

Below, recall that I(P ;Q) denotes the mutual information

of random variables P and Q and I(P ;Q | R) denotes the

expected mutual information of P and Q conditioned on R.

We will use Π(X,Y ) to denote the random variable corre-

sponding to the transcript of the protocol π, when (X,Y )
are drawn from μ, and will use Π∗(X ,Y) to denote the

random variable corresponding to the transcript of π∗ when

inputs (X ,Y) are drawn from μk. Let’s begin by writing

the information that Alice learns about Y given X from

our protocol π: I(Π(X,Y );Y | X) = I(Π∗(X ,Y);Y |
i,X1, . . . , Xi−1, X,Xi+1, . . . , Xk, Yi+1, . . . , Yk).

Let’s parse the above statement before proceeding. It

is essentially saying that what Alice learns about Y from

Π(X,Y ) given that she already knows X is exactly the

same as what she learns from the random variable Π(X ,Y)
(because these random variables are identical), except now

Alice already knows X and Yi+1, . . . , Yk (because they were

sampled publicly). Now we can perform some manipulations

based on the facts from Section V-B. For the first step,

we’ll separate out the conditioning on i, as i is independent

of all other random variables (we’ll also start replacing

X1, . . . , Xi−1, X,Xi+1, . . . , Xk with X to save space):

I(Π∗(X ,Y);Y |i,X , Yi+1, . . . , Yk)

=

k∑
i=1

1

k
· I(Π∗(X ,Y);Y |X , Yi+1, . . . , Yk)

=
1

k
·

k∑
i=1

I(Π∗(X ,Y);Yi|X , Yi+1, . . . , Yk).

Above, the second equality is simply relabeling (X,Y ) as

(Xi, Yi), as they are identically distributed and independent

of all other random variables. From here, we can repeatedly

apply the chain rule. Specifically, recall that the chain rule

implies that

I(Π∗(X ,Y);Yk|X ) + I(Π∗(X ,Y);Yk−1|X , Yk) =

I(Π∗(X ,Y);Yk−1, Yk|X ).

More generally, for any i, I(Π∗(X ,Y);Yi, . . . , Yk|X ) +
I(Π∗(X ,Y);Yi−1|X , Yi, . . . , Yk) =
I(Π∗(X ,Y);Yi−1, . . . , Yk|X ). As such, we get that:

1

k
·

k∑
i=1

I(Π∗(X ,Y);Yi | X , Yi+1, . . . , Yk) =

1

k
· I(Π∗(X ,Y);Y | X ).

We may now conclude that I(Π;Y |X) = 1
k ·

I(Π∗(X ,Y);Y|X ). The exact same argument swapping the

roles of X and Y yields that I(Π(X,Y );X | Y ) =
1
k · I(Π∗(X ,Y);X | Y). These are the key claims: even

though the communication of the protocol π may be huge,

the information complexity is small. In a formal sense,

only a 1/k fraction of the information conveyed throughout

protocol π is conveyed about the specific indices where we

placed (X,Y ). From here, we now conclude:

ICμ(π) = I(Π(X,Y );X | Y ) + I(Π(X,Y );Y | X)

=
1

k
(I(Π∗(X ,Y);X | Y) + I(Π∗(X ,Y);Y | X ))

=
1

k
ICμk(π∗) ≤ 1

k
CC(Π).

Recall that we assumed for for contradiction that CC(Π) <
ck, and therefore we would conclude that ICμ(π) < c. The

contrapositive proves the theorem statement.

D. The Information Complexity of FAR-SETS

Theorem V.11 reduces our search for a communication

lower bound on EXIST-FAR-SETS to a search for an in-

formation complexity lower bound on FAR-SETS. In this

section, we prove such a bound. To get started, let’s first de-

fine the distribution μ for which we’ll prove our information

complexity lower bound:

Definition V.4. Let μ denote the uniform distribution over

all pairs of sets (X,Y ) of size m
2 +1 such that |X�Y | = 2.

Recall that intuitively, the goal of this section is to

prove that any protocol that solves FAR-SETS correctly with

probability bounded away from 1/2 on all instances must

result in Alice learning some information about Y (or Bob

learning some information about X) when this protocol is

run on instances (X,Y ) drawn from μ. Note that it is crucial

to assume that the protocol is correct on all instances, and

not just those drawn from μ (as all instances drawn from μ
can be correctly answered by communicating nothing and

outputting 0).

Theorem V.12. Let π be a randomized protocol (with public
or private randomness) that solves FAR-SETS correctly with
probability greater than 0.8 on every input (that satisfies the
promise). Then ICμ(π) >

1
4m5 .

Proof: For simplicity of notation, assume that m is

a multiple of 4 (if not, it is just an issue of being more

careful with indices). For further simplicity of notation,

let n = m/2. The main idea of the proof is to derive

a contradiction from the following two arguments. First,

if ICμ(π) is negligible, then there exists a “chain” of

sets S1, . . . , Sn such that |S1 ∩ Sn| = 2; and for all i,
|Si�Si+1| = 2, Alice with input Si must not be able to

effectively distinguish between when Bob has Si+1 or Si−1

just from the transcript of π.

On the other hand, if π solves FAR-SETS on every
instance (that satisfies the promise), then when Alice has

input S1, Alice must be able to effectively distinguish

between when Bob has S2 and Sn just from the transcript
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of π (because the correct output is different in these two

cases, and the distribution of transcripts must therefore be

noticeably different). Due to the nature of communication

protocols, these two claims will turn out to be contradictory.

These are the key steps in the proof approach; we now begin

formally. In the lemma statement below, for two random

variables X,Y with finite support we let ||X − Y ||1 :=∑
z |Pr[X = z]− Pr[Y = z]|.

Proposition V.13. Let π be any private-randomness protocol
that correctly solves FAR-SETS on every instance (satisfying
the promise) with probability at least 0.8. Then no chain of
sets S1, . . . , Sn satisfies the following properties simultane-
ously:

• |Si| = m/2 + 1 for all i.
• |S1 ∩ Sn| = 2 and for all 1 ≤ i < n, |Si�Si+1| = 2.
• For all odd 1 < i < n, ||Π(Si, Si−1)−Π(Si, Si+1)||1 ≤
1/m2.

• For all even 1 < i < n, ||Π(Si−1, Si) −
Π(Si+1, Si)||1 ≤ 1/m2.

Proof: Assume for contradiction that such a chain of

sets exists. By Lemma V.9, there exist functions P (·, ·) and

Q(·, ·) such that Pr[Π(X,Y ) = z] = P (z,X) ·Q(z, Y ). We

thus have (simply by expanding the bottom two hypotheses).∑
z

|P (z, Si) · (Q(z, Si−1)−Q(z, Si+1))| ≤ 1

m2
(i odd);

∑
z

|Q(z, Si) · (P (z, Si−1)− P (z, Si+1))| ≤ 1

m2
(i even).

For notational simplicity for the remainder of the proof,

we will denote by ai(z) := P (z, Si) when i is even, and

ai(z) := Q(z, Si) when i is odd. Observe that the above

equations are then simply:∑
z

|ai(z)(ai−1(z)− ai+1(z))| ≤ 1

m2
, 1 < i < n.

Finally, let s(z) :=
∑

1<i<n |ai(z)(ai−1(z)− ai+1(z))|.
The following lemma bounds a1(z)(a2(z)−an(z)) in terms

of s(z). Recall that a1(z) · a2(z) = Pr[Π(S1, S2) = z]
and a1(z) · an(z) := Pr[Π(S1, Sn) = z]. So the lemma

is bounding some term having to do with the difference

between Π(S1, S2) and Π(S1, Sn) in terms of the sums of

differences between Π(Si, Si−1) and Π(Si, Si+1).

Lemma V.14. For all z, we have a1(z)(a2(z) − an(z)) ≤
ms(z).

Proof: To ease notational burden through this proof, we

will drop the parameter z (since the proof is independent of

z). In particular, we will use terms ai throughout the proof

and s, where s :=
∑

1<i<n |ai · (ai−1−ai+1)|. Observe that

ai(ai−1 − ai+1) ≤ s for all i.
If a1a2 ≤ ms, then the lemma statement follows trivially,

as a1, an ≥ 0. So now consider when that a1a2 > ms. In

this case, we will define new b1, . . . , bn for which bi ≤ ai
for all i, and analyze these instead.

To this end, define b1 = a1, b2 = a2, and for 2 < i ≤ n
define bi := bi−2 − s/bi−1. Observe that the bis satisfy the

following equality (to see this, substitute bi−1 − s/bi for

bi+1):

bibi+1 = bibi−1 − s. (1)

Since b1b2 = a1a2 > ms, this means that for all i < n
we have bibi+1 > (m − i + 1)s > 0 (recall that n = m

2 ).

Since b1 and b2 are strictly positive, we conclude that all bi
are strictly positive as well. Now, we claim that bi ≤ ai for

all i. Indeed, this is true for i = 1, 2. We now prove this by

induction for i > 2. Assume for inductive hypothesis that

bj ≤ aj . Then bj+1 = bj−1 − s
bj

≤ aj−1 − s
aj

≤ aj+1. The

last step follows from the equation aj(aj−1 − aj+1) ≤ s.

Now, we wish to prove further properties of the bis
towards our end goal. We show the following inequality by

induction:

b1(b2−b2i) ≤ s

(
m

m− 1
+

m

m− 3
+ · · ·+ m

m− (2i− 3)

)
.

(2)

Proof of Equation 2:
Observe first for i = 2 that we have:

b1(b2 − b4) = b1

(
b2 −

(
b2 − s

b3

))
=

b1
b3

· s =

s · b1
b1 − s

b2

= s · b1b2
b1b2 − s

= s · a1a2
a1a2 − s

.

Now, a1a2

a1a2−s is decreasing in a1a2, and we assumed already

that a1a2 > ms, so we have

b1(b2 − b4) = s · a1a2
a1a2 − s

< s · ms

ms− s
= s · m

m− 1
.

This proves the base case (i = 2). Now assume for inductive

hypothesis that the inequality holds for i−1. We then have:

b1(b2 − b2i) = b1(b2 − b2(i−1)) + b1(b2(i−1) − b2i)

= b1(b2 − b2(i−1)) + b1 · s

b2i−1
.

The last step here follows from Equation 1. From here we

continue with:

b1(b2 − b2(i−1)) + b1 · s

b2i−1

= b1(b2 − b2(i−1)) + b1 · s

b2i−3 − s
b2i−2

= b1(b2 − b2(i−1)) + b1 · b2i−2s

b2i−3b2i−2 − s
.

From here, we now apply Equation (1) to the term in the

denominator 2i − 4 times. That is, we successively replace

bjbj+1 with bjbj−1 − s, 2i− 4 times. This leaves us with:

b1(b2− b2i) = b1(b2− b2(i−1))+ b1 · b2i−2s

b1b2 − (2i− 3)s
. (3)

Now, it is easy to see from the definition of bis that for

all j, bj+2 ≤ bj . As such, we also have b2i−2 ≤ b2. Finally,
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note that the denominator (b1b2−(2i−3)s) is positive (since

we are in the case that b1b2 = a1a2 > ms), so we can now

write:

b1(b2 − b2i) ≤ b1(b2 − b2(i−1)) + s · b1b2
b1b2 − (2i− 3)s

≤ b1(b2 − b2(i−1)) + s · ms

ms− (2i− 3)s

≤ s

(
m

m− 1
+

m

m− 3
+ · · ·+ m

m− (2i− 3)

)
.

The penultimate step above follows from the fact that
b1b2

b1b2−(2i−3)s decreasing in b1b2 and we have assumed that

b1b2 > ms. The last step follows by the inductive hypothe-

sis. This completes the proof of Equation (2).

Now we return to the proof of Lemma V.14 with Equa-

tion (2) in hand. Now, since an ≥ bn, we have:

a1(a2 − an) = b1(b2 − an) ≤ b1(b2 − bn) ≤

ms

(
1

m− 1
+

1

m− 3
+ · · ·+ 1

m− (
m
2 − 3

)
)
.

In the right-most term, observe that there are m/4 − 1
terms in the sum, each of which are at most 2/m. As such,

the total sum of these terms is ≤ 1. Therefore, the right-

hand-side above is at most ms, and a1(a2 − an) ≤ ms, as

desired. This concludes the proof of Lemma V.14.

Now, we return to the proof of Proposition V.13. Recall

that the purpose of Lemma V.14 is to claim that the random

variables Π(S1, S2) and Π(S1, Sn) are not that different

(which would contradict that π is correct with probability

at least 0.8 on both (S1, S2) and (S1, Sn)). Observe by

Lemma V.14 that:

∑
z,a2(z)≥an(z)

a1(z) (a2(z)− an(z))

≤ m

⎛
⎝ ∑

z,a2(z)≥an(z)

s(z)

⎞
⎠ ≤ m

∑
z

s(z)

= m

n−1∑
i=2

∑
z

|ai(z)(ai−1(z)− ai+1(z))|

≤ m(n− 2)

m2
≤ 1

2
.

Above, recall that n := m/2, and that we have assumed

for contradiction that
∑

z |ai(z)(ai−1(z) − ai+1(z)| ≤
1/m2 for all i. (Recall that

∑
z |ai(z)(ai−1(z) −

ai+1(z)| := ||Π(Si, Si−1)−Π(Si, Si+1)||1 when i is odd, or

||Π(Si−1, Si)−Π(Si+1, Si)||1 when i is even, both of which

are assumed to be ≤ 1/m2 in the proposition statement.)

Invoking that a1(z)a2(z) = Pr[Π(S1, S2) = z], and

a1(z)an(z) = Pr[Π(S1, Sn) = z], we further conclude that:∑
z,Pr[Π(S1,S2)=z]≥Pr[Π(S1,Sn)=z]

| Pr[Π(S1, S2) = z] −

Pr[Π(S1, Sn) = z] |
=

∑
z,a2(z)≥an(z)

a1(z)(a2(z)− an(z)) ≤ 1

2
.

But note that
∑

z Pr[Π(S1, S2) = z] =∑
z Pr[Π(S1, Sn) = z] = 1, which means that:∑

z,Pr[Π(S1,S2)=z]≥Pr[Π(S1,Sn)=z]

| Pr[Π(S1, S2) = z] −

Pr[Π(S1, Sn) = z] | =∑
z,Pr[Π(S1,S2)=z]<Pr[Π(S1,Sn)=z]

| Pr[Π(S1, S2) = z] −

Pr[Π(S1, Sn) = z] |,
so in fact both sums are ≤ 1/2. We may now conclude that:

||Π(S1, S2)−Π(S1, Sn)||1 ≤ 1. (4)

Now, we are ready to wrap up the proof of Proposi-

tion V.13, as Equation 4 asserts that the random variables

Π(S1, S2) and Π(S1, Sn) are too similar in order for pro-

tocol π to be correct with probability at least 0.8 on both

(S1, S2) and also (S1, Sn).
Indeed, let Zb be the set of transcripts that output b. Then

because π is correct with probability at least 0.8, Π(S1, Sn)
assigns mass at least 0.8 to z ∈ Z1, and Π(S1, S2) assigns

mass at most 0.2. So terms in Z1 alone contribute at least

0.6 to the difference. In addition, Π(S1, Sn) assigns mass at

most 0.2 to z ∈ Z0, and Π(S1, S − 2) assigns mass at least

0.8. So terms in Z0 contribute at least 0.6 to the difference.

Therefore, because π is correct, we must have ||Π(S1, S2)−
Π(S1, Sn)||1 ≥ 1.2, contradicting our conclusion above.

This concludes the proof of Proposition V.13. To recap:

we first showed how to relate the statistical difference

between Π(S1, S2) and Π(S1, Sn) to the statistical dis-

tance between adjacent pairs Π(Si, Si+1) and Π(Si+2, Si+1)
(Lemma V.14). Lemma V.14 required a decent amount of

math, the bulk of which is in proving Equation (2). With

Lemma V.14, we then obtained a contradiction: the statistical

difference between Π(S1, S2) and Π(S1, Sn) cannot be

small if π is to possibly be correct on both (S1, S2) and

(S1, Sn), because the answers must be different with good

probability.

Proposition V.13 claims that no chains of the proposed

form can exist for any private-randomness protocol which

solves all instances of FAR-SETS with probability 0.8. Now

we will claim that any protocol which has low information

complexity with respect to μ must have some chain of the

proposed form. To this end, we first give a few definitions:

Definition V.5. Let n = m
2 as before.
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• A link is an ordered pair (X,Y ) of sets of size n+ 1
such that |X�Y | = 2.

• A chain is a sequence of sets T1, . . . , Tn such that

(Ti, Ti+1) is a link for 1 ≤ i < n, and |T1 ∩ Tn| = 2.

• Given a link (X,Y ), recall that Π(X,Y ) is the random

variable denoting the transcript when π is run on

input (X,Y ). Further define Π(X, ?) to be the random

variable which first samples a uniformly random Y
such that (X,Y ) is a link (note that this is simply

sampling a uniformly random element of X to remove,

and a uniformly random element /∈ X to add), and then

samples Π(X,Y ). Define Π(?, Y ) similarly.

• A link (X,Y ) is broken if D(Π(X,Y ) ‖ Π(X, ?)) >
1

8m4 or if D(Π(X,Y ) ‖ Π(?, Y )) > 1
8m4 . Here,

D(· ‖ ·) represents Kullback-Leibler divergence from

Definition V.5.

• A chain T1, . . . , Tn is broken if for some odd i,
(Ti, Ti+1) or (Ti, Ti−1) is a broken link. These n − 1
links are the chain’s structural links.

Proposition V.15. Let π be a protocol with ICμ(π) ≤
1

8m4N . Then at most a 1/N fraction of links are broken.

Proof: Let’s first compute I(Π(X,Y );X|Y ) when

(X,Y ) are drawn from μ. In order to draw from μ, we may

first draw X uniformly at random from all sets of size n+1,

and then draw Y uniformly at random among all sets of size

n+ 1 with |X�Y | = 2 (note that there are (n+ 1)(n− 1)
such sets: pick an element in X to kick out and an element

/∈ X to add). So we get that I(Π(X,Y );X | Y ) is equal to:

1(
m

n+1

) ∑
T⊆M

|T |=n+1

I(Π(X,Y );X | Y = T ) =

1(
m

n+1

) ∑
T⊆M

|T |=n+1

∑
S where
(S,T )

is a link

1

(n+ 1)(n− 1)
D(Π(S, T ) ‖ Π(?, T )).

The first step above is just expanding the definition of

conditional mutual information. The second step requires

some further explanation. First, note that the number of S
such that (S, T ) is a link is (n + 1)(n − 1) (one of the

n+ 1 elements of T needs to be kicked out and one of the

n−1 elements of T needs to be put in to form S), and each

of these sets are equally likely to be drawn from μ. The

second step is again just unraveling the definition of mutual

information via Fact V.6.

Now, the above sum can be written to directly sum over

all links. That is:

I(Π(X,Y );X | Y ) =
1

( m
n+1)·(n+1)(n−1)

·∑links (S,T ) D(Π(S, T )||Π(?, T )).

Identical math concludes that I(Π(X,Y );Y | X) =
1

( m
n+1)·(n+1)(n−1)

· ∑
links (S,T ) D(Π(S, T )||Π(S, ?)). This

means that ICμ(π) is equal to 1

( m
n+1)·(n+1)(n−1)

D(Π(S, T ) ‖

Π(?, T )) + D(Π(S, T ) ‖ Π(S, ?)). Observe that this is

simply the average over all links of D(Π(S, T ) ‖ Π(?, T ))+
D(Π(S, T ) ‖ Π(S, ?)). So if a 1/N fraction of all links are

broken, then the average of this quantity over all links is at

least 1
8m4N , meaning that ICμ(π) ≥ 1

8m4N .

Now, we claim that if most links are not broken, there

must exist an entire chain which is not broken.

Lemma V.16. If fewer than 2
m links are broken, there exists

an unbroken chain.

Proof: We first claim that the number of chains is
m!
2 . Indeed, consider the structure of a chain T1, . . . , Tn.

Observe that there are exactly two items that persist in ∩iTi.

Moreover, each Ti adds a unique element to Ti−1 (that

previously wasn’t added) and removes another one (which

previously wasn’t removed). So if we order the m elements

so that the first two elements are in ∩iTi, and the next n−1
elements are added in T2, T3, . . . , Tn, and the next n − 1
elements are removed in T2, . . . , Tn, this defines a chain.

The chain defined is invariant under flipping the order of the

first two elements, but modulo this, each ordering defines a

unique chain.

As counted previously, the total number of links is(
m

n+1

)
(n − 1)(n + 1): for a link (X,Y ) there are

(
m

n+1

)
choices for X and (n−1)(n+1) choices for Y conditioned

on this. Each chain consists of n− 1 structural links, so the

number of pairs (C, L) such that L is a link in chain C is
m!
2 (n − 1). By symmetry, every link is a structural link of

the same number of chains, so for a given link, the number

of chains which contain it as a structural link is:

m!(n− 1)

2
(

m
n+1

)
(n− 1)(n+ 1)

=
m!

2
(

m
n+1

)
(n+ 1)

.

Thus, for all m!
2 chains to be broken, there must be at

least m!/2 pairs (C, L) such that C is a chain and L is a

broken structured link of C. By the above counting, this

means there must be at least
(

m
n+1

)
(n+1) broken links. But

this is 1
n−1 = 1

m/2−1 > 2/m fraction of all of the links. So

if fewer than this are broken, there must exist an unbroken

chain.

Now, we want to claim that an unbroken chain exactly

satisfies the hypotheses of Proposition V.13. This is the last

step in wrapping up the proof of Theorem V.12.

Lemma V.17. Let S1, . . . , Sn be an unbroken chain. Then
for all odd 1 < i < n, ||Π(Si, Si−1) − Π(Si, Si+1)||1 ≤
1/m2, and for all even 1 < i < n, ||Π(Si−1, Si) −
Π(Si+1, Si)||1 ≤ 1/m2.

Proof: Because the chain is unbroken, we get that for all

odd i > 1, D(Π(Si, Si+1 ‖ Π(Si, ?)) and D(Π(Si, Si−1) ‖
Π(Si, ?)) are both at most 1

8m4 . Now, Pinsker’s inequality

allows us to conclude that ||Π(Si, Si+1) − Π(Si, ?)||1 ≤√
2

8m4 = 1
2m2 for all i, and also that ||Π(Si, Si+1) −
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Π(?, Si+1)||1 ≤ 1
2m2 for all i. By the triangle inequality,

we therefore conclude that for odd i:

||Π(Si, Si+1)−Π(Si, Si−1)||1 ≤ 1/m2

And for even i:

||Π(Si+1, Si)−Π(Si−1, Si)||1 ≤ 1/m2.

Now, we are finally ready to conclude the proof of

Theorem V.12. We have two contradictory lines of argu-

ment: on one hand, if π uses private randomness and is

correct on every input with probability at least 0.8, then

Proposition V.13 combined with Lemma V.17 claims that

no unbroken chain can exist. However, Proposition V.15

combined with Lemma V.16 claims that if ICμ(π) <
1

4m5 ,

then there is an unbroken chain. So no private-randomness

protocol can simultaneously have ICμ(π) < 1
4m5 and

correctly solve FAR-SETS on every input with probability

at least 0.8. From Lemma V.10 it also follows that no

protocol, whether making use of public randomness or not,

can simulatenously have ICμ(π) <
1

4m5 and correctly solve

FAR-SETS on every input with probability at least 0.8.

E. Wrapping everything up

Now, we can complete the proof of Theorem V.1 by

combining everything together. We first need to combine

Theorem V.12 and Theorem V.11 to conclude that ran-

domized protocols for EXIST-FAR-SETS require exponential

communication.

Theorem V.18. For all m, �, k such that � ≤ (1−c) log3(m)
for some constant c > 0 and k ∈ (m, exp( mc

2 log3(m) )), any
randomized protocol π that solves EXIST-FAR-SETS with
probability at least 2/3 on all instances (which satisfy the
promise) has CC(π) = Ω(k/m5).

Proof: We already have a distribution μ for which

any protocol π solving FAR-SETS with probability at least

0.8 on all inputs has ICμ(π) > 1
4m5 . It is also clear

that EXIST-FAR-SETS(X ,Y) =
∨

i∈[k] FAR-SETS(Xi, Yi).
So we just need to check the details with respect to the

promises. In particular, we just need to see for what values

of (k, z), μ is and the FAR-SETS promise are (k, z)-safe

with respect to the EXIST-FAR-SETS promise.

Observe that conditions (1) and (2) of the EXIST-FAR-

SETS promise are trivially satisfied. So we just need to

check conditions (3) and (4). Note that these conditions

depend only on Alice’s sets and, separately, Bob’s sets,

and not on how Alice’s and Bob’s sets interact. Now,

the EXIST-FAR-SETS promise is invariant under permuta-

tions of M , and also under permutations of the indices

(i.e. if (X1, Y1), . . . , (Xk, Yk) satisfy the EXIST-FAR-SETS

promise, then so do (Xσ(1), Yσ(1)), . . . , (Xσ(k), Yσ(k)) for

any permutation σ from [k] to [k]). Therefore, we may

treat Alice as having i.i.d. subsets of M of size m
2 + 1,

and likewise with Bob. We are interested in bounding the

probability that Alice’s sets do not satisfy conditions (3) and

(4); then, a simple union bound will give us the probability

that the EXIST-FAR-SETS promise is satisfied.

Lemma V.19. Let X = 〈X1, . . . , Xk〉 be drawn so that each
Xi is an i.i.d. uniformly random set of size m/2+1. For any
x, let � := log3(m) − log3(x), and let k ≤ e

x
2� . Then with

probability at least 1− e−x/2 − ke−Ω(m), X is �-sparse.

Proof: Consider the following roundabout way to draw

Xi: first place each element of M in X ′
i independently with

probability 2/3. Then, if |X ′
i| ≥ m/2+1, let Xi be a random

subset of X ′
i of size m/2+1. If any |X ′

i| < m/2+1, abort

the entire process and consider it a failure. Observe that

Xi ⊆ X ′
i .

For a fixed item j, and fixed set L of indices with |L| = �,
the probability that j ∈ ∪i∈LX

′
i is 1−(1/3)�. Because these

events are independent, the probability that M ⊆ ∪i∈LX
′
i

is exactly (1 − (1/3)�)m. Taking a union bound over all(
k
�

)
subsets we get that the probability the collection is not

�-sparse, conditioned on not failing initially, is at most:

(
k

�

)(
1− 1/3�

)m ≤ k�exp

(−m

3�

)
= exp (� ln(k)− x) ≤ exp(−x/2).

Finally, observe that the expected number of items in each

X ′
i is 2m/3. So the probability that a single X ′

i fails to have

m/2+1 elements is e−Ω(m) by the Chernoff bound. Taking

a union bound over all k X ′
is accounts for the additional

ke−Ω(m) term.

Lemma V.20. Let X = 〈X1, . . . , Xk〉 be drawn so that each
Xi is an i.i.d. uniformly random set of size m/2 + 1. Then
with probability at least 1 − e−k/3� − e−Ω(m), for all sets
T of |T | = �, there exists an Xi ⊇ T .

Proof: Let’s again consider the following roundabout

way to draw Xi: first place each element of M in X ′
i

independently with probability 1/3. Then if |X ′
i| ≤ m/2+1,

let Xi be a random superset of X ′
i of size m/2 + 1. If any

|X ′
i| > m/2 + 1, abort the entire process and consider it a

failure. Observe that Xi ⊇ X ′
i .

For a fixed set T of size �, The probability that X ′
i

contains T is just 1/3�. So the probability that no X ′
i

contains T is (1 − 1/3�)k ≤ exp(−k/3�). Again, the

probability of failure is at most ke−Ω(m), resulting in the

lemma statement.

Now to wrap up, we observe that the probability that

the EXIST-FAR-SETS promise is not satisfied is at most

2(ke−Ω(m)+e−k/3�+e−x/2), where � := log3(m)−log3(x)
and k ≤ e

x
2� . Here, the factor of 2 comes from a union bound

from the events that Alice’s sets fail condition (3) or (4) and

that Bob’s sets fail condiiton (3) or (4).

When x = mc, for any c < 1, we get that � := (1 −
c) log3(m), and k ≤ e

mc

2(1−c) log3(m) . As such, ke−Ω(m) =
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o(1), e−x/2 = o(1), and furthermore e−k/3� = o(1) as long

as k = Ω(m).
Theorem V.11 combined with Theorem V.12 then implies

that any protocol π for EXIST-FAR-SETS which succeeds on

all inputs (satisfying the promise) with probability at least

0.8/(1 − o(1)) has CC(π) ≥ k
4m5 . To replace 0.8/(1 −

o(1)) with 2/3 in the Theorem statement, observe that if

we had a protocol with success probability 2/3, we could

repeat it independently a constant number of times and take

a majority to get a protocol with success probability 0.8/(1−
o(1)).

Proof of Theorem V.1: The proof of Theorem V.1 now

follows immediately from Theorem V.18 and Corollary V.3.

In particular, by plugging in � = log3(m)/3, we may take

c = 2/3, and k = 4m5 · e
√
m in Theorem V.18 to conclude

that any randomized protocol guaranteeing a (1/2+ 6
log(m) )-

approximation for WELFARE-MAXIMIZATION with proba-

bility at least 2/3 on all instances requires communication

Ω(e
√
m).

VI. FROM XOS TO SUBADDITIVE: THE MPH

HIERARCHY

In this section, we explore the space between fractionally

subadditive and subadditive functions via the MPH hierar-
chy.

A. MPH Preliminaries

Let’s first review the definitions.

Definition VI.1 (Positive-Hypergraph [ABDR12]). A valu-
ation function v(·) is PH-k if there exists a non-negative set
function w(·) such that for all S, v(S) =

∑
T⊆S,|T |≤k w(T ).

Observe that PH-1 functions are exactly additive func-

tions.

Definition VI.2 (Maximum-over-Positive-Hyper-

graphs [FFI+15]). A valuation function v(·) is MPH-k if
there exists a collection F of PH-k valuation functions
such that for all S, v(S) = maxf∈F{f(S)}.

Observe that MPH-1 functions are exactly fractionally

subadditive (XOS) functions.

The next observation follows directly from the definitions.

Observation VI.1. Let v(·) be MPH-k. Then for every item
set S, there exists a non-negative set function wS(·) such
that (i) v(S) =

∑
T⊆S wS(T ); (ii) v(S′) ≥ ∑

T⊆S′ wS(T )
for every S′ �= S; and (iii) wS(T ) = 0 for every set T of
size |T | > k.

Proof: By definition, v(·) is a maximum over PH-k
functions. Let fS(·) be the PH-k function that is the arg-

maximizer at S, i.e., v(S) = fS(S); then clearly v(S′) ≥
fS(S

′) for every S′. Because fS(·) is PH-k, by definition

there exists a non-negative set function w(·) for which all

conditions are satisfied.

The following lemma lower-bounds the MPH level of a

set function v(·) based on the ratio between the sum of

marginal contributions of the items to the grand bundle and

the grand bundle’s value.

Lemma VI.2. Let v(·) be any set function. Then v(·) is not
MPH-k for k <

∑
j v(M)−v(M\{j})

v(M) .

Proof: Let k be the level of v(·) in the MPH hierarchy

(i.e., v(·) is MPH-k). Then by Observation VI.1 there exists

a non-negative set function w(·) such that (i)
∑

T w(T ) =
v(M); (ii) v(M \ {j}) ≥ ∑

T⊆M\{j} w(T ) for all j; and

(iii) w(T ) = 0 for every T with |T | > k. Summing both

sides of (ii) over all items j yields:∑
j∈M

v(M \ {j}) ≥
∑
j

∑
T⊆M\{j}

w(T )

=
∑
T

w(T )(m− |T |)

≥
∑
T

w(T )(m− k)

= v(M)(m− k).

Rearranging the inequality yields kv(M) ≥ ∑
j v(M) −

v(M \ {j}), as required.

[FFI+15] show that every monotone valuation function

is MPH-m, and that there exist subadditive functions that

are not in MPH-k for any k < m/2. In the Appendix we

show that this is tight; i.e., that every monotone subadditive

valuation function is MPH-�m
2 � (Proposition A.1).

Clearly, for any k > 1, there exist MPH-k functions

that are not complement-free (i.e., subadditive). Indeed,

even MPH-2 functions exhibit complementarities. Since we

are interested in exploring the space of functions between

XOS and subadditive, our results in this section will be

for “subadditive MPH-k” functions, which belong to both

classes simultaneously. The extra subadditive assumption is

necessary for our results (Proposition VI.12).

B. Our Results for Subadditive MPH-k

A preliminary question to address is: what is the MPH

level of the subadditive functions constructed in Section III?

It turns out to be quite high:

Proposition VI.3. For all S, �, such that f �
S(·) is well-

defined, f �
S(·) is not MPH-k for k < m/�.

Proof: For every item j, f �
S(M)−f �

S(M\{j}) ≥ 1, and

f �
S(M) = �. Applying Lemma VI.2 completes the proof.

Proposition VI.3 raises the possibility to improve upon

the 1/2-approximation ratio for subadditive functions which

reside in lower MPH levels. The main result of this section

is a ( 12 + Ω( 1
log k ))-approximation in poly(m) communica-

tion for WELFARE-MAXIMIZATION when Alice and Bob

have valuations that are both subadditive and MPH-k. This

approximation guarantee is tight for sufficiently large k by

direct application of our previous bounds.
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Our main technical contribution in this section is an

oblivious rounding protocol for the configuration LP when

two bidders both have subadditive MPH-k valuations. The

protocol’s performance gradually degrades with the level

k, starting from 0.625 for k = 2 (Section VI-D) and

behaving like 1
2 + Ω( 1

log k ) in general (Section VI-E). An

alternative and simpler protocol with guarantee 1
2+Ω( 1

logm )
was developed independently for subadditive valuations by

Dobzinski (which makes use of the fact that XOS valuations

pointwise 1/Hm-approximate subadditive functions).16 It

is an interesting open question to determine whether the

simpler version can be extended to subadditive MPH-k
valuations with the 1

2 +Ω( 1
log k ) guarantee (for instance, by

proving that XOS valuations pointwise 1/Hk-approximate

subadditive MPH-k functions; note, however, that the “sub-

additive” is necessary for this claim to possibly be true).

We remark that the obliviousness of the protocol is known

to be without loss, by the results of [FFT16]: since the class

of MPH-k valuations is closed under convex combinations,

by [FFT16] there exists an oblivious rounding scheme that

achieves an approximation guarantee matching the integral-

ity gap of the LP. In Section VI-F we show the matching

integrality gap of 1
2 + Ω( 1

log k ) for sufficiently large k.We

also remark that our rounding-based technique necessarily

fails for MPH-k valuations that are not subadditive. Indeed,

even for two MPH-2 valuations, the integrality gap may be

as large as 1
2 (Proposition VI.13).

C. Notation and Key Lemma

Throughout this section, we overload the notation v(S)
as follows. When S is a random set drawn from distribution

D, we use v(S) to denote ES∼D[v(S)]. Also, if X denotes

either Alice or Bob, we use X to denote the other player

(i.e. if X = Alice, then X = Bob, and vice versa).

The following key lemma extends a well-known result

of [Fei06] for XOS valuations to the MPH-k hierarchy.

Lemma VI.4. Let v(·) be an MPH-k function, and let S ⊆
M be a subset of items. If T is a random set such that every
U ⊆ S with |U | ≤ k is contained in T with probability at
least p, then v(T ) ≥ p · v(S).

Proof: Let wS(·) be as promised from Observa-

tion VI.1. Then v(S) =
∑

T⊆S wS(T ), v(U) ≥∑
T∈U wS(T ) for all U , and wS(T ) = 0 for all T with

|T | > k. Then we can conclude that:

v(T ) ≥
∑

T ′,|T |≤k

Pr[T ′ ⊆ T ] · wS(T
′)

≥ p
∑

T ′⊆S′,|T ′|≤k

wS(T
′) = p · v(S).

The first inequality follows from the fact that nonzero

weights only belong to sets T ′ of size at most k. The second

16This protocol, which is not yet in print, was brought to our attention
in a personal correspondence with Shahar Dobzinski.

follows because every subset of S of size k appears in T
with probability at least p.

It is also not hard to extend Lemma VI.4 to functions

which are “close” to MPH-k.

Definition VI.3 (Pointwise β-approximation [DMSW15]).
A valuation function v(·) is pointwise β-approximated by
a valuation class W if for any set S ⊆ M , there exists a
valuation w ∈ W such that: (a) βw(S) ≥ v(S) and (b) for
all T ⊆ M , v(T ) ≥ w(T ).

Similarly, we say that a class V is pointwise β-
approximated by a class W if all v ∈ V are pointwise
β-approximated by W .

Corollary VI.5. Let v(·) be pointwise β-approximated by
MPH-k functions, and let S ⊆ M be a subset of items. If
T is a random set such that every U ⊆ S with |U | ≤ k
is contained in T with probability at least p, then v(T ) ≥
p
β v(S).

Proof: Let w(·) be the MPH-k function which point-

wise β-approximates v(·) at S. Then we know that: v(T ) ≥
w(T ) ≥ p·w(S) ≥ p

β v(S). The outer two inequalities are by

definition of pointwise approximation. The inner inequality

is by Lemma VI.4.

D. Protocol for Subadditive MPH-2 Valuations

Here, we describe our protocol specifically for subadditive

MPH-2, as it conveys the main ideas. Our protocol will

proceed as follows. First, we will solve the configuration

LP relaxation (defined shortly) which finds the optimal

fractional allocation. Then, we provide an oblivious round-

ing which takes the fractional solution to a distribution

over allocations. Assuming that both A(·) and B(·) are

subadditive MPH-k, the rounding will maintain at least a
1
2 +Ω(1/ log(k)) fraction of the welfare.

Let’s now recall the configuration LP (defined below for

any n, we only use it for n = 2):

• Variables: xi(S), for all bidders i and subsets S ⊆ M .

• Constraint: xi(S) ≥ 0 for all i, S.

• Constraint: For all i,
∑

S xi(S) = 1 (dual variable ui).

• Constraint: For all j,
∑

S�j

∑
i xi(S) ≤ 1 (dual vari-

able pj).

• Maximizing:
∑

i,S vi(S) · xi(S).

It is clear that the configuration LP is indeed a fractional

relaxation, as any integral allocation is feasible. Despite

having exponentially many variables, there are only n+m
non-trivial constraints, and so the dual has only n + m
variables. We quickly remind the reader of the dual:

• Variables: ui for all bidders i, pj for all items j.

• Constraint: ui ≥ vi(S)−
∑

j∈S pj for all bidders i and

subsets S ⊆ M .

• Constraint: pj ≥ 0.

• Minimize:
∑

j pj +
∑

i ui.

We remind the reader that a separation oracle for the

dual can be achieved via a demand oracle for each vi(·)
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(recall that this oracle takes as input a set of prices 	p and

outputs the set maximizing vi(S) −
∑

j∈S pj). So the dual

can indeed be solved in polynomial communication (and

indeed only requires demand queries of the valuations).

Once the dual is solved, an optimal primal can be recovered

as well (for further details, see [BN07]). Most state-of-the-

art communication protocols (including all those referenced

in Table ??) are derived by first solving this LP, and then

rounding. Indeed, our protocol follows this blueprint as well.

Moreover, our rounding protocol is oblivious: while we of

course need demand-query access to the valuations in order

to find the optimal fractional solution, once we have this

fractional solution our rounding scheme never looks at the

valuations again. The same rounding argument is guaranteed

to work for all subadditive MPH-2 valuations.

Oblivious rounding scheme for k = 2. Draw player X
uniformly at random from {Alice, Bob} (also referred to as

{1, 2}).

1) Let 	x denote the input fractional allocation.

2) Let DX denote the distribution that takes set S with

probability xX(S).
3) With probability λ = 0.5, draw SX from DX ; give set

SX to player X; and give set M \ SX to player X̄ .

4) Otherwise (with probability 1− λ = 0.5), draw set S′
A

from DA and set S′
B from DB ; give set S′

A ∩ S′
B to

player X; and give set M \ (S′
A ∩ S′

B) to player X̄ .

Proposition VI.6. Let C denote the optimal value of the
configuration LP. Then when Alice and Bob are both subad-
ditive MPH-2, the expected welfare of the above oblivious
rounding scheme is ≥ 0.625 · C.

Proof: Let bundles SA, SB be independent random

draws from distributions DA, DB , respectively. The first

case of the oblivious rounding scheme achieves expected

welfare of (in expectation over randomly sampling X from

U({1, 2})):
1

2
(vA(SA) + vB(M \ SA)) +

1

2
(vA(M \ SB) + vB(SB)) ≥

1

2
(vA(SA) + vB(SB)) +

1

2
(vA(SA \ SB) + vB(SB \ SA)) , (5)

where the inequality holds pointwise for every instantia-

tion of SA, SB and follows from monotonicity of vA, vB .

Similarly, the second case of the oblivious rounding scheme

achieves expected welfare of:

1

2
(vA(SA ∩ SB) + vB(SA ∩ SB)) +

1

2
(vA(M \ (SA ∩ SB)) + vB(M \ (SA ∩ SB))).

To analyze the latter case we use the following claim:

Claim VI.7. Let vX be MPH-2 and let bundles SA, SB

be independent random draws from distributions DA, DB ,
respectively. Then vX(M \ (SA ∩ SB)) ≥ 1

2vX(M).

Proof of Claim VI.7: For every pair of items i, j ∈ M ,

the probability that player X gets the pair when allocated

the random bundle M \ (SA ∩ SB) is ≥ 1
2 . To see this,

observe that for player X not to get the pair, either i or

j or both must be in SA ∩ SB . By definition of SA, SB ,

the probability Pr [i ∈ SA ∩ SB ] is equal to (
∑

S�i x1(S)) ·
(
∑

S�i x2(S)). We further know that
∑

S�i x1(S)+x2(S) ≤
1 by the constraints in the configuration LP. This means

that (
∑

S�i x1(S)) · (
∑

S�i x2(S)) ≤ 1/4, and therefore

Pr [i ∈ SA ∩ SB ] ≤ 1/4 as well. By applying the union

bound we get that i and/or j are in SA∩SB with probability

≤ 1/4. Applying Lemma VI.4 for MPH-2 valuations, player

X’s expected value for the random bundle M \ (SA ∩ SB)
is thus at least 1

2vX(M).
By Claim VI.7 the second case achieves expected welfare

of at least

1

2
(vA(SA ∩ SB) + vB(SA ∩ SB)) +

1

4
(vA(Ω) + vB(Ω)). (6)

Summing up the contributions from (5) and (6) weighted by

their respective probabilities λ and 1−λ, the total expected

welfare of the oblivious rounding scheme is at least:

λ

2
(vA(SA) + vB(SB)) +

λ

2
(vA(SA \ SB) + vB(SB \ SA)) +

1− λ

2
(vA(SA ∩ SB) + vB(SA ∩ SB)) +

1− λ

4
(vA(M) + vB(M))

≥ λ

2
(vA(SA) + vB(SB)) +

λ

2
(vA(SA) + vB(SB)) +

1− λ

4
(vA(M) + vB(M)) (7)

≥ 5

8
(fA(SA) + fB(SB)) = 0.625 · C, (8)

where (7) holds since λ was chosen such that 1−λ
2 = λ

2 , and

by subadditivity of vA, vB (importantly, note that (7) does

not necessarily hold without subadditivity), and (8) holds

since λ = 1
2 and by monotonicity of vA, vB (both inequali-

ties hold pointwise for every instantiation of SA, SB). This

completes the proof of Proposition VI.6.

To recap the proof of Proposition VI.6, the fact that the

valuations are MPH-2 means that if a player “loses” in the

second rounding case and is allocated the “leftovers”, this

player still gets at least half of her total value (see Claim

VI.7). The fact that the valuations are subadditive means

that allocating the bundle in contention SA ∩SB with some

probability p to player X , and allocating the bundle not in

contention SX \ (SA ∩SB) with the same probability to the

same player, is as good in terms of welfare as allocating SX

to player X with probability p (see (7)).
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Corollary VI.8. If Alice and Bob are β-pointwise approxi-
mated by subadditive MPH-2 valuations, then the expected
welfare of the oblivious rounding scheme is ≥ ( 12 + 1

8β )ω.

Corollary VI.8 follows by replacing Lemma VI.4 by

Corollary VI.5 in the proof of Proposition VI.6.

E. Protocol for Subadditive MPH-k Valuations

We now generalize the oblivious rounding scheme above

to subadditive MPH-k. The main idea behind the approach

is similar to our protocol for MPH-2: the “level 0” protocol

that one should try first is to simply draw sets SA and

SB independently from DA, DB . Prioritize awarding items

in SA ∩ SB to a uniformly random player, and give the

leftovers to the other. Of course, this protocol might fail to

beat a 1/2-approximation. But the only way it fails is if both

Alice and Bob have high expected value for the intersection

SA∩SB . If Alice and Bob have high expected value for the

intersection, then we can instead just recurse within SA∩SB .

The following protocol and subsequent proof makes this

formal.

Oblivious rounding scheme for general k ≥ 2. Draw

player X uniformly at random from {Alice, Bob}. Set r =
�log log k�.

1) Let 	x denote the input fractional allocation.

2) Let DX denote the distribution that takes set S with

probability xX(S).
3) With probability λ = 1

2 , draw SX from DX ; give set

SX to player X; and give set M \ SX to player X̄ .

4) For 0 ≤ q < r, with probability λq = λ
2q+1 ,

draw 2q sets S1
A, . . . , S

2q

A i.i.d. from DA and 2q sets

S1
B , . . . , S

2q

B i.i.d. from DB ; give set Sq = S1
A ∩ · · · ∩

S2q

A ∩S1
B ∩ · · · ∩S2q

B to player X , and give set M \Sq

to player X̄ .

5) Otherwise (with probability λr = 1− λ−∑r−1
q=0 λq =

1
2r+1 ), draw 2r sets S1

A, . . . , S
2r

A i.i.d. from DA and 2r

sets S1
B , . . . , S

2r

B i.i.d. from DB ; give Sr = S1
A ∩ · · · ∩

S2r

A ∩ S1
B ∩ · · · ∩ S2r

B to player X , and give M \ Sr to

player X̄ .

Theorem VI.9. Let C denote the optimal value of the
configuration LP. Then when Alice and Bob are both subad-
ditive MPH-k, the expected welfare of the above oblivious
rounding scheme is ≥ ( 12 +Ω( 1

log k )) · C.

Proof: The proof generalizes that of Proposition VI.6

and proceeds by analyzing the contribution from each case of

the oblivious rounding scheme. The first case of the scheme

achieves expected welfare of at least 1
2 (vA(SA)+vB(SB))+

1
2 (vA(SA \SB)+vB(SB \SA)) (identical to (5)). For every

0 ≤ q ≤ r, the corresponding case of the scheme achieves

expected welfare of at least

1

2
(vA(S

q)+vB(S
q))+

1

2
(vA(S

q \Sq+1)+vB(S
q \Sq+1)).

(9)

To analyze the last case we use the following claim:

Claim VI.10. Let vX be an MPH-k valuation and let
bundles S1

A, . . . , S
2r

A and S1
B , . . . , S

2r

B be independent ran-
dom draws from distributions DA and DB , respectively. Let
Sr = S1

A ∩ · · · ∩S2r

A ∩S1
B ∩ · · · ∩S2r

B . Then vX(M \Sr) ≥
(1− k

42r
)vX(M).

Proof of Claim VI.10: For every bundle of k items, the

probability that player X gets this bundle when allocated

the random bundle M \ Sr is ≥ 1 − k
42r

: For player X
not to get the bundle, at least one of its items must be in

Sr. By definition of Sr, the probability Pr [i ∈ Sr] is equal

to (
∑

S�i x1(S))
2r · (∑S�i x2(S))

2r , where
∑

S�i x1(S)+
x2(S) ≤ 1 because the solution is feasible for the configura-

tion LP. This means that Pr [i ∈ Sr] ≤ 1
42r

, and by applying

the union bound we get that at least one of the items in the

bundle are in Sr with probability ≤ k
42r

. Applying Lemma

VI.4 for MPH-k valuations, player X’s expected value for

the random bundle M \Sr is thus at least (1− k
42r

)vX(M).

By Claim VI.10 the last case achieves expected welfare

of at least

1

2
(vA(S

r) + vB(S
r)) +

1

2
(1− k

42r
)(vA(M) + vB(M)). (10)

We can now sum up the contributions from the first case,

the intermediate case (9), and the last case (10) weighted by

their respective probabilities of λ, λq for every intermediate

case 0 ≤ q < r, and λr. Notice that λr−1 = λr. The

weighted sum of the last two cases is thus at least

λr−1

2
(vA(S

r−1) + vB(S
r−1)) +

λr−1

2
(vA(S

r−1 \ Sr) + vB(S
r−1 \ Sr))

+
λr

2
(vA(S

r) + vB(S
r)) +

λr

2
(1− k

42r
)(vA(M) + vB(M))

≥ λr−2

2
(vA(S

r−1) + vB(S
r−1)) +

1

2r+2
(1− k

42r
) · C

=
λr−2

2
(vA(S

r−1) + vB(S
r−1)) + Ω(

1

log k
) · C.

Above, the first inequality follows by first observing that

λr = λr−1, λr−2 = 2λr−1, and using subadditivity of

vA(·), vB(·) to combine the first three terms together. The

last equality follows by observing that k/4k < 1/2, and that

r = �log log k�.

Now, we wish to continue by induction and sum the last

τ cases for τ ≤ r + 1. We claim that the contribution from

the last τ cases is at least:

λr−τ

2
· (vA(Sr−τ+1) + vB(S

r−τ+1)) + Ω(1/ log k) · C.

We have already proven the base case: this holds when

plugging in τ = 2. Assume for inductive hypothesis that the

claim holds for τ , and we now prove it for τ + 1. Then the
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sum of the last τ + 1 terms is exactly:

λr−τ

2

(
vA(S

r−τ ) + vB(S
r−τ )

)
+

λr−τ

2

(
vA(S

r−τ \ Sr−τ+1) + vB(S
r−τ \ Sr−τ+1)

)
+

λr−τ

2
· (vA(Sr−τ+1) + vB(S

r−τ+1)) + Ω(1/ log k) · C ≥
λr−τ−1

2

(
vA(S

r−τ ) + vB(S
r−τ )

)
+Ω(1/ log k) · C.

The inequality follows by definition of λr−τ−1 := 2λr−τ ,

and because both vA(·) and vB(·) are subadditive. This

proves the inductive step. This means that the last r + 1
cases together contribute exactly (below, λ−1 := 2λ0 = λ:

λ−1

2
· (vA(S0) + vB(S

0)) + Ω(1/ log k) · C.
Now, together with the weighted contribution of the first

case, which is at least

λ

2
(vA(SA) + vB(SB) + vA(SA \ SB) + vB(SB \ SA)) ,

we get a total expected welfare of at least (recall that S0 =
SA ∩ SB):

λ

2
· (vA(SA) + vA(SB) + vA(SA \ SB) + vB(SB \ SA))

+
λ

2
· (vA(SA ∩ SB) + vB(SA ∩ SB)) + Ω(1/ log k) · C ≥

λ (vA(SA) + vB(SB)) + Ω(1/ log k) · C =

(1/2 + Ω(1/ log k)) · C.
This completes the proof of Theorem VI.9.

Corollary VI.11. If Alice and Bob have valuations that
are pointwise β-approximated by subadditive MPH-k val-
uations, then the expected welfare of the oblivious rounding
scheme is ≥ ( 12 +Ω( 1

β log k )) · C.

F. Integrality Gaps and Hardness

In this section, we briefly derive integrality gaps and com-

munication lower bounds for subadditive MPH-k valuations

based on previous constructions. We also show an integrality

gap of 1
2 for MPH-2 valuations that are not subadditive.

Proposition VI.12. Let k ≥ 2. The integrality gap of the
configuration LP with two subadditive MPH-k bidders is
1
2 +Θ( 1

log k ).

Proof Sketch: The rounding algorithm presented above

witnesses that the integrality gap is 1/2 +O(1/ log k), and

the construction from Section III witnesses that the gap is

1/2 + Ω(1/ log k).
Specifically, let S1, . . . , St be random sets of size k/2

that are all subsets of the same K ⊆ M of |K| = k. Then

with t :=
√
k, � := log2(k)/2, {S1, . . . , St} is �-sparse

with probability 1 − 1/poly(k). So consider the instance

with f �
S(·) = v1(·) = v2(·). Then in this case, we know

that the best achievable welfare is � for an integral solution.

However, the fractional solution which sets xi(Sj) = 1/t
for all t is feasible for the configuration LP, and achieves

welfare 2(�− 1).

Proposition VI.13. The integrality gap of the configuration
LP with two (non-subadditive) MPH-2 bidders is 1

2 .

Proof: Consider 4 items a, b, c, d. Alice has value 1
for bundle {a, b} and for bundle {c, d} (as well as for any

containing bundle); and Bob has value 1 for bundle {a, c}
and for bundle {b, d} (as well as for any containing bundle);

all other values are 0. These valuations are MPH-2 since they

can be described as the maximum over 2 hypergraphs, each

with a positive hyperedge of size 2 corresponding to one of

the two desired bundles. The best fractional solution to the

configuration LP is x1({a, b}) = x1({c, d}) = x2({a, c}) =
x2({b, d}) = 1/2; one can check that all constraints are

satisfied and the objective is 2. The best integral solution

however cannot achieve welfare better than 1, completing

the proof.

Proposition VI.14. Let k ≥ 2. There exists an absolute
constant C such that the (randomized) communication re-
quired to achieve a (1/2 + C/ log k)-approximation for
WELFARE-MAXIMIZATION even when both Alice and Bob
are subadditive MPH-k is Ω(e

√
k).

Proof: This is a direct application of Theorem V.1, after

observing that any subadditive valuation defined on items

K ⊆ M (with zero value for all other items) is MPH-|K|.

Observe that the above proposition further means that

our approximation guarantees for subadditive MPH-k are

asymptotically tight among protocols with poly(m) com-

munication whenever k = Ω(log3 m) (tighter calculations

could get this down to log(1+ε) m for any constant ε > 0,

if desired). It remains open whether there is an impossi-

bility result < 3/4 for two subadditive MPH-2 valuations

(3/4 is implied already by the impossibility for MPH-1 =

XOS [DNS10]).
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APPENDIX

Proof of Lemma III.2: It is clear that f �
S(X) is always

defined at least once. The only way in which f �
S(X) could
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be defined multiple times is if σS(X) < �
2 (in which case

f �
S(X) = σS(X)) and σS(X) < �

2 (in which case f �
S(X) =

� − σS(X)). So assume for contradiction that both events

hold, and let X ⊆ ∪�/2−1
i=1 Ti, and X ⊆ ∪�/2−1

i=1 Ui, where

each Ti, Ui ∈ S . Note that σS(X), σS(X) < �/2 implies

that such Ti, Ui must exist. But now consider that we can

write M = X ∪ X as a union of ≤ � − 2 elements of S ,

contradicting that S is �-sparse.

Proof of Lemma III.3: We show (1) similarly

to [BR11]. First, σS(·) is monotone because if X is a

subset of ∪i∈Y Si, then X ′ ⊆ X is also a subset of

∪i∈Y Si (and therefore, any subcollection of S that covers

X also covers X ′, and σS(X ′) ≤ σS(X)). Otherwise if

X is not covered by S , then σS(X) = max{�, k} and

certainly σS(X ′) ≤ σS(X). Second, σS is subadditive:

Note that at least one of X,W is not covered by S if

and only if X ∪ W is not covered by S , and in this case

σS(X ∪W ) = max{�, k} ≤ σS(X) + σS(W ). Otherwise,

consider the index sets Y, Z witnessing σS(X) and σS(W ),
respectively (that is, X ⊆ ∪i∈Y Si and σS(X) = |Y |,
ditto for W and Z). Then X ∪ W ⊆ ∪i∈Y ∪ZSi, and

σS(X ∪W ) ≤ |Y |+ |Z| = σS(X) + σS(W ).
(2) follows directly from the definition of f �

S , and the fact

that it is well-defined: (2) clearly holds for any set X for

which f �
S(X) is defined in (a), and also for any set X for

which f �
S(X) is defined in (b) (as both f �

S(X) and f �
S(X)

are �/2).

(3) holds because if σS(X) < �
2 then f �

S(X) = σS(X) by

definition. And if f �
S(X) < �

2 , the only way this is possible

(given the definition of f �
S(·)) is if f �

S(X) is defined in (a)

to be σ�
S(X).

(4) holds again because if f �
S(X) > �

2 , the only way this

is possible (given the definition of f �
S(·)) is if f �

S(X) is

defined to be �− σS(X).
(5) holds because by definition of f �

S(·), one of three

possible cases must occur: either f �
S(X) = σS(X), or

f �
S(X) = � − σS(X) ≤ σS(M) − σS(X) ≤ σS(X) (using

the �-sparsity of S by which σS(M) ≥ � (which holds even

if M is not covered by S) and subadditivity of σS ), or

f �
S(X) = �/2 and σS(X) ≥ �/2.

Proof of Corollary III.4: (Monotonicity) Let X ⊆ T
and suppose for contradiction that f �

S(T ) < f �
S(X). First

suppose that f �
S(T ) < �

2 . By part (3) of Lemma III.3, we

can conclude that σS(T ) < �
2 , and therefore by part (1)

(specifically, monotonicity of σS(·)), σS(X) < �
2 . Thus,

by another application of (3), we get: f �
S(X) = σS(X) ≤

σS(T ) = f �
S(T ), a contradiction.

Next suppose that f �
S(T ) ≥ �

2 . By assumption, this means

that f �
S(X) > �

2 , so by part (4) we have σS(X) = �−f �
S(X).

Since T ⊆ X , by (1) we have σS(T ) ≤ σS(X) =
� − f �

S(X) < �
2 . So by applying parts (2) and (3) we

have � − f �
S(T ) = f �

S(T ) = σS(T ) ≤ � − f �
S(X),

implying that f �
S(X) ≤ f �

S(T ), a contradiction. Therefore,

we have a contradiction in both cases, and we must have

f �
S(X) ≤ f �

S(T ).

(Subadditivity) Suppose for contradiction that f �
S(X ∪

T ) > f �
S(X)+f �

S(T ). We first show that f �
S(X∪T ) > �

2 . In-

deed, suppose that f �
S(X∪T ) ≤ �

2 . Then f �
S(X) and f �

S(T )
are both < �

2 , so f �
S(X) = σS(X) and f �

S(T ) = σS(T )
by (3). So by subadditivity of σS(·), we have σS(X ∪T ) ≤
f �
S(X)+f �

S(T ). Note finally that f �
S(X∪T ) ≤ σS(X∪T ) by

part (5). Thus, f �
S(X∪T ) ≤ f �

S(X)+f �
S(T ), a contradiction.

Now assume for contradiction that f �
S(X ∪ T ) > �

2 . This

means that f �
S(X ∪ T ) = � − σS(X ∪ T ) by (4). Observe

also that f �
S(X ∪ T ) ≤ �. Since by assumption, f �

S(X ∪
T ) > f �

S(X) + f �
S(T ), at least one of f �

S(X) and f �
S(T ) is

< �
2 ; without loss of generality, assume that f �

S(X) < �
2 ,

so f �
S(X) = σS(X) by (3). Using what we’ve concluded

so far, we may rewrite f �
S(X ∪ T ) > f �

S(X) + f �
S(T ) as

�− σS(X ∪ T ) > σS(X) + f �
S(T ), i.e.,

σS(X ∪ T ) + σS(X) + f �
S(T ) < �. (11)

We have that T ⊆ X ∪ T ∪ X (De Morgan), and

so σS(X ∪ T ) + σS(X) ≥ σS(T ) by subadditivity of

σS(·). Plugging this observation into Equation (11), we get

σS(T )+f �
S(T ) < �. But by parts (1) and (5) of Lemma III.3,

f �
S(X) = �−f �

S(X) ≥ �−σS(X) for all X , a contradiction.

We therefore conclude that f �
S(·) must be subadditive, as we

have derived contradictions whether f �
S(X ∪ T ) ≤ �

2 (first

paragraph) or f �
S(X ∪ T ) > �

2 (just now).

Proof of Lemma IV.3: Consider the following random-

ized construction of S: For each i ∈ [k], j ∈ M indepen-

dently, flip a fair coin. If heads, put j ∈ Si. Otherwise, don’t.

We wish to show that the probability that S is �-independent

is non-zero. We’ll again use S1
i := Si, and S0

i := Si.

So fix any set Y of � indices, and any vector y ∈ {0, 1}�
(for simplicity of notation, index these � bits using the

indices of Y ). We wish to consider the probability that

∪i∈Y S
yi

i = M . If there exists a single Y, y such that

∪i∈Y S
yi

i = M , then S is not �-independent. But if for all

Y, y ∪i∈Y S
yi

i �= M , then S is �-independent. So we simply

wish to analyze the probability that this occurs for a fixed

Y, y and take a union bound.

For a fixed Y, y, observe that each element j ∈ M is in

each Syi

i independently with probability 1/2. So the proba-

bility that j is in some Syi

i is just 1−1/2�. Moreover, these

events are independent across items j, so ∪i∈Y S
yi

i = M
with probability (1− 1/2�)m. Now we wish to take a union

bound over all 2� choices of y times
(
k
�

)
choices of Y

to get that the probability that S is not �-independent is

upper bounded by (the final two steps use our choice of

� = log2(m)− log2(x) and k = ex/�):

2�
(
k

�

)(
1− 1

2�

)m

<
2� · k�
�!

(
1− 1

2�

)m

< k� exp

(−m

2�

)
= exp (� · ln(k)− x) = 1.

As the probability that S is not �-independent is < 1, we

are guaranteed the existence of some S that is �-independent

269



by the probabilistic method.

Proposition A.1. Every monotone and subadditive function
over a set of m items is MPH-�m

2 �.

Proof: Let f be a monotone subadditive function. For

every set S ⊆ [m] we construct a positive hypergraph GS

with weights wS , as follows: Let S′ be an arbitrary subset of

S of size min(|S|, �m
2 �). Set wS(S

′) = f(S′) and wS(S \
S′) = f(S) − f(S′). All other hyperedges have weight 0.

Observe that in our construction, every hyperedge with a

non-zero weight has size at most �m
2 �. For every set T , let

fS(T ) denote the value of T in GS ; so fS(·) is PH-�m
2 �. We

argue that f(T ) = maxS{fS(T )} and so f(·) is MPH-�m
2 �.

It is sufficient to show that for every set S the following two

properties hold: (1) fS(S) = f(S); (2) fS(T ) ≤ f(T ) for

every set T .

The first property holds since fS(S) = wS(S
′) +wS(S \

S′) = f(S′) + f(S) − f(S′) = f(S). The proof of the

second property is divided into four cases:

1) If S ⊆ T then fS(T ) = w(S′) + w(S \ S′) = f(S) ≤
f(T ).

2) If S �⊆ T and S′ ⊆ T then S \ S′ �⊆ T , therefore

fS(T ) = w(S′) = f(S′) ≤ f(T ).
3) If S �⊆ T and S \ S′ ⊆ T then S′ �⊆ T , therefore

fS(T ) = w(S \ S′) = f(S) − f(S′) ≤ f(S \ S′) ≤
f(T ), where the first inequality is due to the subaddi-

tivity of f .

4) If S \ S′, S′ �⊆ T then fS(T ) = 0 ≤ f(T ).

Proof of Lemma V.2: Suppose that for some i,
|Xi ∩ Yi| = 2. Consider the allocation that awards Yi to

Alice and Yi to Bob. Then Bob clearly has value � − 1,

as f �
Y(Yi) = � − 1. Also, as |Yi| = |Xi| = m/2 + 1 and

|Xi∩Yi| = 2, we necessarily have Xi∪Yi = M . This implies

that Yi ⊇ Xi, and therefore v�X (Yi) ≥ vX (Xi) = � − 1. So

welfare 2�−2 is achievable (and again, optimal, as no bidder

can achieve value � without receiving all of M ).

Now suppose that for all i, |Xi�Yi| = 2, and further

suppose for contradiction that total welfare > � + 1 is

achievable, by giving S to Alice and S to Bob. Then one

of the players (without loss of generality, say it is Bob) has

value > �
2 , so it must have been the case that f �

Y(S) was

defined to be �− σY(S), and σY(S) < �
2 .

Now, observe that because |Xi�Yi| = 2 for all i that

σX (S) ≤ σY(S)+1. Indeed, let S = Yi1∪· · ·∪YiσY (S)
. Then

there is exactly one element in Yij that is not also in Xij ,

and we therefore conclude that |S \ (Xi1 ∪· · ·∪XiσY (S)
)| ≤

σY(S) < �/2. By criterion (4) of �-compatibility, there is

some Xi that contains all of these elements, and so S ⊆
Xi∪Xi1∪· · ·∪XiσB(S)

, witnessing that σX (S) ≤ σY(S)+1.

Finally, if σX (S) < �
2 then f �

X (S) = σX (S) ≤ σY(S)+1,

so the total welfare is at most � + 1, a contradiction.

Otherwise, σX (S) = �
2 , which we claim implies that

f �
X (S) ≤ �/2. Indeed, if f �

X (S) > �/2, then it is because

σX (S) < �/2. But then we would have σX (S)+σX (S) < �,

implying a cover of M with < � and contradicting �-sparsity

of X . Observe that in both cases we may conclude that

f �
X (S) ≤ σ�

X (S).
Now we may conclude that the total welfare is f �

X (S) +
f �
Y(S) ≤ σX (S)+ �−σY(S) ≤ �+1, again a contradiction.

We have now reached a contradiction from all branches start-

ing from the assumption that welfare > �+1 is achievable,

and may now conclude that the maximum possible welfare

is indeed ≤ �+ 1, as desired.
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Bruno Loff, Florian Speelman, and Nikolai K.
Vereshchagin. Towards a reverse Newman’s theorem
in interactive information complexity. Algorithmica,
76(3):749–781, 2016.

[BDF+10] David Buchfuhrer, Shaddin Dughmi, Hu Fu, Robert
Kleinberg, Elchanan Mossel, Christos H. Papadim-
itriou, Michael Schapira, Yaron Singer, and Christo-
pher Umans. Inapproximability for VCG-Based Com-
binatorial Auctions. In Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 2010.

[BDF+12] Ashwinkumar Badanidiyuru, Shahar Dobzinski,
Hu Fu, Robert Kleinberg, Noam Nisan, and Tim
Roughgarden. Sketching valuation functions. In
Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA
2012, Kyoto, Japan, January 17-19, 2012, pages
1025–1035, 2012.

[BDN19] Yakov Babichenko, Shahar Dobzinski, and Noam
Nisan. The communication complexity of local
search. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC
2019, 2019.

270



[BG14] Mark Braverman and Ankit Garg. Public vs private
coin in bounded-round information. In Automata,
Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part I, pages 502–513,
2014.

[BGPW13] Mark Braverman, Ankit Garg, Denis Pankratov, and
Omri Weinstein. From information to exact commu-
nication. In Proceedings of the 45th Annual ACM
Symposium on Theory of Computing (STOC), pages
151–160, 2013.

[BJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and
D. Sivakumar. An information statistics approach
to data stream and communication complexity. J.
Comput. Syst. Sci., 68(4):702–732, 2004.

[BMW18] Mark Braverman, Jieming Mao, and S. Matthew
Weinberg. On simultaneous two-player combinatorial
auctions. In Proceedings of the Twenty-Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 2256–2273, 2018.

[BN07] Liad Blumrosen and Noam Nisan. Combinatorial auc-
tions. In Noam Nisan, Tim Roughgarden, Eva Tardos,
and Vijay V. Vazirani, editors, Algorithmic Game The-
ory, chapter 11. Cambridge University Press, 2007.

[BN19] Simina Brânzei and Noam Nisan. Communication
complexity of cake cutting. In Proceedings of the
2019 ACM Conference on Economics and Computa-
tion, EC 2019, Phoenix, AZ, USA, June 24-28, 2019.,
page 525, 2019.

[BNS07] Liad Blumrosen, Noam Nisan, and Ilya Segal. Auc-
tions with severely bounded communication. J. Artif.
Intell. Res., 28:233–266, 2007.

[BR11] Kshipra Bhawalkar and Tim Roughgarden. Wel-
fare guarantees for combinatorial auctions with item
bidding. In Proceedings of the Twenty-Second An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 700–709, 2011.

[BR14] Mark Braverman and Anup Rao. Information equals
amortized communication. IEEE Trans. Information
Theory, 60(10):6058–6069, 2014.

[BR17] Yakov Babichenko and Aviad Rubinstein. Commu-
nication complexity of approximate Nash equilibria.
In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 878–
889, 2017.

[Bra12] Mark Braverman. Interactive information complexity.
In Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, pages 505–524, 2012.

[BSS10] Dave Buchfuhrer, Michael Schapira, and Yaron
Singer. Computation and incentives in combinatorial
public projects. In Proceedings of the 11th ACM
Conference on Electronic Commerce, EC ’10, pages
33–42, New York, NY, USA, 2010. ACM.

[CKST16] George Christodoulou, Annamária Kovács, Alkmini
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