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Abstract

In this paper we expand the standard Hotelling-Downs
model (Hotelling 1929; Downs 1957) of spatial competition
to a setting where clients do not necessarily choose their
closest candidate (retail product or political). Specifically, we
consider a setting where clients may disavow all candidates
if there is no candidate that is sufficiently close to the client
preferences. Moreover, if there are multiple candidates that
are sufficiently close, the client may choose amongst them at
random. We show the existence of Nash Equilibria for some
such models, and study the price of anarchy and stability in
such scenarios.

1 Introduction

A toy problem illustrating the Hotelling-Downs model is the
strategic positioning of two ice cream vendors along a beach
front (Hotelling 1929). The model was later extended to
ideological positioning in a bi-partisan democracy (Downs
1957) (See also Enelow and Hinich 1984). The model has
gained a significant following, since it agrees with a key as-
pect of such competitions: the median placement policy. In
the case of two vendors this explains why they’ve clumped
together on a stretch of a beach, and why opposing political
parties frequently agree on terms that ultimately express the
interests of neither.

Unfortunately, the model introduced several assumptions
that have resulted in its failure to explain the behavior of
higher numbers of competitors, and limited the model’s ap-
plicability. Osborne (1993) shows that the model does not, in
general, admit Nash Equilibria. Variants of the model, such
as allowing candidates to quit (see e.g. Sengupta and Sen-
gupta 2008) and runoff voting protocols (see e.g. Brusco et
al 2012) do admit pure Nash equilibria for more than 2 com-
petitors.

In the original model and in the variants above, some of
the assumptions may be problematic. Consider the ice cream
vendor problem. The Hotelling-Downs model would have
us assume that — no matter what the distance of the vendor
from a client — the latter would travel this distance given
that this is the closest vendor. This may hold in some cases,
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for lack of other alternatives, but this may be a significant
problem in voting. A voter may compromise his beliefs, but
only to a limit. If no competing candidate is close enough,
the voter may simply abstain.

Similarly, the assumption that voters always choose the
candidate closest to their political views may be question-
able. Should two or more competing candidates be close
enough in their political stance, a voter may see little differ-
ence between the candidates. This is also true for the prover-
bial sunbather seeking ice cream. If both vendors are close
enough, the choice of vendor may be random.

In this paper we study a variant of the Hotelling-Downs
model, modifying the core assumptions:
• All competitors (called agents hereinafter) have a limited

attraction interval. Only clients that lie within this interval
may support the agent (buy the product, cast a vote, etc.);

• The support of clients that fall in the attraction interval of
several agents is randomly shared among the latter.
We consider two utility functions for the agents: “winner-

takes-all” — this is reminiscent of a political voting situa-
tion (e.g. the winner forms the new government); and “sup-
port maximizers” — this is a model for commercial com-
petition (i.e., agents seek to maximize their number of cus-
tomers).

One might suspect that these new variants will also suffer
from lack of Nash equilibria. However, this is not the case.
Our existence theorem shows that a pure Nash Equilibrium
always exists.

With respect to these pure Nash Equilibria, we study
client participation. Different equilibria may have a differ-
ent number of clients that take part. Surprisingly, there are
equilibria that do not cover the population completely, even
if the number of agents grows to infinity.

Translated into economic terms, there are stable situa-
tions, where some niche clientele will not be serviced by any
agent. Or, in political terms, there may be a group of voters
that does not participate in the political process. Contrari-
wise, we also find that in low-intensity competitions (i.e.,
where the number of agents is less than four) the level of
client participation is at least 50% of the maximum.

The structure of this paper is as follows:
• In Section 2 we introduce a general framework, based on

the Hotelling-Downs model, that captures the limited at-
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traction of agents (be they vendors, political parties, or
other competitors) and sharing of support (where the same
client has several agents she is attracted to);

• We analyze the resulting model and show that pure Nash
equilibria always exist (see Section 3);

• With respect to the measure of client participation, we
consider bounds on the “Price of Anarchy” (PoA). We
compare the least possible client participation under equi-
librium with the best possible participation level. We pro-
vide detailed bounds as a function of the size of the at-
traction interval of an agent, and the agent utility func-
tion. Sections 4 and 5 study the “winner takes all” utility,
while Sections 6 and 7 address the “support maximiza-
tion” utility of an agent.

• Finally, our analysis allows us to compare the effects of
the two utility functions. In particular, we show that, as
the number of agents (be they traders or political parties)
increases, the “support maximizers” utility is better suited
to guarantee higher participation levels (assuming agents
in equilibria).

We conclude with a set of possible future developments of
our framework (Section 8). Due to space limitations, we
only keep those proofs that are illustrative of our techniques,
and omit all others.

2 Model and preliminaries

Consider a setting where a continuum of clients are
distributed along the interval [0, 1] according to a known
density function f(x). A client is represented by a point
x ∈ [0, 1], denoting her preference along the interval [0, 1].
Clients are non-strategic, and their position is drawn from a
publicly known distribution.

The strategic interaction occurs among n agents, with in-
dices 1, . . . , n. The set of actions for an agent is to choose a
center in the interval (0, 1]. Let ci ∈ (0, 1] be the action of
agent i, 1 ≤ i ≤ n.

Given ci, this determines the attraction interval for agent
i: [ci− w

2 , ci+
w
2 ] — an interval of width w centered around

ci (in this paper we assume that all agents have the same
width w). A joint action profile is given by a vector of such
“centers” c = (c1, . . . , cn).

Every client is attracted to all agents whose attraction
intervals contain x. I.e., client x is attracted to agent i if
x ∈ (ci − w

2 , ci +
w
2 ]. Let Ix be the set of agents that at-

tract client x, i.e.,

Ix = {1 ≤ i ≤ n |x ∈ (ci − w

2
, ci +

w

2
]}.

In our model, a client that is attracted to several agents di-
vides her support equally amongst them. I.e., for every agent
i and client x, the attraction of x to i is given by

ax,i =

{
1/|Ix| i ∈ Ix
0 otherwise .

Given a vector of agents with joint action profile c and a
density function f(x), the total support of agent 1 ≤ i ≤ n

is defined to be

ni(c) =

∫ ci+
w
2

ci−w
2

ax,if(x)dx.

Agents derive utility from the support they receive from
clients, and locate their centers strategically to maximize
their utility. We consider two different agent utility func-
tions:

1. The winner takes all utility corresponds to a setting where
only agents with maximal support derive non-zero util-
ity. The utility of agent i, denoted uW

i , splits the payoff
equally amongst all agents with maximal support. I.e., let
the set of winners be

W (c) = argmax
i∈N

ni(c).

Then, the “winner takes all” utility of agent i is given by

uW
i (c) =

{
1

|W (c)| , i ∈ W (c);

0, otherwise.
.

2. The support maximizers utility corresponds to settings
where the utility of every agent i (denoted by uS

i ) is the
total support it receives:

uS
i (c) = ni(c).

Note that some clients may not be attracted to any agent;
therefore,

∑
i∈N ni(c) might be strictly smaller than 1

(and is at most 1).
Consider now the participation rate, i.e., the fraction of

clients that are attracted to at least one agent.

P (c) =

∫ 1

0

∑
i∈N

ax,if(x)dx.

One may argue that belonging to at least one attraction
interval implies that a client has access to a desired service,
or seeks to participate in the political process. This may be
viewed as one measure of public welfare. Moreover, the par-
ticipation rate measures how the set of agents, as a whole, is
relevant to the market or the political system that they in-
habit.

With this is mind, the participation rate is our objective
function. (Unless stated otherwise, we assume that the dis-
tribution of clients on the [0, 1] interval is uniform.)

For illustration consider the setting in Figure 1. There are
3 agents, whose action profile is given by (c1, c2, c3) =
(0.3, 0.4, 0.55) (appear above the interval for clarity). In this
example, clients located in the interval [0.1, 0.2) support
agent 1 exclusively, those located in the interval [0.2, 0.35]
support both agents 1 and 2, those located in the inter-
val [0.35, 0.5] support all three agents, etc. It holds that
Ix = {1, 2, 3}; therefore, ax,1 = ax,2 = ax,3 = 1/3. Simi-
larly, Iy = {3}; thus ay,1 = ay,2 = 0 and ay,3 = 1. Finally,
Iz = ∅, so az,1 = az,2 = az,3 = 0.

In this example, the total support of agents 1 ≤ i ≤ 3 are

n1(c) = 0.1 + 0.15 · 1
2
+ 0.15 · 1

3
= 0.225

n2(c) = 0.15 · 1
2
+ 0.15 ∗ 1

3
+ 0.1 · 1

2
= 0.175

n3(c) = 0.15 · 1
3
+ 0.1 · 1

2
+ 0.15 = 0.25.
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Consequently, agent 3 is the unique winner. Note that agents
located in [0, 0.1) ∪ (0.75, 1] are in the attraction interval
of no agent; consequently, the participation rate is P (c) =
0.65.

To summarize, a game is fully defined by the number of
agents (n), the width of the attraction intervals (w), and the
appropriate utility function (winner takes all vs. total sup-
port). Let GW = GW (n,w) be the game under winner takes
all utilities, and let GS = GS(n,w) be the game under to-
tal support utilities. (We omit the superscript W or S if the
relevant utility function is clear from the context, or if the
statement is true for both utility functions.)

A Nash equilibrium (NE) of a game is an action profile c
such that no agent can increase her utility by a unilateral de-
viation. We denote the sets of Nash equilibria in the winner
takes all and the total support games by NEW and NES ,
respectively. In cases where the utility function is clear from
the context we omit the superscript and denote the utility
function and the set of NE by u and NE, respectively.

As stated above, the objective function of interest is the
participation rate P (c). There is no reason to assume that a
Nash equilibria of the agents (of whatever utility function)
will optimize the participation. It is common to quantify the
efficiency loss by the price of anarchy (Koutsoupias and Pa-
padimitriou 1999; Nisan et al. 2007). In our context, we de-
fine this to be the ratio between the participation ratio of the
worst case Nash equilibrium and the maximal participation
ratio attainable by any positioning of the agents. We define
the price of anarchy,

PoA(G) =
minc∈NE(G) P (c)

maxc P (c)
.

The price of anarchy with respect to the winner takes
all and the support maximizers utilities will be denoted as
PoAW and POAS , respectively. We slightly abuse the no-
tation as follows: when discussing a range of games with a
fixed number of agents, n, and variable attraction interval
width w, we will write PoA(w) = PoA(G(n,w)).

Figure 1: Example: Attraction intervals

3 Existence of Nash Equilibrium
As mentioned above, many extensions of the Hotelling-
Downs model have instances without pure Nash equlibria.
We first show that both variants of our model have no such
shortcoming. The “winner-takes-all” utility function is nei-
ther continuous in agent strategies nor in the density func-
tion, and one may possibly suspect that no pure Nash equi-
libria exist. Contrary to such intuition, our next two theo-
rems show that pure Nash equilibria always exist for both
utilities.

Theorem 3.1. For any pair (n,w), the game GW (n,w) has
a pure Nash equilibrium.

Theorem 3.2. For any pair (n,w) game GS(n,w) has a
pure Nash equilibrium.

Having demonstrated that pure NEs always exist, the price
of anarchy with respect to pure strategies is well defined. In
the following sections we study the price of anarchy as a
function of the attraction interval size w and the number of
agents n.

4 Price of anarchy, 2 and 3 agents, “winner

takes all” utilities

Arguably, the simplest and most natural setting is two
agents, winner takes all. Indeed, the original Hotelling-
Downs model was presented for two agents.

Proposition 4.1. In the case of n = 2, the price of anarchy
with respect to winner takes all utilities is given by

PoAW (w) =

{
1
2 , w ≤ 1

2 ;

w, otherwise.
.

In the case of three agents, the price of anarchy changes
dramatically and gives rise to complex patterns as a function
of the attraction interval size. These patterns are given in the
following theorem, and depicted in Figure 2.

Figure 2: Theorem 4.2: PoA bounds as a function of w

Theorem 4.2. In the case of n = 3, the price of anarchy
with respect to winner takes all utilities, as a function of the
attraction interval W , is given in the following table.

w range PoA: Lower bound PoA: Upper bound
w ≤ 1/5 1 1

1/5 < w ≤ 1/4 2/3 2/3
1/4 < w ≤ 1/3 1/(6w) 2/3
1/3 < w ≤ 1/2 5/9 2w

w > 1/2 2/3 1

Proof. The proof is via case analysis, one for every row in
the table. In what follows we only consider the 4th row of
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the table. I.e., we show that for 1/3 < w ≤ 1/2, the price of
anarchy with respect to the winner takes all utility is at least
5/9 and at most 2w.

Figure 3: Illustration for Theorem 4.2, case 1
3 < w ≤ 1

2 .

We first show that PoAW (w) ≥ 5
9 . For w > 1/3 and

3 agents, one can easily achieve full participation by an at-
traction vector ( 16 ,

1
2 ,

5
6 ). Therefore, the price of anarchy is

simply the minimal participation rate over all Nash equilib-
ria.

Notice also that it always holds that PoA(w) ≥ w since
the lowest participation is obtained in the case where all at-
traction intervals coincide, in which case the participation is
exactly w.

Let us now assume that there is an equilibrium attraction
vector c′ so that PoAW (w) ≤ P (c′) < 5

9 , and achieve
a contradiction. Without loss of generality, we may assume
that agents are numbered so that c1 is the left-most agent and
c2 is the right-most agent. Notice that the attraction intervals
of these two agents must intersect (see Figure 3 for an il-
lustration), otherwise they cover more than 5

9 of the client
population. Furthermore, all the clients that are attracted to
agent 3 must also be attracted to either agent 1, agent 2, or
both of them. Evidently, agent 3 cannot be a winner.

Denote the length of the left uncovered interval by x, and
the length of the right uncovered interval by y (see Figure 3
for an illustration). One can easily verify that x = c1 −
w
2 , and y = 1 − c2 − w

2 . Finally, denote the length of the
intersection of the attraction intervals of agents 1 and 2 by
z. We proceed by a case analysis, depending on the relative
size of x, y and z.

Suppose x > z, y > z. We have assumed that c′ is a NE,
thus, agent 3 has no strategy that would make her a winner.
In particular, agent 3 cannot become a winner by shifting its
interval to begin at 0 or by shifting its interval to end at 1.
This fact is formalized by the following inequalities:

x+
w − x

2
≤ z

2
+ w − z (1)

y +
w − y

2
≤ z

2
+ w − z (2)

Combining Inequalities 1 and 2 we obtain

2w − 2z ≥ x+ y.

We also know that x + y + 2w − z = 1, that is, x + y =
1− 2w + z. Combining these equations we obtain:

2w − 2z ≥ x+ y ⇔ 2w − 2z ≥ 1− 2w + z ⇔ (3)
⇔ 4w − 1 ≥ 3z

⇔ 4w − 1

3
≥ z

Thus,

P (c′) = 2w − z ≥ 2w − 4w − 1

3
=

2w + 1

3
(4)

By assumption, w > 1
3 . Hence, P (c′) ≥ 2w+1

3 > 5
9 , contra-

dicting the assumption that P (c′) < 5
9 .

Suppose x ≤ z, y ≥ z. Consider again an attempt by
agent 3 to become a winner by shifting her interval to begin
at 0. In this situation her interval will contain points which
already belong to both intervals of agents 1 and 2. The in-
tersection of all three intervals will be of size at least z − x.
Combined with the fact that c′ is a NE, this implies inequal-
ity 5 below. In a similar manner to the derivation of inequal-
ity 2, the fact that it is not beneficial for agent 3 to move her
interval to the right end implies Inequality 6.

x+
w − x

2
+

z − x

3
≤ z − x

3
+

x

2
+ w − z (5)

y+
w − y

2
≤ z

2
+w− z ⇒ w− z ≥ y ≥ z ⇒ w

2
≥ z (6)

By the assumption, z ≥ x, thus, using Inequality 6, we ob-
tain w ≥ x+ y. Combining this inequality with the fact that
x + y + 2w − z = 1, we obtain 3w − 1 ≥ z. In turn, this
entails:

P (c′) ≥ min
3w−1≥z
w≥2z
w≤ 5

9

2w − z = min{2
3
,
10

9
,
7

9
,
3

5
} >

5

9
(7)

Suppose x < z, y < z. Inequality 5 holds as before, and
similarly we obtain the following inequality:

y +
w − y

2
+

z − y

3
≤ z − y

3
+

y

2
+ w − z (8)

Inequalities 5 and 8 imply that w−z ≥ x and w−z ≥ y.
Recall that we have assumed that P (c′) < 5

9 . Hence, x+

y = 1 − P (c′) > 4
9 , so that at least one of x, y is larger

than 2
9 . Assume w.l.o.g. that x > 2

9 . Since we are currently
under the assumption that z > x, it also holds that z > 2

9 . It
follows, then, from w − z ≥ x, that w > 4

9 . Hence,

2w − z = P (c′) <
5

9
⇒ z >

3

9
.

Combining w − z ≥ x, z > 3
9 and x > 2

9 we obtain:

w ≥ z + x >
3

9
+

2

9
=

5

9
.

However, this contradicts our case assumption that w ≤ 1
2 .

We, therefore, conclude that PoA(w) ≥ 5
9 . Furthermore,

it is possible to show that this bound is tight.
Finally, we show an upper bound of 2w on the price of

anarchy. Consider an attraction vector c of the form c1 = w
2

and c2 = c3 = 1− w
2 . One can easily verify that this is a NE

and its participation rate is P (c) = 2w.
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5 Price of anarchy, n agents (n > 3), “winner

takes all”

In this section we provide an asymptotic analysis of the price
of anarchy, as n grows to infinity. Roughly speaking, we find
that the price of anarchy is 1 for small w, then exhibits a
sharp fall, and begins to get closer to 1 again as w grows
(but stays bounded away from 1). This pattern is cast in the
following theorems and lemmata.

We first show that the price of anarchy is 1 for sufficiently
small attraction intervals and a modest number of agents.
Theorem 5.1. Consider any pair n,w such that w ≤ 1

3 and
(2n+ 1)w ≤ 1. Then PoAW (w) = 1.

Lemma 5.2. Consider any pair n,w such that w ≤ 1
3 and

(2n+ 1)w > 1. Then

PoAW (w) <

{
1−w

2min (nw,1) ,
1−w
2w /∈ Z;

1+w
2min (nw,1) ,

1−w
2w ∈ Z.

.

Lemma 5.3. Consider any pair n,w such that 1
3 < w < 1

2

and n ≥ 7. Then PaAW (w) ≤ 1+2w
2 .

Moreover, as long as the attraction interval does not cover
the majority of the client population, the price of anarchy is
bounded away from 1. In fact, Lemmata 5.3 and 5.2 jointly
imply the following theorem.
Theorem 5.4. The price of anarchy is bounded away from
1, even if the number of agents grows to infinity, given that
one of the following holds

• w ≤ 1
3 and (2n+ 1)w > 1.

• 1
3 < w < 1

2 and n ≥ 7.

Finally, consider the case where the attraction interval in-
cludes the majority of the clients. In this case, the upper
bound on the price of anarchy (although not necessarily the
price of anarchy itself) approaches 1.
Theorem 5.5. Consider any pair n,w such that w ≥ 1

2 and
n ≥ 5. Then

PoAW (w) <

{
1− 1−w

2n2−n−2 , n /∈ 2Z;

1− (1−w)(2n+1)
n2(n+2)+6n+3 , otherwise.

.

6 Price of anarchy, 2 and 3 agents, support

maximizers

We now consider support maximizers utilities, and re-
investigate the price of anarchy. For a small number of
agents we can provide exact price of anarchy values.
Lemma 6.1. Let c be an NE attraction vector in a game
GS(w, n). Let i ∈ N be so that J = [ci − w

2 , ci +
w
2 ] is next

to an uncovered sub-interval. Then J does not intersect any
other attraction interval.

A straightforward conclusion from Lemma 6.1 is the fol-
lowing proposition.
Proposition 6.2. Suppose that n = 2. Then PoAS(w) = 1.

The following theorem presents the price of anarchy for
the case of 3 agents.

Theorem 6.3. Suppose that n = 3. Then, as the size of the
attraction interval, w increases, the bounds on the price of
anarchy PoAS(w) change as follows:

PoAS(w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, w ≤ 1

4 ;
w+ 1

2

3w , 1
4 ≤ w ≤ 1

3 ;

w + 1
2 ,

1
3 ≤ w ≤ 1

2 ;

1, 1
2 ≤ w.

.

7 Price of anarchy, n agents (n > 3), support

maximizers

In contrast to the case of “winner-takes-all” utilities, un-
der “support maximizers” utilities, the price of anarchy is
always 1. The main observation that leads to this result is
given in the following lemma.

Lemma 7.1. For any pair n and w suppose that there exists
a client, who is attracted to at least 3 agents under the joint
strategy c . Then c ∈ NES(w) if and only if for every x ∈
[0, 1] it holds |Ix| ≥ 1.

Proof. Assume the contrary, i.e., there is some z ∈ [0, 1] so
that |Iz| < 1. Because all attraction intervals are closed by
definition, there are an ε > 0, η > 0, so that |Iz′ | < 1 for all
z′ ∈ (z − ε, z + η), i.e. a non-trivial uncovered interval.

Now, let x be a client that is attracted to at least 3 agents
(say, i, j and k). Without loss of generality assume that i’th
interval is the leftmost and j’th interval is the rightmost of
those covering x. In particular it means that, because x is
covered by all three intervals, ci ≤ ck ≤ cj . As a con-
sequence, for any y ∈ [ck − w

2 , ck + w
2 ] holds that either

y ∈ [ci−w
2 , ci+

w
2 ] or ∈ [cj−w

2 , cj+
w
2 ]. Hence, nk(c) ≤ w

2 .
Because c is a Nash equilibria, any attraction interval that

neighbors (z − ε, z + η) does not intersect other attraction
intervals due to Lemma 6.1. Let us now assume that agent k
changes it’s center of attraction to c′k so that its interval cov-
ers (z−ε, z+η). In this case, all points of k’s new attraction
interval are shared with at most one other agent, and there’s
a sub-interval of size ε+ η > 0 that is exclusive to k. Hence
nk(c

′
k, c−k) >

w
w . In other words, there is a beneficial devi-

ation for agent k. This is in contradiction to c being a Nash
equilibria.

Theorem 7.2 below follows easily from the lemma above
and suggests that, however small the attraction interval of
a single agent may be, the market will always be saturated
(i.e. all possible clients’ will have an agent to serve their
interests) if the number of agents is sufficiently large.

Theorem 7.2. PoAS(w) = 1, if n > 3 and nw > 2.

8 Conclusions

In this paper we have presented a variation of the Hotelling-
Downs model, where agents have a limited effective range
and clients’ support can be shared. Unlike the original
model, some clients may now refrain from supporting (or
buying from) any agent. As a result, agents have an addi-
tional strategic dimension to consider.
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In spite of adding this additional strategic consideration,
and in contrast to other extensions of the Hotelling-Downs
model, a pure Nash equilibria always exists in [both] our
models. This allows us to study measures of social effect
of pure Nash equilibria. In particular, we study the Price of
Anarchy as a function of the attraction interval, w, and the
number of agents n. We also consider two utility function
variations: “winner-takes-all” and “support maximizers”.

In particular, our analysis shows that the price of anarchy
is bound away from 1 under the “winner-takes-all” utility for
any number of agents. On the other hand, for “support maxi-
mizers”, the price of anarchy may attain the value of 1, under
appropriate conditions. Since the different utility functions
correspond to different commercial and political systems, a
regulator seeking to ensure high participation rates may find
these results of value.

Consider, for example, a talent show, where singers com-
pete. The broadcaster of the show is interested in the high-
est possible ratings, i.e., that the competitors represent as
many performance styles as possible and, therefore, attract
as many listeners and viewers as possible. How should the
music competition compensate participants? Should there be
a single prize, or the prize money should be proportional to
the number of fan votes? I.e., in terms of our formalism,
should the “winner takes all” or the “support maximizers”
utility be used?1 The former option is the cheapest for the
broadcaster, but it can not guarantee the greatest variety of
styles. On the other hand, while requiring a greater invest-
ment, the “support maximizers” option may guarantee the
greatest style coverage. However, it would require that the
number of competitors and their individual style variability
(i.e., their attraction intervals) are sufficiently large.

Of course our results can be applicable outside the enter-
tainment business as well. Setting up political systems also
deals with the choice of winner-take-all vs support maxi-
mizers utilities. E.g., would state financing of political par-
ties based on their support base, i.e.. adding a support maxi-
mizers utility component, increase political participation by
citizens? The answer we give herein is yes, if the number
of parties is sufficiently large relative to their ideological
specialization. The answer is no, if the number of parties
is small.

Now, of course, our conclusion regarding real world pol-
itics is a bit of a stretch. Thus far, we have only considered
agents with equal attraction interval. In the real world, at-
traction interval may differ between agents. This, therefore,
becomes the next natural step in the development of our
framework.

Another direction to pursue is to investigate different
ways that voters are shared among covering agents. For in-
stance, in this manner the issues of voter apathy, and likeli-
hood of support based on ideological distance.

In more detail, consider first the situation where some set
of voter preferences is represented by all parties. Rather than
participating in the election, this set of voters may fall into

1Notice that, since music styles vary along the natural single-
dimensional time-line, our formalism can indeed capture the com-
petition.

apathy and abstain. After all, it does not matter which exact
party wins, they will be represented. It is easy to see that
such behavior can be readily captured by a rule that governs
how shared voters affect agent utilities – they are simply re-
moved from the support.

Similarly, one may consider more complex functions that
assign a probability of support as a function of the distance
to the agent (e.g., growing smaller with distance). The prob-
ability of support may also be impacted by the positions of
multiple agents, effectively responding to patterns in their
strategies. E.g. favoring (even more distant) centrist parties
if there are many extremist counterparts.

Finally, it would be interesting to consider alternative util-
ity functions such as market share, as opposed to direct mar-
ket support. This would capture the parliamentary elections,
where parties compete to maximize their support among all
those who voted, rather than their support among the entire
population.
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