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We consider job scheduling settings, with multiple machines, where jobs arrive online and choose a machine

selfishly so as to minimize their cost. Our objective is the classic makespan minimization objective, which

corresponds to the completion time of the last job to complete. The incentives of the selfish jobs may lead

to poor performance. To reconcile the differing objectives, we introduce posted machine prices. The selfish

job seeks to minimize the sum of its completion time on the machine and the posted price for the machine.

Prices may be static (i.e., set once and for all before any arrival) or dynamic (i.e., change over time), but they

are determined only by the past, assuming nothing about upcoming events. Obviously, such schemes are

inherently truthful.

We consider the competitive ratio: the ratio between the makespan achievable by the pricing scheme and

that of the optimal algorithm.We give tight bounds on the competitive ratio for both dynamic and static pricing

schemes for identical, restricted, related, and unrelated machine settings. Our main result is a dynamic pricing

scheme for related machines that gives a constant competitive ratio, essentially matching the competitive

ratio of online algorithms for this setting. In contrast, dynamic pricing gives poor performance for unrelated

machines. This lower bound also exhibits a gap between what can be achieved by pricing versus what can be

achieved by online algorithms.

1 INTRODUCTION
Online algorithms can be viewed as follows: events arrive over time, and upon the arrival of an

event, the algorithm makes a decision, based only on the prior and current event, without knowing

future events. There is a function that maps outcomes to costs or benefits, where the goal of such

an algorithm is either to minimize costs or to maximize benefits. The competitive ratio of an online

algorithm seeks to compare the outcome of the online algorithm with the optimal outcome. The

term competitive analysis was coined in [27] and gives the ratio between the outcome (cost or

benefit) achieved by an online algorithm and the outcome of an offline optimal solution. Herein we

only deal with cost problems so this ratio is ≥ 1.

We consider a setting where every online event is associated with a selfish agent. The agents

have some associated true type that describes the nature of the event. Agents have some utility (or

disutility) associated with the outcome. For many online algorithms, the decisions made by the

algorithmmight not be in the best interest of the agent. This may result in the agent misrepresenting

her type so as to achieve a better outcome for herself.

The design of mechanisms mitigates the problem of strategic behavior described above. In

a mechanism, agents report their type, and the mechanism decides upon an outcome and upon

payments, where payments are used to align the incentives of the agents with that of the mechanism.
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A mechanism is truthful if it is always in the best interest of any agent to report her type truthfully.

In online settings, agents arrive sequentially, and the mechanism decides upon an outcome and

payment for each arriving agent as they arrive
1
.

With few notable exceptions (e.g., [32]), problems studied in mechanism design (both online

and offline settings) involve maximizing social welfare or revenue. Although optimal solutions to

maximization/minimization objectives can be cast as the other, the competitive ratio is quite different

in the two settings. Online algorithms have been devised with both maximization and minimization

objectives. The technique of “classify and randomly select” [6] often gives simple randomized

algorithms for maximization objectives which also naturally translate into truthful mechanisms. In

contrast, minimization objectives (e.g., k-server and makespan) require entirely different techniques.

Converting online algorithms into mechanisms without performance degradation opens up an

entire new class of problems for which incentive compatible mechanism design is applicable.

Dynamic posted prices.We consider truthful online mechanisms that take the form of dynamic
posted prices. Dynamic pricing schemes are truthful online mechanisms that post prices for every

possible outcome, before the next agent arrives. Then, the agent chooses the preferred outcome —

minimizing the cost for the outcome minus the price tag associated with the outcome.

Such a mechanism is inherently truthful, since prices are determined irrespective of the type of

the next agent. Posted price mechanisms have many additional advantages over arbitrary truthful

online mechanisms. In particular such mechanisms are simple [23]: agents need not trust nor

understand the logic underlying the truthful mechanism, agents are not required to reveal their

type, and there is no need to verify that the agents indeed follow the decision made by the truthful

online mechanism.
2

A posted price mechanism is a truthful online algorithm, and as such, can perform no better

than the best online algorithm. Our main goal in this paper is to study the performance of dynamic

posted price mechanisms (quantified by the competitive ratio measure) and compare them with the

performance of the best online algorithm. One may think of this problem as analogous to one of the

central questions in algorithmic mechanism design in offline settings: compare the performance of

the best truthful mechanism (quantified by the approximation ratio measure) with the performance

of the best non-truthful algorithm.

Makespan minimization in job scheduling. In this paper we study the design of online

mechanisms for makespan minimization in job scheduling. Events represent jobs, the job type

contains the job’s processing times on various machines. Agents seek to complete their job as soon

as possible, and therefore prefer to be assigned to a machine whose load (including the new job) is

minimized
3
. For simplicity of exposition, we assume that all jobs arrive (sequentially) at time zero.

However, our positive results hold even if jobs arrive at arbitrary times. Clearly, adding options

(arbitrary arrival times) does not invalidate impossibility results. Existing online algorithms for the

1
Such online mechanisms are called prompt in that outcomes and payments are determined immediately, non-prompt online

mechanisms have also been studied where, for example, the payment is only determined later.

2
One may suspect that any online mechanism gives rise to dynamic pricing schemes. This is not quite true: the online

mechanism must be prompt, and, moreover, the online mechanism may require that ties (equal utility choices) be broken in

a particular manner, and as a function of the agent type. In contrast, with dynamic pricing schemes agents may break ties

arbitrarily. Many thanks to Moshe Babaioff, Liad Blumrosen, Yannai A. Gonczarowski, and Noam Nisan for discussions

clarifying this point. Clearly, any dynamic pricing scheme gives rise to a prompt online truthful mechanism with the same

performance guarantees.

3
In this interpretation “load” is the time required by the server to deal with all current jobs in the server queue, and jobs

are processed in a first-in-first-out manner, i.e., jobs enter a server queue. In some papers “load” is used in the context of

round-robin processing.
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problem (e.g., [3]) are not truthful; in that a job may misrepresent its size so as to get a preferential

assignment to a machine.

An online truthful mechanism for this setting determines an allocation and payment for each

arriving agent upon arrival. That is, upon the arrival of a job, based on the job’s processing times,

the mechanism assigns the job to some machine and determines the payment the agent should

make. The cost of an agent is the sum of the machine’s load (including her own processing time)

and the payment. Each agent seeks to minimize her cost.

A dynamic posted price mechanism for this setting sets prices on each machine, before the next
agent arrives (prices may change over time). The next agent to arrive seeks to minimize her cost,

i.e., the load on the chosen machine (including her own load) plus the posted price on the machine.

The agent breaks ties arbitrarily.

We consider this question for the goal of makespan minimization in job scheduling, where the

dynamic pricing scheme seeks to minimize the makespan, whereas selfish jobs seek to minimize

their own completion time. We assume FIFO processing within a machine, so the completion time

of a job is the sum of the current load (prior to the arrival of the job) plus the job’s own processing

time on the machine. This problem has many applications, including managing queues at banks,

cloud computing settings where customers submit jobs and can lie about their processing times,

and crowdsourcing settings where taskmasters wish to hire workers to complete tasks while lying

about how long their task takes to complete. In all such applications, we are interested in balancing

loads appropriately. To this end, we consider online makespan minimization for identical, restricted,

related, and unrelated machine models.

Examples. To clarify the issue of selfish jobs, consider the following small toy problem: the

setting is that of machines with speeds, machine #1 has speed 1, machine #2 has speed 1/2. There
are also two jobs, job a is of size 1/2 and job b is of size 1. Clearly, the minimal makespan is achieved

by assigning job a to machine #2 and job b to machine #1. This gives a makespan of one. Assume

that the order of arrival is a, b. Job a will prefer machine #1 (completion time 1/2) to machine

#2 (completion time 1). Job b will also prefer machine #1 (completion time 1.5) to machine #2

(completion time 2).

In this specific case a static pricing of 1/2 + ϵ for machine #1 and a price of zero for machine #2

will result in the optimal makespan irrespective of the order of arrival of the jobs. If the order is a,
b then job a prefers machine #2 (completion time 1 + price 0 = 1) over machine #1 (completion

time 1/2 + price 1/2 + ϵ = 1 + ϵ). The second job to arrive, job b, prefers machine #1 (completion

time 1 + price 1/2 + ϵ = 1.5 + ϵ) over machine #2 (completion time 3 + price 0 = 3). One can verify

that the order b,a will also achieve the same minimal makespan result.

The above example is somewhat misleading as we do not want to derive prices for a specific

set of arriving jobs but for any arbitrary set and arbitrary order. In fact, we show that, in general,

static prices are no better than a complete lack of prices (see Section 4), and only dynamic prices

can guarantee a constant competitive ratio. A more detailed example that also illustrates the use of

our dynamic pricing scheme for related machines (see Section 2) appears in Appendix B.

1.1 Our Model
We havem machines and n jobs which arrive in an online manner. Unrelated, related, restricted,

and identical machine models are defined as follows:

(1) For unrelated machines, the processing time of job j on machine i is given by pi j .
(2) In the related machines model, each machine i has some speed si and each job j has some

associated size pj . The processing time of job j on machine i is given by pi j =
pj
si
.
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(3) In the restricted machines model, each job j has some associated size pj . The processing
time of job j on machine i is either pj or∞.

(4) In the identical machines model, each job j has some associated size pj , which is job j’s
processing time on all machines.

In the online setting, neither processing times, pi j , nor size, pj , are known until job j arrives.
Machine speeds si are known in advance. While jobs do arrive in adversarial order, by renaming

we can assume that job j is the jth job to arrive.

We denote by σ an input sequence consisting of jobs 1 through n. For a machine i , we letMi (j)
denote the set of jobs that have been assigned to machine i after jobs 1 through j have arrived. We

denote the load on machine i after jobs 1 through j have arrived by ℓi (j) =
∑
b ∈Mi (j) pib . For the

makespan objective, the goal is to minimize maxi ℓi (n). Given an input sequence σ , we denote by
L∗(σ ) an optimal solution that is omniscient and knows the entire input sequence σ in advance

(i.e., an optimal solution that knows all jobs’ processing times). When clear from the context, we

omit the parameter σ and simply write L∗.
A dynamic pricing scheme D, given an input sequence σ , outputs a sequence of n vectors

π1, . . . ,πn ∈ Rm , where each πj =
(
π1j , . . . ,πmj

)
represents a vector of prices for each of the

m machines. Each vector πj is determined before the jth job arrives. We view jobs as rational selfish

agents who must choose the machine to which they wish to be assigned. In particular, we model

each arriving agent j’s cost on machine i as ci j = ℓi (j − 1) + pi j + πi j , where ℓi (j − 1) is the load on

machine i before j arrives, pi j is the processing time of job j on machine i , and πi j is the price on
machine i (determined before j arrives). Hence, agent j’s cost on machine i represents how long

agent j must wait in order to be processed by machine i , given the load of the machine upon j’s
arrival, plus some price amount determined by the dynamic pricing scheme. We assume that agents

are rational and wish to minimize their cost. That is, agent j chooses a machine that attains the

minimum value mini ci j .
Note that, in our model, each player is a job, not a machine. Hence, a job (i.e., player) may

potentially misreport its processing times to the scheme in order to lower its incurred cost. However,

dynamic pricing schemes are inherently truthful (since the prices are set independently of reported

processing times), and hence jobs never benefit from lying regarding their processing times on

machines. We denote by D(σ ) the makespan of the schedule produced by the dynamic pricing

scheme D given input σ , D(σ ) = maxi ℓi (n) — the maximum load of any machine.

We can similarly define a static pricing scheme, which simply sets onem-dimensional vector of

prices π (i.e., a single value for each machine) before any agents arrive. We do not permit static

pricing schemes to change prices over time (so that πi1 = πi j for all i and j ≥ 1). For this reason,

when referring to static pricing schemes, we simply use one subscript instead of two. In particular,

we write πi∗ to denote the price on machine i (at all times), so that π = (π1∗, . . . ,πm∗).
We say that a dynamic pricing scheme is c-competitive if, given any input sequence σ , the scheme

always produces a schedule with a makespan satisfying D(σ ) ≤ c · L∗(σ ) + a (assuming that agents

behave selfishly), where we allow some additive constant a.

1.2 Our Contributions
We give tight results for the competitive ratios that can be achieved via dynamic and static pricing

schemes for the problem of minimizing makespan. We study identical, related, restricted, and

unrelated machine models. Our results, in comparison with previous work, are summarized in

Table 1. Our main results are as follows (m denotes the number of machines).
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Table 1. Competitive ratio comparison of the greedy algorithm, the best online algorithm, static pricing
schemes, and dynamic pricing schemes. Here, the greedy algorithm denotes the algorithm that assigns each
job to the machine that minimizes the current load plus processing time of the job on the machine. Results in
the Static Pricing and Dynamic Pricing columns are from this paper.

Machine Model Greedy Best Online Static Pricing Dynamic Pricing

Identical O(1) [22] O(1) [22] O(1) O(1)
Related Θ(logm) [3] O(1) [3] Θ(logm) O(1)
Restricted Θ(logm) [9] Θ(logm) [9] Θ(logm) Θ(logm)
Unrelated Θ(m) [3] Θ(logm) [3, 9] Θ(m) Θ(m)

(1) A dynamic pricing scheme that achieves anO(1) competitive ratio for the related machines

model. This matches the O(1)-competitive result (of a non-truthful online algorithm) given

in [3].

(2) A lower bound on the competitive ratio of any dynamic pricing scheme of Ω(m) for
unrelated machines. Our lower bound holds for any randomized dynamic pricing scheme,

even assuming an oblivious adversary.

To the best of our knowledge, the lower bound for unrelated machines exhibits the first gap

between what can be achieved by dynamic pricing schemes versus what can be achieved by online

algorithms. That is, a gap of Ω(m) (for randomized dynamic pricing) versus O(logm) (achieved via

deterministic online algorithms [3]).

OurO(1)-competitive dynamic pricing scheme for related machines also holds in a more general

model where jobs arrive in real time (as opposed to arriving in sequence). In such a setting, jobs

are processed over time on machines and are eventually removed from machines completely (upon

being fully processed). The objective is to minimize the completion time of the last job to complete.

In addition, we show that static pricing schemes and the online greedy algorithm
4
achieve the

same performance up to a constant factor. Clearly, the static pricing scheme that sets all prices to

zero mimics the greedy algorithm. Furthermore, we show that any lower bound on the competitive

ratio of the greedy algorithm translates to the same lower bound on any static pricing scheme
5

(up to constant factors), for all machine models considered in this paper. We note that such a

greedy algorithm is O(1)-competitive for identical machines [22], Θ(logm)-competitive for related

machines [3], Θ(logm)-competitive for the restricted assignment model [9], and Θ(m)-competitive

for unrelated machines [3]. These results appear in the columns labeled Greedy and Static Pricing

in Table 1.

1.3 Techniques
Positive Results for Related Machines. Our O(1)-competitive dynamic pricing scheme for the

related machines model is inspired by the corresponding related machines algorithm given in [3],

referred to as Slow-Fit in [8].

We now describe the main ideas behind our main result by discussing Slow-Fit. We assume

that machines are sorted in increasing order of their speed, so that s1 ≤ · · · ≤ sm . In particular,

Slow-Fit operates in phases, where each phase maintains a lower bound Λ on the current optimal

4
We refer to the online greedy algorithm as the greedy algorithm that assigns each job to a machine that minimizes the

current load plus processing time of the job on the machine.

5
This result holds for any deterministic pricing scheme. For randomized schemes, it holds as long as the lower bound for

the greedy algorithm does not depend on the tie-breaking rule.

5



solution. The estimate Λ doubles from phase to phase. A job j is said to be feasible on machine

i if ℓi (j − 1) + pj
si
≤ 2Λ. Slow-Fit assigns the job to the lowest index (slowest) machine on which

it is feasible. If no machine is feasible, Slow-Fit doubles Λ. This doubling process repeats until Λ
exceeds the value of the optimal solution (i.e., Λ becomes an upper bound), after which, for any

incoming job, some machine is feasible (and hence such jobs can be assigned). Clearly, Slow-Fit

depends on the incoming job’s size. The challenge in emulating Slow-Fit via a dynamic pricing

scheme is that prices must be set before the size of the next job is revealed.

To show the underlying ideas, we now make several assumptions for which we show how to set

prices for two machines that perfectly emulate Slow-Fit. The assumptions are (a) Both machines

have different speeds, (b) Selfish jobs break ties in favor of machine 1, and (c) Λ is a known upper

bound on the optimal solution.

Without loss of generality the price on machine 1 is zero. Slow-Fit assigns job j to machine 1 if

and only if job j is feasible on machine 1, hence, we would like to set a price on machine 2, π2j , so
that

ℓ1(j − 1) +
pj

s1
≤ ℓ2(j − 1) +

pj

s2
+ π2j ⇐⇒ ℓ1(j − 1) +

pj

s1
≤ 2Λ.

This is achieved by setting

π2j = ℓ1(j − 1) − ℓ2(j − 1) + s1
(
1

s1
− 1

s2

)
(2Λ − ℓ1(j − 1)) .

As the price π2j is independent of pj this gives a valid dynamic pricing scheme. Substitution and

rearrangement show that a job is assigned to machine 1 if and only if it is feasible on machine 1, as

required. Note that this does not hold for equal speed machines, and if tie-breaking is not in favor

of machine 1.

It follows from the simple example above, that the following issues must be considered so as to

construct a dynamic pricing scheme that attempts to emulate Slow-Fit, these are:

• Equal Speed Machines: Imagine that machines i and i + 1 have the same speed, and job j is
feasible on both, then job j should be scheduled on machine i . However, it may be that a

larger job j is infeasible on i but still feasible on i + 1, in this case it should be assigned to

i + 1. However, if the machines have the same speed, then irrespective of any prices and job

size, the same machine will always be chosen (as the difference in costs between machines

i and i + 1 is constant).
• New Phase Recognition: A new phase starts when the job has no feasible machine. However,

the pricing scheme cannot tell that a new phase is about to begin because it does not know

the size of the next job to arrive.

• Machine Tie-Breaking: Beyond the issue of feasibility (which is also a problem, see above),

as the job size increases, different machines (of different speeds) will attain the minimal

cost, irrespective of the prices and the current loads. Ergo, a job cannot be assumed to

choose the lowest index machine.

If none of these issues were to arise, then it would be possible to come up with a dynamic pricing

scheme that would precisely mimic the decisions made by Slow-Fit (as in the two machine example

above). To deal with these issues, we design a new online algorithm, Flex-Fit, a variant of Slow-Fit

(see Algorithm 1). Flex-Fit allows more flexibility in assigning jobs to multiple machines, and in

deciding when to start a new phase. This new algorithm does lend itself to dynamic pricing schemes

with the same competitive ratio, up to a constant factor.

The dynamic pricing scheme that emulates Flex-Fit is described in Algorithm 3. We carefully

choose a subset of machines that have strictly increasing speeds on which to place finite prices.
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Other machines get a price of infinity. The prices are set such that the job prefers lower indexed

machines to higher indexed machines if and only if the job is feasible on the lower indexed machine.

Impossibility Results for Unrelated Machines. We next describe techniques used in our

Ω(m) lower bound on the competitive ratio of dynamic pricing for unrelated machines. As a warm

up, we give a deterministic lower bound. The lower bound job sequence consists of two types of

jobs, depending on two cases regarding the behavior of the deterministic dynamic pricing scheme.

In case 1, we introduce a type 1 job that results in an increase in the sum of machines’ loads, for the

dynamic pricing scheme. In contrast, any type 1 job is assigned in an optimal solution without an

increase in any machine load. In case 2, we introduce a type 2 job, which always chooses machine

1 (under the dynamic pricing scheme). On the other hand, an optimal solution can always spread

out any sequence ofm type 2 jobs. This input sequence shows a gap of Ω(m) for the competitive

ratio of deterministic dynamic pricing schemes.

Our randomized lower bound holds against oblivious adversaries (i.e., adversaries that must

construct the entire input sequence in advance, before seeing any coin flips of the algorithm). To

achieve our randomized lower bound, we use the same two types of jobs as in the deterministic

case. We show how to construct such a sequence obliviously, depending on the relative probability

of being in case 1 or in case 2.

Static Pricing ≡ Greedy. The non trivial direction is to show that every static pricing scheme

can be as bad as the greedy algorithm. To do so, we observe that static pricing schemes can be

viewed as starting the online process with some initial (arbitrary) imbalance in the loads. For

deterministic static pricing schemes we show how to flatten out the effective loads (= load + price)

so that they are all equal. Once this is done, we can then apply the greedy lower bound sequence,

obtaining a similar lower bound result for any static pricing scheme.

For randomized schemes, we give a different construction, that holds as long as the lower bound

for the greedy algorithm does not depend on the tie-breaking rule. The idea is to blow up the job

sizes in the greedy lower bound sequence so that the initial imbalance in the effective load becomes

negligible.

1.4 Related Work
Online Algorithms. Introduced in the context of self-adjusting search trees [34], paging, list

update [33], and snoopy caching [26], there soon arose a vast host of online problems for which

competitive analysis was applied. These include problems such as metrical task systems [11], the

k-server problem [29, 30], scheduling problems, routing problems, and many more. One particular

class of problems that has been widely studied is that of online makespan minimization [3, 7, 9, 31].

Online Makespan Minimization. The literature on online makespan minimization is vast, we only

discuss the most relevant works. Online load balancing results for a variety of machine models

appear in [3]. An O(logm)-competitive algorithm for unrelated machines and an 8-competitive

algorithm for related machines were given (i.e., the Slow-Fit algorithm). It was also shown that

greedy is Θ(m)-competitive for unrelated machines and Θ(logm)-competitive for related machines.

The greedy algorithm was shown to be Θ(logm)-competitive for the restricted assignment model

(moreover, no online algorithm can do better) [9]. Results for the identical machines model appear

in [10] and [2], where a (2 − ϵ)-competitive online algorithm for a small fixed ϵ > 0 and a 1.923-
competitive algorithm were given, respectively.

Many other makespan minimization problems have been studied in the online setting, including

different objectives such asminimizing the Lp norm forp ≥ 1 [4] (the classic makespanminimization

7



problem corresponds to minimizing the L∞ norm), settings where machines have activation costs [7,

31], and load balancing in the multidimensional setting [24, 31].

Static and Dynamic Pricing Schemes for Online Settings. Dynamic pricing schemes for a variety

of problems appear in [16]. In particular, [16] gave an O(k)-competitive algorithm for the k-server
problem on a line, an O(m)-competitive algorithm for metrical task systems (wherem denotes

the number of states), and a competitive ratio that is logarithmic in the ratio of the maximum to

minimum distances between points for metrical matching on a line. Additional static and dynamic

pricing schemes appear in [21], where queue management problems were studied, and constant

competitive ratios were obtained for social welfare. Dynamic pricing schemes were also considered

in [28], in which the revenue maximization problem where a seller has an unlimited supply of

identical goods was studied. A dynamic pricing scheme for routing small jobs (relative to the edge

capacities) through a network was considered in [5].

Posted Prices for Social Welfare and Revenue. Posted pricing schemes [12, 13, 20] need not be

online, may use non-anonymous pricing, and often assume something is known about the future

(e.g., public valuations, Bayesian settings, etc.). There is a large body of works on posted price mech-

anisms for social welfare and revenue maximization. In the full information setting (only the order

of arrival is unknown), a static posted pricing scheme was given that obtains the optimal welfare for

unit-demand buyers, and at least half of the optimal welfare for any valuation function [17]. This

uses ideas from [19]. The Bayesian setting was considered in [20], where agents’ valuations are

drawn from a product distribution over XOS valuations. A static posted pricing scheme was given

that achieves at least half the optimal welfare (in expectation). A general framework for the design

of posted price mechanisms for welfare maximization in Bayesian settings was devised in [18].

Pricing schemes for revenue maximization in Bayesian settings were considered in [12–14]. In

these settings agents arrive sequentially and are offered (non-anonymous) prices. It was shown that

the optimal revenue can be approximated to within a constant factor in various single-parameter

and multi-parameter settings.

Coordination Mechanisms for Job Scheduling. There is also a research agenda within the price of

anarchy literature that studies the notion of coordination mechanisms. This body of work focuses

on non-truthful mechanisms in the offline setting, where jobs are selfish agents (note that jobs are

also selfish agents in our work). Here, performance is measured in terms of the price of anarchy. A

coordination mechanism for identical machines appears in [15], where it was shown that the price

of anarchy is
4

3
− 1

3m . Various local policies for a variety of machine models appear in [25]. It was

shown that any deterministic coordination mechanism has a price of anarchy of O(logm) for the
related and restricted models, and an Ω(logm) lower bound was given for the price of anarchy for

the restricted model. For unrelated machines, a Θ(m) bound was given for a simple randomized

policy. The weighted sum of completion times objective has also been studied [1].

2 PRICING RELATED MACHINES
We begin by giving an online algorithm for the load balancing problem on related machines with a

constant competitive ratio. Our online algorithm is inspired by the Slow-Fit algorithm [3]. We do

this to aid us in designing a dynamic pricing scheme that can mimic the behavior of the online

algorithm. This ensures that our dynamic pricing scheme will have the same competitive ratio as

the online algorithm.

We first assume that machines are sorted in increasing order of speed, so that s1 ≤ s2 ≤ · · · ≤ sm
(i.e., the first machine is the slowest machine, and themth

machine is the fastest machine). Our

algorithm and dynamic pricing scheme proceed in phases, where each phase depends on our current

estimate Λ of the optimal makespan L∗. A new phase begins upon realizing that the current estimate

is too small, at which point we update the estimate accordingly. We use the notion of virtual loads

8



in our algorithms, which we denote by
ˆℓi (j). Virtual loads capture the real load within a particular

phase, and are reset to zero once a new phase begins. The real load on a machine is essentially

given by the sum of virtual loads over all phases. All loads and virtual loads begin at zero.

Our algorithms use the notion of representative machines, which are determined by the current

virtual loads
ˆℓi (j).

Definition 2.1 (Representative). Fix any machine i and job j. Let R = {k : sk = si } be the set of
machines with the same speed as i . We say the representative of machine i when job j arrives is an

arbitrary machine k ∈ R that minimizes
ˆℓk (j − 1). We denote the representative of machine i when

j arrives by ri (j).

Note that, for any machine i , if i is the only machine with a speed of si , then we have ri (j) = i
(for all j). Hence, the notion of a representative is mainly useful when there are multiple machines

with the same speed. In particular, the notion of representatives enables us to choose one machine

out of many that have the same speed (note that representatives may change over time as jobs

arrive). Moreover, we always have the property that sri (j) = si .

2.1 Flex-Fit: A Variant of Slow-Fit

ALGORITHM 1: Flex-Fit: A Variant of Slow-Fit

Assign job 1 to machine rm (j)
Λ← p1

sm
ˆℓi (1) ← 0 for all i

while job j arrives do
T ← {i : ˆℓi (j − 1) +

pj
si ≤ (2 + ϵ)Λ}

if T , ∅ then
S ← {i : ˆℓi (j − 1) +

pj
si ≤ 2 · Λ}

if S = ∅ then
Optionally call New-Phase(j) and continue with the next job

end
k ← minimum machine index in S (set k ←m if S = ∅)
Assign j to an arbitrary machine r∗ ∈ {ri (j) : si ≤ sk and i ∈ T }
ˆℓr ∗ (j) ← ˆℓr ∗ (j − 1) +

pj
si

ˆℓi′(j) ← ˆℓi′(j − 1) for all i ′ , r∗
end
else

New-Phase(j)
end

end

ALGORITHM 2: New-Phase
input : Job j
Assign j to any machine with a speed of sm

Λ← max{2, 2
⌈
log

2

pj
smΛ

⌉
} · Λ

ˆℓi (j) ← 0 for all i

9



For any fixed ϵ > 0, we give Algorithm Flex-Fit (which is inspired by the Slow-Fit algorithm

in [3]). The main theorem we show in this section is that Flex-Fit is O(1)-competitive for the

makespan minimization problem on related machines.

We give some intuition for the algorithm. Initially, we assign the first job to some fastest machine

and obtain a lower bound estimate of L∗, the optimal makespan. The algorithm considers two sets:

T = {i : ˆℓi (j − 1)+ pj
si
≤ (2+ ϵ)Λ} and S = {i : ˆℓi (j − 1)+ pj

si
≤ 2 ·Λ} (note that S ⊆ T ). In particular,

a job is feasible on machine i if and only if i ∈ S . The set T consists of machines that are slightly

infeasible for job j.
If T = ∅, then the algorithm simply begins a new phase. Starting a new phase corresponds to

assigning the job j to any machine of speed sm , along with updating Λ appropriately and resetting

virtual loads. If S , ∅, then the algorithm finds the lowest indexed machine in S , namely machine k .
In this case, it is free to assign j to the representative ri (j) of any machine i such that si ≤ sk
and i ∈ T . If S = ∅, then Flex-Fit is allowed to take one of two options: begin a new phase and

then wait to process the next job, or assign j to the representative ri (j) of any machine i such that

i ∈ T . We need this flexibility in order to mimic the online algorithm via a dynamic pricing scheme.

In particular, tie-breaking issues in our dynamic pricing scheme may arise, where a job can be

indifferent between choosing a machine of speed strictly less than sm (in which case a new phase

does not begin), or a machine of speed sm (in which case a new phase may possibly begin). Since we

do not have control over which machine agents choose, our online algorithm must be sufficiently

flexible and allow either of the two options to be taken.

Note that we assume job 1 has p1 > 0 (otherwise our initial estimate Λ = 0). If this is not the

case, we simply wait until such a job j arrives, and reindex jobs so that j = 1.

To show the theorem, we first prove two lemmata, Lemma 2.2 and Lemma 2.3.

Lemma 2.2 says that, as long as S , ∅ when a particular job j arrives, the load on the machine

to which j is assigned is within a constant of our estimate Λ. We defer the proof of Lemma 2.2 to

Appendix C.

Lemma 2.2. For any job j > 1, if S , ∅, Flex-Fit always assigns job j to a machine i such that
ˆℓi (j − 1) + pj

si
≤ (2 + ϵ)Λ.

Lemma 2.3 says that once our estimate Λ is at least the optimal makespan, then no more new

phases are initiated (the proof is similar to the proof that Slow-Fit is competitive [3], although it

must be adapted appropriately). We defer the proof of Lemma 2.3 to Appendix C.

Lemma 2.3. If Λ ≥ L∗, then S , ∅ for all jobs j > 1.

We now conclude the proof of the main theorem in this section.

Theorem 2.4. Flex-Fit isO(1)-competitive for the makespan minimization problem on related ma-
chines.

Proof. Observe that the final makespan of the online algorithm is at most (a) the sum of the

maximal loads over all phases, plus (b) any additional processing times incurred due to explicitly

assigning jobs to some fastest machine. That is, (b) refers to the very first job, along with all jobs

that cause a phase to end.

We let Λ1 =
p1
sm

(i.e., the online algorithm’s first estimate once job 1 arrives), and in general

define Λh to be the value of Λ during phase h ≥ 1. Observe that the estimate Λh is always of the

form 2
ah · Λ1 for some integer ah ∈ {0, 1, 2, . . .} (i.e., Λh

Λ1

is always a power of 2 for every phase

h). Moreover, we have Λh+1 ≥ 2 · Λh (since its new value is always its old value, multiplied by

max{2, 2 ⌈log2
pj

smΛh
⌉}, where j is the current job that caused a new phase to begin). Hence, ah < ah+1.
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Let k be the number of phases, where k ≥ 1. We first show that Λk ≤ 2 · L∗, where Λk denotes

the value of Λ during the final phase. If there is only one phase, we are done since the final

estimate is Λk = Λ1 =
p1
sm
≤ L∗ ≤ 2 · L∗. Now, suppose there are k ≥ 2 phases. Consider the

(k − 1)st phase (i.e., the phase just before the last phase). The reason why the algorithm ended

phase k − 1 and started phase k is because the set S was empty when some job arrived. By

Lemma 2.3, it must have been the case that the estimate Λk−1 was strictly less than L∗. There

are two cases: Λk = 2 · Λk−1 or Λk = 2
⌈log

2

pj
smΛ ⌉ · Λk−1 (where j is the job that caused phase k

to begin). In the first case, we have Λk = 2 · Λk−1 < 2 · L∗. In the second case, we also have

Λk = 2
⌈log

2

pj
smΛk−1

⌉ · Λk−1 ≤ 2 · pj
smΛk−1

· Λk−1 ≤ 2 · L∗ (since pj
sm
≤ L∗).

By Lemma 2.2, the total load that accumulates during a phase h (i.e., while T , ∅, or possibly
until S = ∅) is at most (2 + ϵ)Λh . In addition, the algorithm also assigns jobs to a machine

with the fastest speed (e.g., job 1, and all jobs that cause a new phase to begin). Such jobs j add

at most
pj
sm

to the makespan. Note that the job j which causes some phase h to begin satisfies

pj
sm
≤ 2

⌈log
2

pj
smΛh−1

⌉ · Λh−1 ≤ Λh (recall that
p1
sm
= Λ1 by definition). Hence, each phase h incurs a

makespan of at most Λh + (2 + ϵ)Λh . Let ah ∈ {0, 1, 2, . . .} be the integer such that Λh = 2
ah · Λ1.

In all, the final makespan is at most:

k∑
h=1

(3 + ϵ)Λh = (3 + ϵ)Λ1

k∑
h=1

2
ah ≤ (3 + ϵ)Λ1 · 2ak+1 = 2 · (3 + ϵ) · 2akΛ1 ≤ 4 · (3 + ϵ) · L∗.

This concludes the proof of the theorem. □

2.2 Dynamic Pricing Scheme
We now give our dynamic pricing scheme, Dynamic-Related, which mimics the behavior of Flex-Fit.

That is, the dynamic prices set by Dynamic-Related (prior to the arrival of each job) have the

following property. Any incoming rational job j will choose some machine k such that Flex-Fit is

free to assign job j to machine k .
As before, assume that machines are sorted such that s1 ≤ s2 ≤ · · · ≤ sm . We now give some

intuition behind the dynamic pricing algorithm and discuss some of its properties. Initially, the

algorithm sets prices so that the first job is incentivized to choose machinem (i.e., a machine with

the fastest speed), and then obtains an initial estimate Λ (in a manner similar to Flex-Fit). The

algorithm then enters an outer while loop which is responsible for setting prices before each next

job j arrives. It begins by sorting the values µi (j) = si (2 · Λ − ˆℓi (j − 1)) so that µi1 (j) ≤ · · · ≤ µim (j).
This is useful since a job is feasible on machine i ⇔ ˆℓi (j − 1) + pj

si
≤ 2 · Λ⇔ pj ≤ µi (j).

The inner while loop in Dynamic-Related is responsible for obtaining a carefully selected subse-

quence of machines with strictly increasing speeds. In particular, the inner while loop constructs a

set B with the property that for all 1 ≤ b ≤ |B |, we have st1 < st2 < · · · < st |B | (after renaming the

machine indices in B by t1 < t2 < · · · < t |B |). This property holds due to the process by which the

set B is created. Note that machine t1 has the same speed as the slowest machine (i.e., s1 = st1 ), since
the first machine added to set B is the machine in the rightmost position in the sorted ordering

µi1 (j) ≤ · · · ≤ µim (j) satisfying the property that it has the same speed as the slowest machine (i.e.,

machine 1’s speed). The inner while loop then removes all machines that appear earlier in the sorted

ordering than machine t1 from set A (including machine t1 itself). This implies that all machines

of speed st1 (i.e., the slowest machine speed) are removed from A, and hence the slowest machine

remaining in set A must have strictly larger speed. Therefore, when adding the second machine to

set B, namely machine t2, we get that the speed of t2 satisfies st2 > st1 . Repeating this process, we get

11



ALGORITHM 3: Dynamic-Related: A Dynamic Pricing Scheme for Related Machines

πm1 ← 0, πi1 ←∞ for all i < m

After agent 1 chooses a machine q:

Λ← p1
sq

ˆℓi (1) ← 0 for all i

while job j arrives do
µi (j) ← si (2 · Λ − ˆℓi (j − 1))
Sort the values µi (j) in ascending order so that µi1 (j) ≤ µi2 (j) ≤ · · · ≤ µim (j) (breaking ties arbitrarily)
A← [m], B = ∅
while A , ∅ do

s ← min{si : i ∈ A}
w ← max{a : sia = s}
B ← B ∪ {iw }
A← A \ {ia : a ≤ w}

end
Index the elements in B such that t1 < t2 < · · · < t |B | , where t1 is the smallest element, t2 is the second

smallest, etc.

πrt
1
(j)j = 0

for b = 2 to |B | do
πrtb (j)j = ℓrtb−1 (j)(j − 1) − ℓrtb (j)(j − 1) +

(
1 − stb−1

stb

)
((2 + ϵ)Λ − ˆℓtb−1 (j − 1)) + πrtb−1 (j)j

end
if sm , st |B | then

πrm (j)j = ℓrt |B | (j)
(j − 1) − ℓrm (j)(j − 1) +

(
1 −

st |B |
sm

)
((2 + ϵ)Λ − ˆℓt |B |(j)(j − 1)) + πrt |B | (j)j

end
Set all other prices to∞
After agent j chooses a machine q:

if sq = sm and S = {i : ˆℓi (j − 1) +
pj
si ≤ 2 · Λ} = ∅ then

Λ← max{2, 2
⌈
log

2

pj
smΛ

⌉
} · Λ

ˆℓi (j) ← 0 for all i

end
else

ˆℓq (j) ← ˆℓq (j − 1) +
pj
sq

ˆℓi (j) ← ˆℓi (j − 1) for all i , q
end

end

that st1 < st2 < · · · < st |B | . In addition, we have the property that µt1 (j) ≤ · · · ≤ µt |B | (j), since each
time we add a machine to set B that appears later in the sorted order µi1 (j) ≤ µi2 (j) ≤ · · · ≤ µim (j).
The for loop is essentially responsible for determining which machines are given finite prices

(in addition to computing the actual prices). Note that the algorithm only sets finite prices on

representatives of machines, namely the representatives of machines t1, . . . , t |B | (possibly in addition
to the representative of machinem). Hence, jobs can only be assigned to the representatives of

machines t1, . . . , t |B | , and possibly the representative of machinem. Dynamic-Related then updates

Λ as necessary (in a manner similar to Flex-Fit).
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Our goal now is to prove that the prices determined by Dynamic-Related are such that for any

sequence of rational selfish jobs, the jobs will choose machines that are consistent with the choices

available to Flex-Fit. This is the same as saying that the competitive ratio of the Dynamic-Related

dynamic pricing scheme is the same as the competitive ratio of the Flex-Fit algorithm, which we

know is O(1) by Theorem 2.4. To summarize, we now seek to prove the following theorem:

Theorem 2.5. Dynamic-Related is anO(1)-competitive dynamic pricing scheme for the makespan
minimization problem on related machines.

We use FF and DR as shorthand when referring to Flex-Fit and Dynamic-Related, respectively.

The plan for the proof is to argue that the behavior of DR is consistent with the behavior of FF .
Note that, at certain points, FF is free to assign a job to one of multiple machines. Additionally, FF
may be free to start a new phase (or not). Hence, by the phrase “DR behaves consistently with FF ,”
we mean that DR sets prices so that any rational job to arrive will choose one of the permissible

actions that FF is free to take.

Throughout the proof, we make use of notation present in both algorithms. In addition, when

referring to the representative of a machine i when job j arrives, we write ri instead of ri (j)
and µi instead of µi (j) for ease of notation (we always refer to the current job j). Recall that

T = {i : ˆℓi (j − 1) + pj
si
≤ (2 + ϵ)Λ}, S = {i : ˆℓi (j − 1) + pj

si
≤ 2 · Λ}, and k is the minimum machine

index in S (k =m if S = ∅).
Theorem 2.5 follows from the following four lemmas, the first of which explores some properties

of the prices DR assigns, while the remaining three argue that DR behaves consistently with FF in

three disjoint, exhaustive cases. The proofs of the following lemmas are deferred to Appendix C.

Lemma 2.6. If |B | ≥ 2, then for all 1 ≤ b ≤ |B | − 1, we have crtb (j)j ≤ crtb+1 (j)j if and only if tb ∈ T .
Similarly, if st |B | , sm , then crt |B | (j)j ≤ crm (j)j if and only if t |B | ∈ T .

We now argue that DR behaves consistently with FF for every fixed job j . Clearly, for j = 1, both

FF and DR behave in the same manner (including updating Λ). Now, consider any job j > 1. We

split the proof of up into three disjoint and exhaustive cases, classified as follows: set T is empty

(Lemma 2.7), set T is nonempty but set S is empty (Lemma 2.8), and finally set S is nonempty

(Lemma 2.9). Note that we always have S ⊆ T , so it is not possible for T to be empty while S is

nonempty.

Lemma 2.7. IfT = ∅, then DR assigns prices so that a rational job j chooses a machine of speed sm .
DR also updates Λ, and resets virtual loads to zero (precisely in the same manner as FF ).

Lemma 2.8. IfT , ∅ and S = ∅, thenDR processes job j in one of two ways.DR either (a) Sets prices
so that a rational job j chooses a machine of speed sm , updates Λ, and resets virtual loads to zero, or
(b) DR sets prices so that a rational job j chooses some representative ri where i ∈ T . Both options (a)
and (b) are consistent with FF .

Lemma 2.9. If S , ∅, then DR sets prices so that j chooses some representative ri where si ≤ sk and
i ∈ T (which is consistent with FF ).

This concludes the proof of Theorem 2.5.

3 LOWER BOUNDS FOR UNRELATED MACHINES
In this section, we first give a lower bound which shows that no deterministic dynamic pricing

scheme can achieve a competitive ratio better than Ω(m) for the unrelated machine setting. Note

that this competitive ratio can be achieved by the online greedy algorithm that assigns each job j
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to a machine that minimizes ℓi (j − 1) + pi j . Moreover, this behavior can be mimicked by a dynamic

pricing scheme, simply by setting all prices πi j = 0.

Theorem 3.1. No deterministic dynamic pricing scheme can achieve a competitive ratio better than
Ω(m) for the unrelated machine setting.

Proof. Let D denote the dynamic pricing scheme, and let OPT denote an optimal solution (i.e.,

a solution that minimizes the makespan). Our lower bound consists of some number of phases

k , where k can be arbitrarily large. At the end of all k phases, we argue that the makespan of the

dynamic pricing scheme is at least k ·m, while OPT only has a makespan of at most (1 + 2ϵ) · k
for an arbitrarily small ϵ > 0. If we can maintain this property, this would imply a lower bound of

Ω(m) on the competitive ratio.

The input consists of the following sequence of jobs. Suppose the adversary has already intro-

duced j − 1 jobs, and the dynamic pricing scheme D has processed these jobs. Hence, the dynamic

pricing scheme must now set prices πi j on each machine i (before job j arrives). Then, we introduce
job j according to the following two cases (depending on how the dynamic pricing scheme D
behaves):

(1) If there exist two distinct machines i, i ′ such that ℓi (j − 1) + πi j + ϵ < ℓi′(j − 1) + πi′j ,
introduce the job j with pi j = ϵ , pi′j = 0, and pbj = ∞ for all b , i, i ′.

(2) Otherwise, introduce the job j with p1j = 1 and pi j = 1 + 2ϵ for all i > 1.

Note that, if in the second case all prices are∞, then we assume job j (i.e., agent j) breaks ties by
preferring machine 1. Each phase consists ofm occurrences of the second case.

The first claim we argue is that there exists an assignment of jobs to machines such that the

load on each machine grows by at most 1 + 2ϵ at the end of each phase. This implies that, after k
phases have concluded, there is an optimal solution with a makespan of at most (1 + 2ϵ) · k . We

construct such an assignment as follows. Observe that each time D assigns prices to machines

such that we fall into the first case, we simply assign the constructed job j to machine i ′ (i.e., the
machine satisfying pi′j = 0). Hence, each time case 1 occurs, the load of each machine remains the

same. On the other hand, consider the jobs introduced due to the second case during a phase, of

which there arem. We simply assign thesem jobs tom distinct machines. Each such job causes

the load on the machine to which it is assigned to increase by at most 1 + 2ϵ . Hence, there is an
assignment of jobs to machines that causes the load on every machine to increase by at most 1+ 2ϵ
after each phase completes.

We now argue that, after each phase completes, the dynamic pricing scheme D sets prices such

that jobs choose machines in a way that the load on the first machine increases bym. This implies

that, after k phases, the load on the first machine (according to the assignment given by D) is at
least k ·m, and hence the makespan must be at least k ·m. We first consider the case where D sets

prices such that we fall into case 1, and argue that the load for some machine increases by ϵ . In
this case, there exist two machines i and i ′ such that ℓi (j − 1) + πi j + ϵ < ℓi′(j − 1) + πi′j . We argue

that machine i attains the minimum cost ci j for job j. This holds since ci j = ℓi (j − 1) + pi j + πi j =
ℓi (j − 1) + ϵ + πi j < ℓi′(j − 1) + πi′j = ℓi′(j − 1) + pi′j + πi′j (recall that pi j = ϵ while pi′j = 0).

Moreover, cbj = ∞ for all b , i, i ′, since pbj = ∞. Hence, the dynamic pricing scheme D causes job

j to be assigned to machine i , which increases the load on machine i by ϵ .
We now consider the case where D sets prices such that we fall into case 2, and argue that each

such job always chooses machine 1 (causing the load on machine 1 to increase by 1, since p1j = 1 for

each such job j). Sincem such jobs are introduced during each phase, this would show that the load

onmachine 1 increases bym after each phase completes. In the second case, if π1j = ∞, then all prices
must be∞ (since there does not exist another machine i satisfying ℓi (j−1)+πi j+ϵ < ℓ1(j−1)+π1j =

14



∞). Hence, since we assumed that such a job j breaks ties in favor of machine 1, the job j prefers
machine 1 over all other machines (which increases the load on machine 1 by 1). On the other hand,

if π1j is finite, we argue that job j is also assigned to machine 1. Observe that in the second case, for

any two machines i and i ′, we have ℓi (j−1)+πi j +ϵ ≥ ℓi′(j−1)+πi′j . Hence, for any machine i > 1,

we have c1j = ℓ1(j−1)+p1j+π1j = ℓ1(j−1)+1+π1j ≤ ℓi (j−1)+1+ϵ+πi j < ℓi (j−1)+1+2ϵ+πi j = ci j .
This implies that machine 1 minimizes job j’s cost, which in turn implies that the load on machine

1 increases by 1.

Finally, observe that we can always eventually force the dynamic pricing scheme D to produce

prices such that we fall into case 2. This holds since, each time we fall into case 1, there is an optimal

solution which satisfies the property that the load on every machine does not change. On the other

hand, D causes such jobs j to be assigned to some machine for which the processing time is ϵ . This
implies that the assignment determined by D causes the load on some machine to increase by ϵ ,
while in an optimal solution the load on every machine remains the same. This process cannot go

on forever, since the makespan of the schedule produced by D can be made arbitrarily bad while

the makespan of an optimal solution does not change (which would result in an arbitrarily bad

competitive ratio). □

We now give a lower bound of Ω(m) on the expected competitive ratio for any randomized

dynamic pricing scheme, which even holds against an oblivious adversary.

Theorem 3.2. No randomized dynamic pricing scheme can achieve an expected competitive ratio
better than Ω(m) for the unrelated machine setting.

Proof. Let D denote the randomized dynamic pricing scheme, and let OPT denote an optimal

solution (i.e., a solution that minimizes the makespan). Our lower bound draws on ideas from the

proof of our deterministic lower bound (i.e., the proof of Theorem 3.1). Let ϵ > 0 be arbitrarily

small. The input sequence will consist of some number of jobs n, where we make n arbitrarily large.

In particular, the input sequence is iteratively constructed by the adversary in a deterministic

manner. After the first j − 1 jobs have been determined (independent of the randomness of the

algorithm), the adversary constructs job j according to the following two cases, one of which must

happen with probability at least
1

2
(depending on the code of the dynamic pricing scheme D, but

independent of any random coin flips). Here, the probability is taken over the coin flips of the

algorithm, and the probability is computed as if the first j − 1 jobs constructed so far are given as

input to D (note that the jobs are only imagined to be given as input):

(1) There exist two distinct machines i, i ′ such that ℓi (j − 1) + πi j + ϵ < ℓi′(j − 1) + πi′j with
probability at least

1

2
. Note that, conditioned on this event occurring, there must exist a fixed

pair of machines (i, i ′) (obtained deterministically) such that the event ℓi (j − 1) + πi j + ϵ <
ℓi′(j − 1)+πi′j occurs with probability at least

1

m2
, since there are at mostm2

such pairs. For

this fixed pair (i, i ′), the adversary constructs the job j with pi j = ϵ , pi′j = 0, and pbj = ∞
for all b , i, i ′.

(2) Otherwise, introduce the job j with p1j = 1 and pi j = 1 + 2ϵ for all i > 1.

Observe that one of these two cases must happen with probability at least
1

2
. Hence, the adversary

constructs job j depending on which such case occurs with higher probability. Note that, if in the

second case all prices are∞, then we assume job j (i.e., agent j) breaks ties by preferring machine 1.

Let n1 be the number of jobs constructed due to case 1, and n2 be the number of jobs constructed

due to case 2. Note that n1 and n2 are fixed (i.e., they are not random variables), and moreover we

have n1 + n2 = n. Using similar reasoning as in the proof of Theorem 3.1, OPT ≤ (1 + 2ϵ) · ⌈n2

m ⌉,
since we can always assign case 1 jobs to the machine on which a load of 0 is incurred. Moreover,
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for everym jobs constructed due to case 2, we can always put them jobs onm distinct machines,

increasing the makespan by at most (1 + 2ϵ).
On the other hand, we argue that the expected makespan of the dynamic pricing scheme D

must be large. Observe that for each job j constructed due to case 1, the dynamic pricing scheme’s

expected sum of loads increases as follows: E[∑i ℓi (j) − ℓi (j − 1)] ≥ ϵ · 1

2m2
. This holds since, for

each such job j , if the event ℓk (j−1)+πk j +ϵ < ℓk ′(j−1)+πk ′j occurs for the fixed pair of machines

(k,k ′), which happens with probability at least
1

2m2
, then job j induces a load of ϵ on machine k .

Hence, we have E[∑i ℓi (n)] ≥ n1 · ϵ · 1

2m2
. Moreover, for each job j constructed due to case 2, the

load on machine 1 increases by 1 with probability at least
1

2
(since if the event corresponding to

case 2 occurs, which happens with probability at least
1

2
, job j is assigned to machine 1). Hence, we

have E[ℓ1(n)] ≥ n2 · 1
2
. Putting it all together, we get

E
[
max

i
ℓi (n)

]
≥ E

[
max

{
1

m

∑
i

ℓi (n), ℓ1(n)
}]
≥ max

{ϵ · n1
2m3
,
n2
2

}
.

We consider the following two cases. In the first case, we have n2 ≤ t ·m for some large integer

t , and in the other case we have n2 > t ·m. Note that we assume n2 > 0, as otherwiseOPT = 0 and

the competitive ratio is arbitrarily bad. In the first case, the expected competitive ratio is at least

ϵ ·(n−n2)
2m3 ·(1+2ϵ )· ⌈ n2m ⌉

≥ ϵ ·(n−t ·m)
2m3 ·(1+2ϵ )·(t+1) = Ω(

√
n), which can be made arbitrarily bad (note that we choose

n sufficiently large so that

√
n ≫ t ·m3

). In the second case, the expected competitive ratio is at

least
n2

2(1+2ϵ )· ⌈ n2m ⌉
= Ω(m). Note that, in the second case, OPT is large and hence our lower bound

rules out additive constants in the competitive ratio of the dynamic pricing scheme.

□

4 GREEDY AND STATIC PRICING ARE EQUIVALENT
In this section, we relate the greedy algorithm and static pricing schemes. Our main theorem,

Theorem 4.1, is given below. The proof of Theorem 4.1 appears in Appendix A.

Theorem 4.1. If the greedy algorithm that assigns each job j to a machine i that minimizes ℓi (j −
1)+pi j is c-competitive in some machine model (either identical, related, restricted, or unrelated), then
the static pricing scheme that sets all prices to zero is also c-competitive. Moreover, a lower bound of
c on the (expected) competitive ratio of the greedy algorithm implies a lower bound of Ω(c) for any
deterministic or randomized static pricing scheme (for all machine models). The randomized lower
bound holds as long as the greedy lower bound does not specify how ties are broken.
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A STATIC PRICING SCHEMES ≡ GREEDY
Recall that a static pricing scheme is completely determined by an m-dimensional vector π =
(π1∗, . . . ,πm∗), which is set in advance before any agents arrive. First, we claim that static pricing

schemes can always mimic the online greedy algorithm where the greedy choice corresponds to

placing the incoming job j on the machine i that minimizes ℓi (j − 1) + pi j . In particular, this online

greedy algorithm can be mimicked by a static pricing scheme, simply by setting all prices to 0 (i.e.,

π = (0, . . . , 0)). With these static prices, all incoming agents j choose a machine i that minimizes

ℓi (j − 1) + pi j + πi∗ = ℓi (j − 1) + pi j (since πi∗ = 0 for all i). Hence, agents choose a machine in a

manner that is consistent with the greedy algorithm’s choices.

Theorem 4.1 immediately follows from the discussion above, along with Lemma A.1 (our de-

terministic lower bound) and Lemma A.2 (our randomized lower bound) below. We first give our

deterministic lower bound in the following lemma.

Lemma A.1. A lower bound of c on the competitive ratio of the greedy algorithm that assigns each
job j to a machine i that minimizes ℓi (j − 1) + pi j implies a lower bound of Ω(c) on the competitive
ratio of any deterministic static pricing scheme (for the identical, related, restricted, and unrelated
machine models).

Proof. Assume we have some static pricing scheme, the prices of which are given by π =
(π1∗, . . . ,πm∗). We denote by πmax the largest price determined by the static pricing scheme, so

that πmax = maxi πi∗. For any input sequence σ , we denote by ALG(σ ) the makespan of the greedy

algorithm, and let ALG ′(σ ) denote the makespan achieved by the static pricing scheme. Suppose

there exists some adversarial sequence of n input jobs which gives witness to the lower bound

of c on the competitive ratio of the greedy algorithm. That is, for any additive constant a, there
exists an input sequence σ which satisfies the property that ALG(σ ) > c · L∗(σ ) + a (recall that a
represents the additive constant in the competitive ratio, and L∗(σ ) denotes the makespan of an

optimal solution on input σ ). We note that L∗(σ ) can be made arbitrarily large by scaling all jobs

appropriately.

Our goal is to modify the input sequence σ by prepending a few jobs at the beginning of

the sequence, obtaining a new input sequence σ ′ which yields a comparable guarantee on the

competitive ratio for any static pricing scheme. In particular, our aim is to introducem input jobs

with the property that the loads plus prices on all machines are flattened out. More formally, we

introduce jobs 1, . . . ,m with the property that ℓi (m) + πi∗ = ℓi′(m) + πi′∗ = πmax for all machines

i, i ′. Once this is done, we can then introduce jobs in the sequence σ to the static pricing scheme,

and agents will choose machines in precisely the same manner as jobs are placed by the online

greedy algorithm. Note that, initially, all loads are 0 (i.e., ℓi (0) = 0 for all i).
We first describe the process in the unrelated machine setting. Here, for each machine i , we

introduce the job j such that pi j = πmax − πi∗ and pi′j = ∞ for all i ′ , i . These jobs may be

introduced in an arbitrary order (notice that there arem such jobs). At the end of this sequence of

m jobs, since each machine i gets exactly one of them jobs, we have ℓi (m) = πmax − πi∗, and hence

ℓi (m) + πi∗ = πmax for all machines i .
We now turn our attention to the identical machine setting. In this model, we must introduce

jobs in a specific order. In particular, we sort machines in increasing order of their prices, so that

we have πi1∗ ≤ πi2∗ ≤ · · · ≤ πim∗. We introduce the following jobs: for each j = 1, . . . ,m, we set

pj = πmax−πi j ∗. Notice that the first job choosesmachine i1, since ℓi1 (0)+p1+πi1∗ ≤ ℓi (0)+p1+πi∗ for
all machines i (if there are ties, then the agent can choose a machine arbitrarily and everything still

goes through). Moreover, we argue that every job 2 ≤ j ≤ m chooses machine i j . This holds since,
for allk < j , the cost onmachine ik is given by ℓik (j−1)+pj+πik ∗ = πmax−πik ∗+pj+πik ∗ = πmax+pj ,
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while the cost on machine i j is ℓi j (j − 1) + pj + πi j ∗ = (πmax − πi j ∗) + πi j ∗ = πmax. Moreover, for all

machines k ≥ j, the cost on machine ik is given by ℓik (j − 1) + pj + πik ∗ = pj + πik ∗ ≥ pj + πi j ∗,
which is the cost on machine i j . Hence, once allm jobs have been introduced, we have the property

that ℓi (m) + πi∗ = πmax for all machines i .
Finally, we describe the process by which we compute pj in the related machine setting for

each job 1 ≤ j ≤ m. In a continuous manner, starting from 0, we continuously increase pj until

the machine i that minimizes ℓi (j − 1) + pj
si
+ πi∗ (note that the minimizing machine may change)

satisfies the property that ℓi (j − 1) + pj
si
+ πi∗ equals πmax (at which point the process stops). Once

equality is attained, we simply introduce the job j with this value of pj . Again, it is easy to see

that, after allm jobs have been introduced, we have the property that ℓi (m) + πi∗ = πmax for all

machines i .
As mentioned, to obtain a lower bound on the competitive ratio of ALG ′, we first introduce the

m jobs as mentioned above (i.e., flatten things out), followed by the input sequence σ (yielding the

sequence σ ′). Observe that ALG ′(σ ′) ≥ ALG(σ ), since the static pricing scheme incurs the same

load on every machine as the online greedy algorithm, in addition to the load of one of them jobs

introduced at the beginning of the entire sequence. By assumption, we have ALG(σ ) > c · L∗(σ )+ a.
Finally, we have L∗(σ ′) ≤ L∗(σ ) + πmax, since one feasible solution is to assign jobs to machines

precisely as an optimal solution on input σ does, along with placing them initial jobs onm distinct

machines (incurring an additional load of at most πmax). Putting everything together, we get

ALG ′(σ ′) ≥ ALG(σ ) > c · L∗(σ ) + a ≥ c · (L∗(σ ′) − πmax) + a. Since L∗(σ ′) ≥ L∗(σ ) can be made

arbitrarily large (in particular we can make L∗(σ ) ≫ πmax), we have ALG
′(σ ′) > Ω(c) · L∗(σ ′) + a,

giving the lemma. □

We now provide our randomized lower bound.

Lemma A.2. A lower bound of c on the competitive ratio of the greedy algorithm that assigns
each job j to a machine i that minimizes ℓi (j − 1) + pi j implies a lower bound of c on the expected
competitive ratio of any randomized static pricing scheme (for the identical, related, restricted, and
unrelated machine models). This implication holds as long as the greedy lower bound does not specify
how ties are broken.

Proof. Assume we have some randomized static pricing scheme, the prices of which are given

by π = (π1∗, . . . ,πm∗), where each πi∗ for 1 ≤ i ≤ m is a random variable. The idea behind the

proof is to scale each job’s processing times up by such a large amount that the randomly produced

prices on all machines become negligible. In particular, we scale jobs up by such a large amount

that even the largest price is negligible compared to the smallest (non-zero) processing time of any

job on any machine. We note that the following argument holds for all machine models, and in

particular for identical, related, restricted, and unrelated machines.

We scale jobs up as follows. Consider feeding the input sequence σ as input to the greedy

algorithm, and suppose that each time a job j is assigned to a machine, there are no ties to be

broken (i.e., ℓi (j − 1) + pi j , ℓk (j − 1) + pk j for all machines i , k). This is not true in general (in

particular, it is never true for the identical machines setting, as even the first job faces the same

load on all machines, namely zero), but we consider this case first for simplicity. Over the run

of the greedy algorithm on input σ , consider the smallest gap that ever exists between a pair of

machines. Namely, consider δ = minj mink,i |ℓi (j − 1)+pi j − ℓk (j − 1) −pk j | (note that δ , 0 by our

assumption). As long as we scale up jobs so that the random prices are≪ δ , then jobs are assigned

by the randomized static pricing scheme in precisely the same manner as they are by the greedy

algorithm. This holds since, if in the greedy algorithm machine i minimizes ℓi (j − 1)+pi j (note that
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this machine is unique by our assumption), then machine i also minimizes ℓi (j − 1) + pi j + πi∗. In
particular, for all k , i we have ℓk (j − 1)+pk j +πk∗ ≥ ℓi (j − 1)+pi j +δ +πk∗ > ℓi (j − 1)+pi j +πi∗.
We now discuss the scenario when some jobs need to break ties among at least two machines

over the run of the greedy algorithm on input σ . In this case, we define δ to be the smallest non-zero

gap δ that ever exists over all possible runs of the greedy algorithm on input σ . By all possible

runs, we mean considering all possible ways that the greedy algorithm can resolve ties among

machines for each job. Similarly in this case, we scale all jobs so that each job’s processing times

are significantly larger relative to the prices. Now, for a job j, if all possible runs result in a unique

machine i that minimizes ℓi (j − 1) + pi j , then the randomized static pricing scheme will assign it to

the same machine. On the other hand, if there exists a run that results in job j facing ties among

multiple machines, then the randomized static pricing scheme assigns j to one such machine (note

that, by the assumption in the statement of the lemma, job j is free to be assigned to any such

machine since the greedy lower bound does not specify how ties are broken). □

B AN ILLUSTRATIVE EXAMPLE
We motivate why dynamic pricing is useful via a small example. We do so by comparing the

schedule produced without any pricing to the schedule produced via a dynamic pricing scheme.

For ease of presentation, we assume that our scheme knows the value of the optimal makespan,

which we denote by L∗. Schedules obtained without pricing are equivalent to schedules produced

by the greedy algorithm that assigns each job j to a machine i that minimizes ℓi (j − 1) + pj
si
.

In our example (given as Figure 1) there arem = 3 machines, with speeds s1 =
1

2
, s2 =

1

2
(1 + ϵ),

and s3 = 1+2ϵ ; and n = 3 jobs, with sizes p1 =
1

2
(1+ϵ), p2 = 1

2
, and p3 = 1+2ϵ . The left, middle, and

right columns show the optimal assignment, the greedy assignment, and the assignment obtained

by our dynamic pricing scheme, respectively. In the middle and right columns, the arrival order is

from bottom to top.

Optimal makespan: The optimal makespan is L∗ = 1, achieved by assigning job 1 to machine

2, job 2 to machine 1, and job 3 to machine 3.

Greedy: The greedy algorithm assigns job 1 to machine 3, since the machine i that minimizes

p1
si

is the fastest machine (initially, all loads are 0). Job 2 is also assigned to machine 3, since

ℓ3(1) + p2
s3
= 2+ϵ

2(1+2ϵ ) <
1

1+ϵ =
p2
s2
<

p2
s1

(for sufficiently small ϵ > 0). Lastly, job 3 is also assigned to

machine 3, since ℓ3(2) + p3
s3
=

2+ 5ϵ
2

1+2ϵ <
2(1+2ϵ )
1+ϵ =

p3
s2
<

p3
s1
. Hence, the greedy algorithm assigns all

jobs to machine 3, resulting in a makespan of
p1+p2+p3

s3
≈ 2.

Pricing scheme: Our dynamic pricing scheme sets prices before the arrival of each job, and

are independent of the type of the incoming job. The prices we use are the prices generated by

our O(1)-competitive dynamic pricing scheme. We defer the explanation of how to construct

these prices to Section 2. The following are the prices set prior to the arrival of job 1: π11 = 0,

π21 =
(
1 − s1

s2

)
·
(
2 + ϵ

2

)
L∗ =

(
2 + ϵ

2

)
· ϵ
1+ϵ > ϵ , and π31 =

(
1 − s2

s3

)
·
(
2 + ϵ

2

)
L∗+π21 ≈ 1+π21. Hence,

job 1 chooses machine 1, since c11 =
p1
s1
+ π11 = 1 + ϵ < 1 + π21 =

p1
s2
+ π21 = c21 <

1

2
+ 1 + π21 ≈

p1
s3
+ π31 = c31.
Prior to the arrival of job 2, the dynamic pricing scheme sets prices as follows: π12 = 0,π22 =

ℓ1(1) +
(
1 − s1

s2

) ( (
2 + ϵ

2

)
L∗ − ℓ1(1)

)
< 1 + ϵ + ϵ

1+ϵ , and π32 =
(
1 − s2

s3

) (
2 + ϵ

2

)
L∗ + π22 ≈ 2. Hence,

job 2 chooses machine 2, since c22 =
p2
s2
+ π22 <

2p2
1+ϵ + 1 + ϵ +

ϵ
1+ϵ = ℓ1(1) +

p2
s1
= c12 <

p2
1+2ϵ + 2 ≈

p2
s3
+ π32 = c32.
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𝑝2 + 𝑝3
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+ 𝜋23
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,
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,
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1

2
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1 + 𝜖

2
, 𝑠3 = 1 + 2𝜖

𝑝1 =
1 + 𝜖

2
, 𝑝2 =

1

2
, 𝑝3 = 1 + 2𝜖

Fig. 1. Example of the optimal makespan, the greedy algorithm, and dynamic pricing set using Algorithm 3.

Prices

π11 = 0 π21 > ϵ π31 ≈ 1 + π21
π12 = 0 π22 < 1 + ϵ + ϵ/(1 + ϵ) π32 ≈ 2

π13 = 0 π23 ≈ ϵ π33 ≈ 3/2

Finally, prior to the arrival of job 3, the dynamic pricing scheme sets the following prices: π13 = 0,

π23 = ℓ1(2)−ℓ2(2)+
(
1 − s1

s2

) ( (
2 + ϵ

2

)
L∗ − ℓ1(2)

)
≈ ϵ , andπ33 = ℓ2(2)+

(
1 − s2

s3

) ( (
2 + ϵ

2

)
L∗ − ℓ2(2)

)
+

π23 ≈ 3

2
. Hence, job 3 choosesmachine 3, since c33 =

p3
s3
+π33 ≈ 5

2
, while c13 = ℓ1(2)+ p3

s1
= 1+ϵ+2p3 ≈

3 and c23 = ℓ2(2) + p3
s2
+ π23 =

1

1+ϵ +
2p3
1+ϵ + π23 ≈ 3.

Since machine 1 has the highest load, the schedule produced by our dynamic pricing scheme

achieves a makespan of ℓ1(3) = 1 + ϵ . This example can be extended to show that greedy can be as

bad as Ω(logm)-competitive, while in contrast our dynamic pricing scheme is O(1)-competitive.

C MISSING PROOFS FROM SECTION 2
Proof of Lemma 2.2:

Proof. Fix any arriving job j , and assume that S , ∅. Since S , ∅, we must also have thatT , ∅.
Hence, the algorithm assigns the job to any representative of a machine i when j arrives, where si ≤
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sk and i ∈ T (recall thatk is the minimum index in S). Wewish to show that
ˆℓri (j)(j−1)+

pj
si
≤ (2+ϵ)Λ.

Let i be anymachine inT , which implies that
ˆℓi (j−1)+ pj

si
≤ (2+ϵ)Λ. The representative ri (j)must be

a machine satisfying
ˆℓri (j)(j−1) ≤ ˆℓi (j−1). Hence, we have ˆℓri (j)(j−1)+

pj
si
≤ ˆℓi (j−1)+ pj

si
≤ (2+ϵ)Λ,

which gives the lemma. □

Proof of Lemma 2.3:

Proof. Suppose Λ ≥ L∗, and let j > 1 be any arriving job after our estimate Λ exceeds L∗. Note
that, once Λ ≥ L∗, virtual loads are reset to zero, and hence we only consider jobs that have arrived

since then. Assume towards a contradiction that S = ∅. Let f be the fastest machine satisfying

ˆℓf (j − 1) ≤ L∗, namely f = max{i : ˆℓi (j − 1) ≤ L∗}. If such a machine does not exist, we set f = 0

(in fact, we will show that such a machine must exist). For any machine i such that si = sm , we

must have
ˆℓi (j − 1) > L∗, since otherwise we would have a contradiction to the fact that S = ∅:

ˆℓi (j − 1) + pj
si
= ˆℓi (j − 1) + pj

sm
≤ L∗ + L∗ ≤ 2 · Λ (note that

pj
sm
≤ L∗). In particular, we have sf < sm

(assuming f ≥ 1).

Now, let Γ = {i : si > sf }, and note that each machine in Γ has load strictly more than L∗ (if
f = 0, we let Γ be the set of all machines). By the fact that sf < sm , we know that Γ , ∅ (if f = 0,

this is also the case). Let Ji be the set of jobs assigned to machine i after the estimate Λ ≥ L∗, and
define J ∗i to be the set of jobs that the optimal solution assigns to i after Λ ≥ L∗. Then we have:∑

i ∈Γ

∑
j ∈Ji

pj

sm
=

1

sm

∑
i ∈Γ

si
∑
j ∈Ji

pj

si
>

1

sm

∑
i ∈Γ

si · L∗ ≥
1

sm

∑
i ∈Γ

si
∑
j ∈J ∗i

pj

si
=
∑
i ∈Γ

∑
j ∈J ∗i

pj

sm
.

This implies that there must exist at least one job b ≤ j − 1 such that the online algorithm assigns b
to a machine i ′ ∈ Γ while the optimal solution assigns b to a machine i∗ < Γ. Hence, the set Γ is

neither empty nor the entire set of machines (note this shows that f ≥ 1, and hence there always

exists a machine i satisfying ˆℓi (j − 1) ≤ L∗).
Since b was assigned by the optimal solution to a machine i∗ < Γ, we have the property that

pb
si∗
≤ L∗. Moreover, since i∗ < Γ, we know that si∗ ≤ sf . Hence, we have

pb
sf
≤ pb

si∗
≤ L∗. In addition,

since
ˆℓf (j − 1) ≤ L∗, we have ˆℓf (b − 1) + pb

sf
≤ ˆℓf (j − 1) + pb

sf
≤ 2 · L∗ ≤ 2 · Λ (since b ≤ j − 1 and

virtual loads can only grow within a phase). Thus, when job b arrived, the set S was nonempty

(and hence, T was also nonempty). This implies that the online algorithm assigned job b to the

representative i ′ = ri (b) of some machine i ∈ T where si ≤ sk (recall that k is the minimummachine

index in S). In particular, machine f ∈ S ⊆ T , and hence si ≤ sk ≤ sf . Since ri (b) ∈ Γ, we have
si ≤ sf < sri (b) = si , which yields a contradiction and gives the lemma. □

Proof of Lemma 2.6:

Proof. First, we suppose |B | ≥ 2. We claim that for all 1 ≤ b ≤ |B | − 1, we have crtb j ≤ crtb+1 j ⇔
ˆℓtb (j − 1) +

pj
stb
≤ (2 + ϵ)Λ. In particular, we have the following:

crtb j ≤ crtb+1 j ⇐⇒ ℓrtb (j − 1) +
pj

srtb
+ πrtb j ≤ ℓrtb+1 (j − 1) +

pj

srtb+1
+ πrtb+1 j

⇐⇒ pj

(
1

stb
− 1

stb+1

)
≤ ℓrtb+1 (j − 1) − ℓrtb (j − 1) + πrtb+1 j − πrtb j .
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Substituting for πrtb+1 j , we find that the right hand side of the expression is given by:

ℓrtb+1 (j − 1) − ℓrtb (j − 1)+[
ℓrtb (j − 1) − ℓrtb+1 (j − 1) +

(
1 −

stb
stb+1

)
((2 + ϵ)Λ − ˆℓtb (j − 1)) + πrtb j

]
− πrtb j

=

(
1 −

stb
stb+1

)
((2 + ϵ)Λ − ˆℓtb (j − 1)).

Hence, we have:

crtb j ≤ crtb+1 j ⇐⇒ pj

(
1

stb
− 1

stb+1

)
≤

(
1 −

stb
stb+1

)
((2 + ϵ)Λ − ˆℓtb (j − 1))

⇐⇒ pj ≤ stb ((2 + ϵ)Λ − ˆℓtb (j − 1)) ⇐⇒ ˆℓtb (j − 1) +
pj

stb
≤ (2 + ϵ)Λ,

where we used the fact that stb < stb+1 when dividing both sides by ( 1

stb
− 1

stb+1
) (in the second

step). Thus, in the end we conclude that job j prefers machine rtb to machine rtb+1 if and only

if machine tb belongs to set T . Note that, due to tie-breaking issues, it is possible for a job j to

choose machine rtb+1 when pj = stb ((2 + ϵ)Λ − ˆℓtb (j − 1)). We eventually argue that this does not

create any issues (note that if pj < stb ((2 + ϵ)Λ − ˆℓtb (j − 1)), then job j strictly prefers machine

rtb to machine rtb+1 ). In addition, by the same reasoning, we can conclude that if st |B | , sm , then
crt |B | j ≤ crm j ⇔ t |B | ∈ T . □

Proof of Lemma 2.7:

Proof. We first consider the case when setT is empty. In this case, FF allows job j to be assigned
to any machine of the fastest speed (namely, speed sm), and begins a new phase by updating Λ
and sets all virtual loads to 0. Since set T is empty, we know that for all machines i , we have

ˆℓi (j − 1) + pj
si
> (2 + ϵ)Λ. If st |B | , sm , then by Lemma 2.6, job j strictly prefers machine rm to the

representatives of all machines in B, namely crm j < crtb j for all 1 ≤ b ≤ |B | (note that these are the
only machines that receive finite prices, and hence are the only machines with a finite cost to the

job).

If st |B | = sm , then we have two cases depending on the size of B. If |B | = 1, then machine rm is

the only machine that receives a finite price. If |B | > 1, then since t |B |−1 < T , by Lemma 2.6 we

know that job j strictly prefers machine rt |B | (which has the same speed as machinem) to machine

rt |B |−1 (machine rt |B | is also strictly preferred to all machines rtb for 1 ≤ b ≤ |B | − 1). Thus, in all

cases, the machine rm is strictly preferred to all other machines. Hence, DR sets prices so that a

rational job j always chooses rm (FF is free to assign j to rm ). Moreover, after job j chooses rm , DR
checks if S = ∅ (which it is in this case, as T = ∅), and updates the estimate Λ along with all virtual

loads in the same manner as FF . □

Proof of Lemma 2.8:

Proof. Now we consider the case when set T is nonempty, but set S is empty. In this case, the

algorithm FF is allowed to assign job j in several ways. FF is free to assign job j to any machine of

the fastest speed and begin a new phase (i.e., update the estimate Λ and set all virtual loads to 0).

FF may also choose to forgo starting a new phase, in which case it is free to assign job j to any

machine ri where i ∈ T . Note that, in general, FF is free to assign job j to any machine ri where
i ∈ T and si ≤ sk , but in this case k =m (recall that k is the minimum machine index in S , but since
S = ∅, FF sets k =m). DR may or may not set prices so that job j chooses a machine of speed sm

23



(namely, the representative rm). If job j does choose a machine of speed sm , then after choosing

the machine, DR checks if S = ∅ (which it is in this case), and begins a new phase by updating the

estimate Λ and resetting all virtual loads to 0 (in a manner consistent with FF ).
Hence, we need only consider the case when job j chooses the representative of a machine with

speed strictly less than sm . Suppose job j chooses some machine rtb , where 1 ≤ b ≤ |B |. Notice that,
if job j chooses rtb where b < |B | (so that |B | ≥ 2), then we have crtb j ≤ crtb+1 j , which by Lemma 2.6

implies that tb ∈ T . On the other hand, if job j chooses rtb where b = |B |, then assuming st |B | , sm
(as otherwise we are done, since this would contradict the fact that j chooses a machine with speed

strictly less than sm), we again have crt |B | j ≤ crm j , which implies t |B | ∈ T (by Lemma 2.6). Hence,

in all cases job j chooses the representative ri of some machine i , where i ∈ T (assuming it is not

assigned to a machine of speed sm ). □

Proof of Lemma 2.9:

Proof. We consider the case when both sets T and S are nonempty. In this case, FF is free to

assign job j to any machine ri where i ∈ T and si ≤ sk . We argue that DR sets prices so that j
chooses a machine in the same manner. Since S , ∅, there exists a machine i ∈ S where i satisfies
ˆℓi (j − 1) + pj

si
≤ 2 · Λ, which implies pj ≤ si (2 · Λ − ˆℓi (j − 1)) = µiq for some 1 ≤ q ≤ m. Notice that

µiq ≤ µim , and hence we have pj ≤ µim . Moreover, we always have the property µt |B | = µim , since
otherwise set A would be nonempty and hence DR would add more elements to set B. Therefore,
we know pj ≤ µt |B | . Thus, let 1 ≤ b ≤ |B | be the smallest value satisfying pj ≤ µtb (notice that such

a value b must exist as pj ≤ µt |B | ).
We now argue that sk = stb and assume towards a contradiction that sk < stb (clearly, sk ≤ stb ,

since machine tb is in S). Ifb = 1, we are done since st1 is the speed of the slowest machine, and hence

st1 ≤ sk (which implies st1 = sk ). Suppose b > 1, in which case we have µt1 ≤ · · · ≤ µtb−1 < pj . If a
machine of speed sk was in set Awhen DR added machine tb to set B, then we have a contradiction

as a machine of speed sk would have been added to B instead of machine tb , since we assumed

sk < stb . Hence, assume that all machines of speed sk were already removed from set A when

DR added tb to B. This means that all machines of speed sk appear earlier in the sorted ordering

µi1 ≤ · · · ≤ µim than machine tb−1 (possibly including the same position). This is a contradiction,

since we know µtb−1 < pj , and hence all machines of speed sk do not belong to set S , in which case

every machine of minimum speed in S has speed strictly more than sk .
If st |B | , sm , then observe that job j strictly prefers rt |B | to rm , since pj ≤ µtb ≤ · · · ≤ µt |B | and

hence pj < st |B | ((2 + ϵ)Λ − ˆℓt |B | ), implying crt |B | j < crm j (the proof of Lemma 2.6 shows this). Thus,

DR sets prices so that j chooses some machine rth where 1 ≤ h ≤ |B |, whether or not st |B | = sm
(since if st |B | = sm , then j always chooses some machine rth where 1 ≤ h ≤ |B |). Assuming b < |B |,
then since pj ≤ µtb ≤ µtb+1 ≤ · · · ≤ µt |B | we have tb , . . . , t |B | ∈ T , implying ctb j ≤ · · · ≤ ct |B | j . In

fact, since pj ≤ µtb < stb ((2 + ϵ)Λ − ˆℓtb ) we know job j strictly prefers tb to all other machines

tb+1, . . . , t |B | (by Lemma 2.6). Thus, job j chooses some machine rth where 1 ≤ h ≤ b. Notice that
all such machines have srth = sth ≤ stb = sk . If job j chooses rtb , then we are done since pj ≤ µtb ,
implying tb ∈ T . Otherwise, job j chooses some machine rth for 1 ≤ h < b, which implies that

crth j ≤ crth+1 j , and hence th ∈ T . Thus, DR behaves consistently with FF . □
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