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Combinatorial Auctions via Posted Prices

Michal Feldman*

Abstract

We study anonymous posted price mechanisms for com-
binatorial auctions in a Bayesian framework. In a
posted price mechanism, item prices are posted, then
the consumers approach the seller sequentially in an ar-
bitrary order, each purchasing her favorite bundle from
among the unsold items at the posted prices. These
mechanisms are simple, transparent and trivially domi-
nant strategy incentive compatible (DSIC).

We show that when agent preferences are fraction-
ally subadditive (which includes all submodular func-
tions), there always exist prices that, in expectation,
obtain at least half of the optimal welfare. Our result
is constructive: given black-box access to a combina-
torial auction algorithm A, sample access to the prior
distribution, and appropriate query access to the sam-
pled valuations, one can compute, in polytime, prices
that guarantee at least half of the expected welfare of
A. As a corollary, we obtain the first polytime (in n
and m) constant-factor DSIC mechanism for Bayesian
submodular combinatorial auctions, given access to de-
mand query oracles. Our results also extend to valua-
tions with complements, where the approximation fac-
tor degrades linearly with the level of complementarity.

1 Introduction

The canonical problem in market design is to efficiently
allocate a set of m resources among a set of n self-
interested agents. Such allocation problems range in
scope from the trade of a single item between a seller
and a buyer, to combinatorial auctions in which many
heterogeneous goods are to be divided among multiple
participants with complex and idiosyncratic preferences.
Scenarios of the latter type have attracted significant
recent attention from the computer science community,
due to algorithmic challenges presented by the underly-
ing allocation problem. For example, the efficient allo-
cation of cloud resources involves the scheduling of com-
puting tasks, and the allocation of wireless spectrum
involves finding large independent sets in graphs that
represent interference constraints. The primary chal-
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lenge in AGT is to marry algorithmic solutions to such
problems with the economic principles that underpin
market design.

As an example, take the problem of designing an
incentive compatible mechanism for combinatorial auc-
tions with submodular bidders. The underlying opti-
mization problem is NP-hard, and simple greedy meth-
ods achieve a constant approximation. On the other
hand, whether there is a truthful polytime constant-
factor approximation has remained a vexing and major
open question for over a decade'. One might there-
fore wonder whether it is even feasible to implement a
combinatorial auction mechanism that is both compu-
tationally tractable and economically appealing.

When designing an economically viable mechanism,
it is desirable to not only respect incentives and compu-
tational constraints, but also to resolve allocation deci-
sions in a straightforward and transparent fashion. For
example, a simple and natural approach is to resolve
a market using posted prices. One might imagine an
implementation in which items are assigned anonymous
prices (i.e., all agents face the exact same prices), then
agents arrive to the market and each consumes his most-
desired bundle under the given prices. Such a method-
ology exhibits many desirable properties: it is simple,
decentralized, and easy to implement. It is also trans-
parent in the sense that a buyer does not need to under-
stand the price-setting method in order to understand
how to participate — he simply behaves as a price-taker
and consumes his preferred bundle. Therefore, it is also
trivially incentive compatible.

Posted price mechanisms are highly applicable when
markets are large and the aggregate demands of buyers
can be accurately predicted. For instance, if the buyers’
valuations are public knowledge and satisfy the gross
substitutes condition, then there always exist prices that
efficiently clear the market [23, 29]. Similar results hold
in large markets for arbitrary valuations [32]. However,
if valuations are not fully known to the seller and
are unpredictable, as in the submodular combinatorial
auction problem described above, then it is unclear

TFor some models of valuation access, such as the value query
model, it is in fact known that no sub-polynomial worst-case

approximation is possible [17].
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how reasonable prices can be set. This motivates the
approach of implementing an optimization algorithm as
an auction, where buyers submit competing bids that
are treated as input. As Milgrom writes, “When goods
are not standardized or when the market clearing prices
are highly unstable, posted prices work poorly, and
auctions are usually preferred” [33].

We are left with a dichotomy. Posted prices form a
simple and natural market instrument, but they gener-
ate efficient outcomes only under special circumstances
and full information over the buyers’ preferences. Gen-
eral auctions are more widely applicable, but can be
significantly more complex to execute and participate
in; moreover, we still do not have reasonable auction
designs for many allocation problems of interest. A nat-
ural question arises:

to what extent can approzimately eflicient
outcomes be implemented using anonymous
posted prices in settings of incomplete infor-
mation?

In this work we study the power of anonymous
posted prices in Bayesian settings, where the designer
knows the distribution over the agents’ valuations but
not their realizations. The Bayesian setting imposes
additional challenges over the full information setting
typical in the market equilibrium literature. In partic-
ular, readers familiar with this literature will note that,
in this probabilistic setting, there do not exist prices
that are guaranteed to satisfy all agent demands simul-
taneously. To mitigate this problem, we consider posted
price mechanisms that admit the agents sequentially, in
an arbitrary order, to select their most preferred bundle
from the remaining items.

We devise polytime posted price mechanisms, for
several classes of valuations, that achieve nearly opti-
mal social welfare given appropriate access to the dis-
tribution of the agents’ valuations. Specifically, for XOS
valuations (a strict superset of submodular valuations)
we devise a mechanism that obtains a constant fraction
of the optimal social welfare. Notably, this implies that
we can obtain an O(1)-approximate dominant strategy
incentive compatible mechanism for Bayesian XOS val-
uations, whose running time is polynomial in n and m
given access to demand queries. Prior to this work, the
best-known polytime mechanisms (posted-price or oth-
erwise) were either polylogarithmic approximations [15]
or had runtimes that were polynomial in the support
size of an agent’s valuation distribution, which could be
exponential in n and m [4, 24]. In addition, for general
monotone valuations, we devise a mechanism that ob-
tains an approximation factor that degrades gracefully
with the level of complementarity of the functions, as

captured by the maximum-over-hypergraph (MPH) hi-
erarchy, recently introduced in [20]. A more detailed
description of our results, along with a comparison to
the related literature, appears below.

1.1 Owur model Our setting consists of a set M of m
indivisible objects and a set of n buyers. Each buyer has
a valuation function v;(+) : 2™ — R>g that indicates his
value for every set of objects. We assume valuations are
monotone non-decreasing, normalized so that v;(()) = 0,
and scaled to lie in [0, 1]. The profile of buyer valuations
is denoted by v = (vy,...,vp).

An allocation of M is a vector of sets X =
(X1,...,X5), where X; denotes the bundle assigned to
buyer i, for every buyer ¢ € [n], and X; N X = () for
every i # k (note that it is not required that all items
are allocated). The social welfare of an allocation X
is SW(X) = Y | vi(X;), and the optimal welfare is
denoted by OPT.

The utility of buyer ¢ being allocated bundle X;
under prices p is u;(Xi, p) = vi(X;) — - cx, pj- Given
prices p = (p1,...,Pm), the demand correspondence
D;(M,p) of buyer i contains the sets of objects that
maximize buyer i’s utility.

We consider a Bayesian setting, where the bidders’
valuations are drawn independently from distributions
Fi,eoo, Fn. Write F = F1 X --- X F,,, so that v is drawn
from F. We think of F as being public knowledge,
whereas the realization v; is known only to agent ¢. In
the Bayesian framework, an allocation X is said to be
an a-approximation (for social welfare) if

By [SW(X(v))] 2 (1/a) - Byny [OPT(v)].

1.2 Anonymous Posted Price Mechanisms The
posted price mechanisms considered in this paper pro-
ceed in the following steps:

1. (pricing phase) a price vector p is determined,
based on F;

2. (arrival order phase) an arrival order 7 is deter-
mined;

3. (value realization phase) A value v; ~ F; is realized
for every buyer 4, known only to buyer ¢;

4. (consumption phase) The buyers arrive to the mar-
ket according to the order m, and each buyer re-
ceives his most desired bundle among all remaining
items. That is, for every buyer ¢, X; € D;(p, M \
Uj<.:X;). Buyer i pays the sum of item prices in
his bundle X;.

We refer to these as anonymous posted price mecha-
nisms, though sometimes we will leave out “anonymous”
for brevity. We note that the mechanism can be de-
scribed in two equivalent ways, namely as an indirect or
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a direct mechanism. In both versions, the mechanism
sets the prices and determines? the arrival order. The
difference is that in the indirect implementation, the
agents arrive and purchase their desired items in the de-
termined order, whereas in the direct revelation imple-
mentation, the buyers report their valuations, and the
mechanism simulates the consumption phase on their
behalf. This latter simulation requires that the mecha-
nism have access to demand oracles®.

It is easy to verify that any posted price mechanism
that adheres to this structure is trivially dominant
strategy incentive compatible (DSIC). Moreover, it is
clearly weakly group strategyproof, meaning that no
coalition of agents can deviate in a way that strictly
benefits each one of them.

All of our results hold regardless of the order
selected in the arrival order phase, so we can think of the
arrival order as being chosen adversarially. In the direct
revelation implementation it would be natural to imbue
the mechanism with the power to choose the ordering,
but we view obliviousness to the order as increasing the
robustness of the mechanism.

Beyond the strong incentive characteristics of
posted price mechanisms, they are appealing in their
simplicity. In particular, they proceed by setting a sin-
gle price vector and using it for all agents.

1.3 Our results We establish welfare guarantees for
XOS (i.e., fractionally subadditive) valuations (a strict
superset of submodular valuations), and for MPH-
k valuations — a hierarchy that spans all monotone
valuations, parameterized by the complementarity level
k. Our main contribution is the following:

Theorem: [2-approximation for XOS] Given black-
box access to an algorithm A for XOS valuations,
sample access to XOS distributions F, an XOS query
oracle for the valuations in the support of F, and a
demand oracle for the valuations, there exists a posted
price mechanism that, for every XOS valuation profile
v, and every ¢, returns an outcome that gives expected
social welfare of at least 1E,.r[A(V)] — ¢, and runs in
time POLY (n,m,1/¢).

ZAll of our results hold under arbitrary arrival orders, so one
can also think of an adversary as choosing the order.

3While answering a demand query might be NP-hard in some
cases, in the context of combinatorial auctions it is natural to
expect the agent to be able to answer a demand query. Otherwise
it would be unreasonable to expect any mechanism to satisfy the
agents’ demands. Furthermore, in some cases there are polytime
algorithms for answering demand queries. For example, for gross
substitutes valuations demand queries can be implemented with
a polynomial number of value queries [35].

We note that the factor of 2 is tight (even for a
single item), as established by the illustrating example
in the end of this section. We also note that the de-
mand oracle requirement is needed only for simulating
agent behavior in the consumption phase. This theorem
implies a set of results for XOS valuations and special
cases thereof, including submodular and gross substi-
tutes valuations. Before presenting the corollaries, we
wish to emphasize the strengths of this result in light of
the previous literature:

e (Truly) polytime: Many previous mechanisms
have (essentially) pseudo-polynomial runtime, in
the sense that they are polynomial in the size of
the agents’ type space, which may plausibly be
exponential in m and nm. The runtime of our
mechanisms is polynomial in m and n, independent
of the type space sizes.

e DSIC: Many existing mechanisms for settings of
incomplete information exhibit the weaker notion
of Bayesian incentive compatibility (BIC). Our
mechanism exhibits the stronger notion of DSIC,
and is also weakly group strategyproof.

The heart of the construction of our mechanism lies
in the appropriate price assignment; this is the part
where oracle access is needed (except for the consump-
tion phase that requires access to demand oracles). To-
gether with known algorithmic results, our theorem im-
plies the following polytime approximation results for
XOS, submodular and gross substitutes valuations.

Theorem: [Computational results] We devise poly-
time (in n and m) DSIC mechanisms with the following
guarantees:

e XOS: A ﬁ—approximatiom given sample access
to the distribution, value and demand oracles, and
XOS query oracles.

e Submodular: A ﬁ
sample access to the distribution, value oracles, and
demand oracles. Demand oracles are required only
in the consumption phase.

e Gross substitutes (GS): A %—approxirnation7
given only sample access to the distribution and
value oracles.

-approximation, given

So far we have only considered complement-free
valuations. Our second main result concerns valuation
functions that exhibit complementarities.

Theorem: [k-approximation for MPH-k] Given
a black-box access to an algorithm A for MPH—k
valuations, a sample access to MPH—k distributions
F, an MPH—k query oracle for the valuations in the
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support of F, and a demand oracle for the valuations,
there exists a posted price mechanism that, for every
MPH—-k valuation profile v, and every e, returns an
outcome that gives expected social welfare of at least
+Ey~#[A(v)] — €, and runs in time POLY (n, m*,1/e).

By the fact that the class of MPH—m valuations
(i.e., k = m) is equivalent to the class of all monotone
functions, the last theorem implies the existence of
posted prices that gives expected social welfare of at
least ﬁ fraction of OPT. We also show that this
bound is tight.

An INlustrating Example. To give some insight
into our results, consider the case of a single item and n
bidders with values drawn i.i.d. from some distribution
F. In this setting, the Vickrey auction generates
the efficient outcome. How well can one approximate
the efficient outcome by setting a single price p (that
depends only on F' and n) and allocating to a random
bidder* with value greater than p, if any exists?

It is known that one cannot hope to achieve better
than half of the optimal expected welfare [28]. For
instance, suppose F' is such that each agent has (large)
value X with probability ¢ = 1 — (1 — 1/X)"/™ and
value 1 otherwise. Then the probability that any agent
has value X is 1/X, and hence the expected optimal
welfare is 1+ (1 —1/X)+ X - (1/X), which approaches 2
as X grows large. On the other hand, no posted price
obtains welfare greater than 1: if p > 1, it generates
welfare X with probability 1/X; whereas if p < 1, an
arbitrary agent will buy and the expected welfare is
1+ Xq=1+0(%). A posted price therefore cannot
extract more than half of OPT.

However, there is a simple pricing scheme for a
single item that yields half of the optimal social welfare;
such methods are known from the prophet inequality
literature [30]. Specifically, set price p equal to half
of the expected highest value. To see why this works,
write m for the probability that the item is sold, and
write ¢* for the agent with the highest value for the
item (note ¢* is a random variable). The expected
revenue from the auction is precisely p-m = JE[v;+] - .
On the other hand, the probability that nobody buys
the item ahead of buyer i* is at least 1 — w. The
expected surplus (value minus payments) of buyer *,
conditioned on item being still available, is at least
Elv;-] — p = 1E[v;+]. Putting this together, we have
that the expected welfare of the auction, which equals
the expected revenue plus the expected buyer surplus,

is at least 2E[v;] - 7 + LE[v;«] - (1 — 7) = LE[v;+], as

ISince agents are iid, this is equivalent to an adversarial order

that doesn’t depend on the value realizations.

claimed.

Our main result shows that the reasoning given in
the single-item example can be extended to markets
with multiple heterogeneous items for sale and asym-
metric buyers, as long as buyer preferences lie in the
class of XOS valuations.

1.4 Related work Our work is part of the recent
body of literature on simple, non-optimal mechanisms
[26, 14]. The design and performance of simple mech-
anisms is an active field of research, motivated by the
observation that in practice, designers are often will-
ing to trade truthfulness or optimality for simplicity.
Canonical examples include the generalized second price
(GSP) auctions for online advertising [18, 36], and the
ascending price auction for electromagnetic spectrum
allocation [34].

A particularly relevant example of a simple mecha-
nism is the simultaneous item auction, in which agents
make simultaneous, separate bids on multiple items.
Such auctions are not truthful, but achieve, at equilib-
rium, a constant approximation to the optimal welfare
when agents have complement-free valuations [6, 13, 21,
27]. A conclusion from this is that by restricting bid-
ders to bid only on individual items, rather than on
packages as in the VCG auction, one loses only a con-
stant factor from the optimal welfare. Our results show
that it is possible to go one step further, in terms of
simplicity. Indeed, posted price mechanisms not only
handle items separately but also forego competition en-
tirely and simply publish prices on individual items, and
simultaneously exhibit strong incentive compatibility.

There is a long line of research studying the perfor-
mance of posted price mechanisms under the objective
of maximizing revenue. When there is only a single item
for sale, posted prices obtain 78% of the optimal revenue
in large markets [8]. When agents have unit-demand
preferences, a form of posted-price mechanism extracts
a constant fraction of the optimal revenue [10, 11, 12].
When there is only a single item for sale, this constant
factor persists even when the distributions are unknown,
as long as they are MHR [3]. Notably, these works all
apply a more relaxed notion of a posted-price mech-
anism, in which one can set different prices for each
customer. In contrast, the mechanisms we consider use
non-discriminatory pricing.

Our work relates to the design of truthful submod-
ular combinatorial auctions. Given access to demand
queries, a randomized truthful O(logm loglog m) worst-
case approximation exists [15]. It is a major open ques-
tion whether there is a truthful constant-factor mech-
anism, using demand queries. It is known that no
sub-polynomial factor is possible under the value query
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model [17], or for succinctly-described valuations [16].
We show that in Bayesian settings, where the perfor-
mance of the mechanism is evaluated based on its ex-
pected social welfare given an input distribution, one
can indeed design a truthful constant-factor submodu-
lar combinatorial auction.

Ours is not the first work to turn to the Bayesian
setting for combinatorial auction design. Hartline and
Lucier [25], Hartline et al. [24] and Bei and Huang [4]
provide black-box reductions that convert an arbi-
trary welfare-maximization algorithm into an (approx-
imately) Bayesian incentive compatible (BIC) mecha-
nism, without loss of welfare. In particular, one can ap-
ply the latter two to constant-factor approximations for
submodular CAs to obtain BIC constant-factor mecha-
nisms. However, these mechanisms require time polyno-
mial in the support size of an agent’s valuation distribu-
tion, which can be exponential in n and m. In contrast,
our mechanism runs in time polynomial in n and m,
regardless of the valuation distributions’ support sizes.
Alaei [2] presents a general method for designing DSIC
combinatorial auction mechanisms in Bayesian settings,
using an algorithm for a related single-agent optimiza-
tion problem, but does not consider submodular CAs®.

2 Preliminaries

Valuation Classes We study both complement-
free valuations, and valuations that exhibit complemen-
tarities. There is a standard hierarchy of complement-
free valuations (see [31]): additive C gross substitutes
C submodular C XOS C subadditive.

additive v(S) =3, sv({j}) for all S C M.

submodular for every S C T C M and j € M,
v(j|T) < v(j|S), where v(j|S) = v(SU{j}) —v(S).

XOS there exists a collection of additive functions
A1(+),..., Ag(-) such that for every set S C M,
’U(S) = maXj<i<k Al(S)

subadditive for any subsets Si,S5y C M, v(Sy) +
’U(SQ) Z U(Sl U SQ)

To study valuations with complements, we con-
sider the hierarchy mazimum over positive hypergraphs
(MPH), introduced recently by [20]. This hierarchy is
general enough to encapsulate all monotone valuation
functions, and its level captures the degree of comple-
mentarity. We defer a formal description to Section 4.

5While Alaei [2] does not explicitly discuss submodular CAs,
our understanding is that one could use his methodology together
with an algorithm for (single-agent) submodular function maxi-
mization to construct a constant-factor DSIC mechanism for the
submodular CA problem. We note that such a mechanism would
not fall within the posted-price paradigm.

Computational model An algorithm for the
combinatorial auction problem receives as input a val-
uation profile v, and returns an allocation profile. We
write A for an algorithm, and A(v) for the allocation
returned. As any explicit description of v; : 2M — R>q
would have size exponential in m, it is usually assumed
that there is an oracle access to v;. We consider the
following oracles:

e Value oracle takes as input a set 7', and returns
vi(T);

e Demand oracle takes as an input a price vector
P, and returns a set from demand correspondence
D;(M,p), breaking ties arbitrarily but consistently;

e XOS oracle (only for XOS function v;) takes
as input a set T, and returns the corresponding
additive representative function for the set T, i.e.,
an additive function A;(-) such that (i) v;(S) >
A;(S) for any S C [m], and (ii) v;(T) = A;(T);

While value oracle is the least computationally
demanding for the buyers and the seller, the demand
oracle captures the most basic decision problem a buyer
faces in a market with item prices. Since the primary
focus of this paper is on the pricing mechanisms, we
assume throughout the paper an access to demand and
value oracles for granted. We note that XOS oracles are
less commonly used in the literature. However, for some
classes of valuations XOS oracle can be implemented via
polynomially many queries to value oracle, e.g., for any
submodular function.

3 Posted Prices for XOS Valuations

The main theorem in this section is the following.

THEOREM 3.1. Let distribution F over XOS valuation
profiles be given via a sample access to F. Suppose that
for every v ~ F we have

1. black-box access to a welfare mazimization algo-
rithm A for combinatorial auctions,

2. an XOS query oracle (for valuations sampled from

F).

Then, for any € > 0, we can compute item prices in
POLY (m,n,1/e) time such that, for any buyer arrival
order, the expected welfare of the posted price mecha-
nism is at least 1By 7[SW(A(V))] — &.

Implications. Before proving Theorem 3.1, let us
discuss some implications. First, note that using an a-
approximation algorithm for 4 in Theorem 3.1 results
in a posted price mechanism with approximation factor
a/2, minus an additive error term that can be made
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as small as desired. Recall that implementing the con-
sumption phase in a direct revelation mechanism does
require access to demand queries; note that Theorem 3.1
and its corollaries below refer specifically to the pricing
phase.

If we assume access to demand oracles, then we
can use the polytime algorithm of Feige [19] with
approximation factor 1 — 1/e as a black box. Theorem
3.1 then implies the existence of a DSIC mechanism
with expected social welfare at least ﬁOPT —cand
runtime POLY (m,n, 1/¢).

For submodular valuations, one could instead use
the algorithm by Vondrak [37] with tight approximation
factor @« = 1 — 1/e that utilizes only value queries.
Since XOS queries can be simulated by value queries
for submodular valuations [9], we obtain the following
corollary:

COROLLARY 3.1. Given sample access to submodular
distributions F and value oracle access to each valuation
in the support of F, for every € > 0, one can compute
item prices in time POLY (m,n, 1/¢), such that, for any
buyer arrival order, the expected welfare of the posted
price mechanism is at least ﬁ]EVN}-[SW(A(V))] —e.

As before, one can implement the mechanism from
Corollary 3.1 as a direct revelation mechanism, if one
also has access to demand oracles for the valuations.

For gross substitutes valuations, demand queries
can be implemented with a polynomial number of value
queries [35], and an optimal allocation can be computed
in polynomial time using demand queries [7]. The
following corollary follows:

COROLLARY 3.2. Given sample access to gross substi-
tutes distributions F and value oracle access to each
valuation in the support of F, for every ¢ > 0,
one can compute item prices in time POLY (m,n,1/¢),
such that, for any buyer arrival order, the expected
welfare of the posted price mechanism is at least
%vaf[SW(A(v))] — €.

Here, the mechanism from Corollary 3.1 can be
implemented as a direct revelation mechanism, using
only value queries.

Proof of Theorem 3.1. We now proceed with the
proof of Theorem 3.1. The proof will proceed in two
parts. We begin with Lemma 3.1, which establishes
the existence of prices that achieve the desired welfare
properties, without regard for computation. In fact,
Lemma 3.1 will also establish something stronger: if
the prices are perturbed slightly, this does not have
too large an effect on expected welfare. We will then
use this stronger property to show how the prices can
be computed efficiently via sampling. This sampling

process generates the additional additive error term in
Theorem 3.1.

Before delving into the details of the proof, we need
the following definition of an item’s welfare contribu-
tion. Fix a valuation profile v = (v1,...,v,) and algo-
rithm A, and let X = (X3,...,X,) be the allocation
A(v). For each XOS valuation function v;(-), define the
corresponding additive representative function for the
set X; as the function A, (-) satisfying: (i) v;(S) > A;(S)
for any S C [m], and (ii) v;(X;) = A;(X;). For every
item j € X; we define SW;(v) := A;({j}). We think
of SW,(v) as the contribution of item j to the social
welfare under valuation profile v.

LEMMA 3.1. Given a distribution F over XOS wvalua-
tions, let p be the price vector defined as

1

P = 2 'V]EF [SWj(V)} '

Let p’ be any price vector such that |p; — p;| < &
for all j. Then, for any arrival order w, consumption
under prices P’ results in expected welfare at least

1By r[SW(A(V))] — mé.
Proof. First, by the definition of p;,

(3.1) vy = B_[SW;(v) =8| + 20, 1))

= ;gf [(sWs(v) = #) 1[5 € Xiw)] | + 26 = p).

We are now going to estimate the sum of buyers’
utilities in expectation over F. Fix i and v = (v;, v.;).
Let SOLD;(v,7) denote the set of items that have been
sold before the arrival of buyer i. Recall that buyer
i picks an allocation® that maximizes his utility with
respect to his valuation v; and prices p, from among
the items in M \ SOLD;(v, ).

Consider another random valuation profile v.; ~
F.; which is independent of v. Let X;(v;,v.;) be
the allocation returned by A on input (v;,v.;). We
consider additive representative function A; for the set
Xi(vi, V), so that A;({j}) = SW,(v;,V.;) for each j €
Xi(’l)i, V-l) Let Si(”iy V., V.Z) = Xi(vi7 G_i)\SOLDi(v, 7T)
be the subset of items in X;(v;, v_;) that are available to
be purchased when buyer ¢ arrives. We note that buyer
i could have picked the set S;(v;, v_;, V_;) and, therefore,
his utility must be at least the utility he would get from
purchasing that set. Thus we have

ui(v) > ;F' Z

JE€Si(vi, Vi, Voi)

max (SWJ ('Ui7 6_2) — p;, 0)

6Note that if a buyer has more than one bundle in his
demand correspondence, then we assume that ties can be broken

arbitrarily — even adversarially.
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Adding these inequalities for all buyers and taking the
expectation over all v ~ F we get

iui(v)] ZZW“[ [J € Xi(vi, ¥.)]

JEM i=1 v
- max (SW (vi, V) — p;-,O)

(3.2) 1 {j ¢ SOLDi(v,W)} } .

v~F

We further observe that SOLD; (v, m) does not depend on
v;. That is, SOLD;(v,m) = SOLD;(v_;, 7). Therefore, we
can rewrite (3.2) as follows:

Zu,- v] > ZZPr [j ¢ SOLD; (v, 7r)
JjeEM =1

E . [max (SWj(vi,V_i) —p;-,O) -1 {j € Xi(vi,V_i)}

>y Zl?,r [j ¢ SOLD(V,W):

JEM i=1

E . [max (SW]‘(U,‘,V_,L') —p;-, O) -1 |:j € Xz(vuv—z):|

> Pr [j ¢ SOLD(v, )|

] pex]])

(Z];: [(SW;(v) =) -1
(383) =Y Prli¢ soLD(v,w)} - (ps + (05 — D))

i=1
[S

3

<.
~

In the second inequality, we decreased each probability
Pr([j ¢ SOLD;(v,7)] to Pr[j ¢ SOLD(v,n)]; the inequal-
ity holds as all the terms in the summation are non
negative. In the third inequality we decreased the ran-
dom variables under expectations and substituted every
variable (v;,v_;) to v. The last equality follows from
(3.1). Inequality (3.3) is our desired bound on the sum
of buyer utilities.
We now turn to the expected revenue, which is

» 5[] -
> Pr [j S SDLD(V,W)} (p; — (p; — p))).
JjEM

Therefore, adding (3.3) and (3.4) we derive the

following bound on the expected social welfare:

B[S
>0t i

jeEM JEM

+ E [Rev(v7 W)}

I \%

(1 — 2Pr [j € SOLD(v, 7T)D

Z%VP}" sz ] Z‘pﬂ pJ
i=1 jEM
1 n
iv]gf ;W(Xi)] —mo

as required.

With Lemma 3.1 at hand, we are ready to complete
the proof of Theorem 3.1.

Proof. [Proof Sketch] (of Theorem 3.1) It remains to
show how to compute an appropriate choice of prices p’
satisfying the conditions of Lemma 3.1. Our approach
will be to estimate p; = % - v]NEF[SWJ-(V)] by repeatedly

sampling a valuation profile v~ F and computing
1SW;(¥). Since 1SW;(¥) is a random variable lying
in [0, 1], standard concentration bounds imply that we
can accurately estimate its expectation in a relatively
small number ¢ of samples. In Appendix A we work
out the appropriate bounds and show that ¢ = (logm +
logn — loge)4m?/e? samples per item are sufficient to
satisfy the conditions of Theorem 3.1.

Algorithm 1 - Price computation algorithm, parama-
terized by positive integer .
1: For each item j € M:
2:  Repeat t times:
Draw v ~ F and let X = A(v).
Let ¢ be the agent for which j € Xj.
Query the XOS oracle for v; to find SW;(v).
Let p} be half of the average value of SW;(v) seen
over all ¢ iterations.
7: return p’

3
4:
5:
6

We can therefore take p;- to be the empirical esti-
mate after this number of samples, satisfying the condi-
tions of the theorem. To summarize, this procedure for
computing p’ is listed formally as Algorithm 1.

4 Posted Prices for General Valuations

A result similar to Theorem 3.1 holds for the more gen-
eral class of MPH-k valuations, where we get O(k)-
approximate DSIC mechanisms for functions with com-
plementarity level k. We will begin by formally defining
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the mazimum over positive hypergraphs (MPH) hier-
archy and providing other preliminaries. We will then
provide a formal result statement.

4.1 Preliminaries and Definitions. To explain
mazximum over positive hypergraphs (MPH) hierarchy,
we first need a few preliminaries. A hypergraph repre-
sentation h of valuation function v : 2 — R7 is a set
function that satisfies v(S) = > ,;cgh(T). It is easy
to verify that any valuation function v admits a unique
hypergraph representation and vice versa. A set .S such
that h(S) # 0 is said to be a hyperedge of h. The hy-
pergraph representation can be thought as a weighted
hypergraph, where every vertex is associated with an
item in M, and the weight of each hyperedge e C M is
h(e). Then the value of the function for any set S C M
is the total value of all hyperedges that are contained in
S.

The rank of a hypergraph representation A is the
cardinality k£ of the largest hyperedge. The rank of
v is the rank of its corresponding h and we refer to
a valuation function v with rank k as a hypergraph-k
valuation. If the hypergraph representation of v is non-
negative, i.e. for any S C M, h(S) > 0, then we refer
to function v as a positive hypergraph-k function (PH-k)
[1]. We are now ready to present the class of MPH-k
valuations.

DEFINITION 4.1. (MPH-k VALUATION) A monotone
valuation function v : 2M — R* js Maximum over
Positive Hypergraph-k (MPH-k) if it can be expressed
as a mazimum over a set of PH-k functions. That is,
there exist PH-k functions {vs}ecr such that for every
set SC M,

(4.5) v(S) = maxees ve(95),
where L is an arbitrary index set.

It can be easily verified that the highest level of the
hierarchy, MPH-m captures all monotone functions,
and the lowest level, MPH-1, captures all XOS func-
tions.

Finally, we define what is meant by an MPH-k
oracle, which is an extension of XOS oracles to higher
levels of the MPH hierarchy. Suppose that valuation
function v is MPH-k , with supporting PH-k functions
{ve}ecr. An MPH-k -oracle for v takes as input a set
of items S, and returns the PH-k function v, for which
v(S) = ve(S). We will assume that this function vy is
returned in its explicit hypergraph representation, i.e. as
a list of weighted hyperedges. Note that the size of this
representation depends on the number of hyperedges
required to express the PH-k functions v,, and is at

most O(m*). On a side note, it is this bound that leads
to a runtime that is polynomial in m* in Theorem 4.1.
Note that if we restricted attention to MPH-k valuations
whose supporting PH-k functions each have at most r
hyperedges, then this runtime dependency would change
from mF to r.

4.2 Pricing for MPH-k valuations. Our result
is cast in the following theorem, whose proof is deferred
to Appendix B.”

THEOREM 4.1. Suppose our Bayesian instance F over
MPH wvaluations is given via a sample access to F.
Suppose that for every v ~ F we have

1. black-box access to a welfare mazimization algo-
rithm A for combinatorial auctions,

2. an MPH query oracle for the wvaluations in the
support of F.

Then, for every e > 0, one can compute item prices in
time® POLY (mF, n,1/e) that generate expected welfare
of at least 3 Ev~7[SW(A(V))]—¢ for any buyers’ arrival
order.

We also show that this result is essentially tight.
Indeed, for each level k of complementarities across the
items in the MPH-k hierarchy, we may consider single
minded (of size k) and unit-demand valuations. It turns
out that item prices may result in an outcome with a
linear (in the number of items) loss in social welfare.
The example is deferred to Appendix C.

5 Discussion and Open Problems

We conclude with a few remarks. First, in our mecha-
nisms, we consider an arbitrary order of arrivals, which
may be chosen by an adversary after the prices are
posted, but before the adversary observes the realiza-
tion of the buyer valuations. It is not difficult to verify
that the same results extend to an adaptive adversary,
who chooses the arrival order sequentially; i.e., an ad-
versary who observes which items have been purchased
by previous buyers and even the realization of previous
buyers’ valuations, and chooses the next buyer to arrive

The proof of Theorem 4.1 follows Theorem 3.1, but with an
important difference: the accounting of the contribution of an
item j to the welfare is more complex, since one must consider
all hyperedges in which j appears. This complicates the choice of
prices, as well as the derivation of welfare bounds.

8The exponential dependence on k in the runtime is related to
the representation of MPH valuations. In particular, the output
of an MPH-k oracle can be of size O(m*). One could reduce this
bound by imposing constraints on the complexity of a valuation’s
MPH representation. This is discussed further in Appendix B.
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based on this information. Our proof techniques (in
Theorems 3.1 and 4.1) apply to this adaptive adversary
as well.

Second, readers who are familiar with literature
on Walrasian equilibrium will realize the similarities
between the two models, but also the stark contrast.
The main difference is whether agents arrive to the
market sequentially (as in our model), or simultaneously
(as in a Walrasian equilibrium). Recent results [22] have
shown that in the simultaneous model (even when some
items may remain unsold), there may be a linear loss
in welfare for XOS buyers, even in a full information
setting. Thus our work demonstrates a strong gap in
welfare between simultaneous and sequential arrivals,
when restricted to individual demand satisfaction.

Our model and results leave a number of direc-
tions for future research. First, the constant approxi-
mation for XOS valuations implies (by known results,
see e.g. [5]) a logarithmic approximation for subadditive
valuations. It remains open whether a constant approx-
imation for subadditive valuations can be achieved.

Second, throughout the paper we assume that items
are indivisible and heterogeneous. It would be an inter-
esting to partially relax these assumption. For example,
one could assume that every item in the market has a
few identical copies and that every buyer wants at most
a single copy of each item. It would be interesting to
analyze the efficiency of posted price mechanisms as a
function of the minimal number of item copies. Given
the negative results for valuations with high degree of
complementarity, it would be particularly interesting to
find relaxations that admit positive results, say for sin-
gle minded buyers.
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APPENDIX
A Details of the proof of Theorem 3.1

We now present the details omitted from the proof of
Theorem 3.1.

We wish to show how to compute an appropri-
ate choice of prices p’ satisfying the conditions of

Lemma 3.1. Our approach will be to estimate p; =
i -v]j)}_[SWj (v)] by repeatedly sampling a valuation pro-
file v ~ F and computing SW; (V). Since SW; (V) is a
random variable lying in [0, 1], standard concentration
bounds imply that we can accurately estimate its ex-
pectation in a relatively small number ¢ of samples. We
can therefore take p; to be the empirical estimate after
this number of samples, satisfying the conditions of the
theorem. This procedure is listed formally as Algorithm
1 in Section 3.

We wish to choose t large enough that, with prob-
ability at least 1 — ¢/n, we will have |p} — p;| < ¢/2m
for all j. Fix any j and note that p;- is the average
of t identical samples from a distribution supported on
[0,1], with expected value p;. Thus, by the Hoeffding
bound, we have that

Pr([pj — pj| > ¢/2m] < 2e~t(e/2m)"
We can therefore choose t = (log m-+logn—loge)dm? /2
to get Pr(|p; — p;| > €/2m] < e/mn. Applying a union
bound over all j € M, we have that [p; — p;| < ¢/2m
for all j with probability at least 1 — &/n, as desired.

Setting § = &/2m in Lemma 3.1, we have
that our computed prices generate welfare at least
1Ev r[SW(A(v))] — £/2, with probability at least 1 —
e/n. We conclude that our computed prices generate an
expected welfare of at least

(;]EVNI[SW(A(V))] _ 2) (1-%)>

%]EVN;[SW(A(v))] e

as required. The last inequality follows since
Ev 7 [SW(AV))] < Evar 3o vi(M)] < n.

B Proof of Theorem 4.1: MPH valuations

We closely follow the proof of Theorem 3.1 for XOS
buyers. However, there is an extra difficulty for MPH-
k valuations, since the concept of the “contribution of
an item to welfare” is not as straightforward as for
XOS valuations. Our main new challenge will be to
appropriately account for the contributions of different
items.

We first describe an ideal price vector p which we
would like to use for the distribution F. For each fixed
valuation profile v = (v1,...,v,) we consider allocation
X(v) = (Xi(v),...,X,(v)) returned by black-box
algorithm A. For each MPH-k valuation function
v;(+) we take the respective hypergraph representative
function A;(-) for the set X;(v), i.e., v;(S) > A;(S)
for any S C [m] and v;(X;(v)) = A;(X;(v)). Write
w;(+) for the hypergraph weights corresponding to the
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hypergraph function A;(+); then, by definition, 4;(S) =
Y orcgwi(T) for all S C X;(v).
For every v, every buyer i, and each item j € X;(v),

we define ) )
I wi
p] (V) - a Z |T| )
T>j
TCX;(v)

where « is a constant to be determined later. The
price vector p(v) has a natural interpretation: for each
hyperedge in the hypergraph function A4;(X;(v)), divide
its weight uniformly among the items in that edge; the
price of item j is then the total weight allocated to
item j, scaled down by factor a. The price p;(v) for
item j is the ideal price we would like to set in the full-
information setting, if we knew the valuation profile v.

We can now define an ideal price of item j in the
Bayesian setting, which will be

-2 o]
by = = |Pi (v)

The following Lemma relates the full-information
prices for a subset of items to the marginal impact
on a buyer’s value if those items are removed from an
allocation.

LEMMA B.1. For any v, any buyer i, and any Q C
Xi(v)7

Xi(vI\Q) + ok - ij > vi(Xi(v)).
JjeQ
Proof.
vi(X(V\Q) + ak - Y p;(v)
JEQ
= Z T)+ ok - Z Z |T|
Tng‘(V)\Q JGQ T3j
TCX,(v)
TCX; (v)\Q JjeQ T3j
TCX;(v)
> Y w4+ Y wi(T)
TCX; (V\Q TCX;(v)
TNQ#D
= Y wi(T)
TCX;(v)
= v;(Xi(v))

where the first inequality follows because w;(T") > 0 only
for T with |T'| < k, and the second inequality follows by
noting that each hyperedge T counted in the second

The next Lemma estimates the expected social
welfare of a mechanism with posted prices that are close
to the ideal p.

LEMMA B.2. Let p’ be such that |p; — p;| < & for all

j. Then consumption under prices p' results in expected
welfare of at least =By r[SW(A(V))] — 2mé.

Proof. Given the prices p’, let 7 be the (adversarial) or-
der of arrival. We are going to bound the sum of buyers’
utilities in expectation over F. To do so, for each fixed ¢
and v = (v;, v_;), we consider another random valuation
profile v_; ~ F.;, drawn independently of v. Consider
also X; (v, v_;), the allocation returned by A on the val-
uation profile (v;, v_;). Let S;(vi, v.i, Vi) := X; (v, V)N
SOLD; (v, 7) be the subset of items in X;(v;, v_;) that are
already sold when buyer i is selected to make a pur-
chase. Let R;(v;, v, V) := X;(v;,v_;) \ SOLD;(v, 7) be
the subset of items in X;(v;, v_;) that remain unsold at
this time. We note that buyer ¢ could have picked the
set R;(v;, v, Vv.;) and, therefore, his utility is at least
the utility he would get from this set. Thus we have

ui(v) = E i (Ri(vi, vi, Vi) — Z P
- L JER; (vi,voi,V3)
= E vi(Ri(vi, v, Va)) = > 1
- L JEXi(vi,V_i)

Applying Lemma B.1 to valuation profile (v;,Vv_;)
and set @@ = SOLD;(v,7), we conclude

bj (Uz‘, ‘7-1)

ui(v) > Ela-k- Z

JES (vi,Voi, Vi)
/
_ )
JEXi(vi, Vi)

We now sum over all 7 and take an expectation over
v ~ F to conclude that

(B1) E

Z Ui(V)]

sz%_i vi(Xi(vi,va) = D 1

? JEXi(vi,V_i)

summation must have a non-empty intersection with @ —ak- Z v]%].i Z pj(vi, Vi)
and is counted |TN Q| > 1 times. i FESi (Vi voi Vi) |
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Let us analyze separately the two summations on drawn independently, we have
the RHS of (B.1). For the first summation, note (B.3)
that v_; does not appear in the expression within the
expectation. Thus, by applying a change of variables Z E Z
V.

and then using linearity of expectation, we have ICAE)

i

. v . ~
i JESi(V,Vi)

= E > pi(vi, Vi)
j

%

1 [j c SOLDi(V_z‘JT)] 1 [j € Xi(viﬁ_i)]

=> E [11 [j € Xi(viﬁ-i)] 'pj(viﬁ—i)}

— - Vi,V
D E (o Xi(vi, va) - P 7
g JEX;(vi,V.;) .Pr [] c SOLDi(V-i,W)]
— Z];] v;(Xi(v)) — ) < E []1 [j c Xi(vi,V-i)} 'pj(viﬁ-i)}
i JEXi(V) T i
=B Y uv)| -0 Pr[j € sotn(v, )]
L i j _ .
- - = ZI:’r {g € SOLD(V,W)}
>E | uilXi(v))| =Y —om ’
- - ZU]% {]1 [j € Xi(%ﬁ-i)} 'pj(vz‘ﬁ-i)}
=E ) u(Xi(v)) .
V15 | = ZET {g € SOLD(V,W)} -
J
1 w;(T) < ZPr [j € SOLD(V,W)} -pl; 4 om
AP Z | o FR
J e T>j
TEXi(v) = E]E [Rev(v, 71')} + om.
1 o . .
=E qu(Xi(v))] -—E ZvZ(Xq(v))] —6ém  The first inequality follows because the probability
M @ vIE that j is sold before agent ¢ arrives is dominated by
(B.2) the probability that j is sold at all, and the second

each item j.

inequality follows from the fact that |p; — pj| < d for
—om
Substituting (B.2) and (B.3) into (B.1), we have

1
E Zui(v)] > (1 - a) E ZW(Xz‘(V))]
(B.4) —om — ak - E}_ [Rev(v7 w)} — akém.
As long as ak > 1, we can rearrange and conclude
Note that the inequality follows from the fact that ok ( E Zul(v) + E [Rev(v, n)])
Ip; — pj;| < ¢ for each item j. vF i i
For the second summation on the RHS of (B.1), we 1 n
first recall that sets SOLD; and S;(v;, v_;, V.;) are defined > (1 - a) E}- Z v;i(X5) | — 2akdm.
for the prices p’. Further note that since v_; and v_; are Mg P
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Taking a = 2, we conclude that the expected welfare
of the Posted Pricing Mechanism is within a factor 4k
of the expected welfare of A and small additive error of
2md, as required.

We continue with the proof of Theorem 4.1. Fol-
lowing the same analysis as in Theorem 3.1 for each
item j we can estimate the price p;» by sampling ¢t =
(log m+logn —log £)16m? /e? valuation profiles, so that
Pr(|p; — pj| > €/4m] < e/mn. We compute p;" for each
sample (using algorithm A and the MPH-k query ora-
cle) and take the average of all prices seen. Applying
a union bound over all j € M we obtain a guarantee
that |p} —p;| < e/4m for all j with probability at least
1 —¢/n. Now, by setting § = ¢/4m in Lemma B.2 we
have our computed prices p’ to generate welfare of at
least 2-Ey.r[SW(A(V))] — £ with probability at least
1—¢/n.

Finally, we conclude that generated expected wel-
fare is at least

1 € €
<MEVNI[5W(A(V))] - 2) (1 - ﬁ)
1
> 1 Bvnr [SWAW))] — ¢,
as required. The last inequality follows, since

Evir[SWAW))] < Evar[3o0, vi(M)] < n.

C Lower bound for MPH

Example. Suppose there are m identical items in
the market and two buyers. Let the first buyer have
unit-demand valuation 1 per item and the second single-
minded buyer have value m — 1 for the set of all m
items and 0 value for any smaller subset. The optimal
social welfare OPT is m — 1, where the second buyer is
allocated all m items.

Let the seller fix prices on the items. We let the first
buyer arrive first. He will buy the cheapest item, if its
price is below 1. Then the second buyer has 0 value for
the remaining items, which results in a social welfare of
1. In the case where each item costs at least 1, the first
buyer purchases nothing but so does the second buyer,
as he derives value m — 1 from the entire set, for a total
cost of at least m. Therefore, the social welfare in the
latter case is 0. We conclude that the social welfare does
not exceed 1 in either of the cases, which gives us the
claimed linear gap of m — 1 with respect to the optimal
social welfare.
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