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Abstract We study a capacitated symmetric network design game, where each of n

agents wishes to construct a path from a network’s source to its sink, and the cost of
each edge is shared equally among the agents using it. The uncapacitated version of
this problem has been introduced by Anshelevich et al. (2003) and has been exten-
sively studied. We find that the consideration of edge capacities entails a significant
effect on the quality of the obtained Nash equilibria (NE), under both the utilitarian
and the egalitarian objective functions, as well as on the convergence rate to an equi-
librium. The following results are established. First, we provide bounds for the price
of anarchy (PoA) and the price of stability (PoS) measures with respect to the util-
itarian (i.e., sum of costs) and egalitarian (i.e., maximum cost) objective functions.
Our main result here is that unlike the uncapacitated version, the network topology is
a crucial factor in the quality of NE. Specifically, a network topology has a bounded
PoA if and only if it is series-parallel (SP), i.e., a network that is built inductively by
series compositions and parallel compositions of SP networks. Second, we show that
the convergence rate of best-response dynamics (BRD) may take �(n1.5) steps. This
is in contrast to the uncapacitated version, where convergence is guaranteed within
at most n iterations.
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1 Introduction

The construction of large networks by strategic agents has been widely studied from
a game-theoretic perspective in the past decade [4, 11, 12, 30]. For a motivating
example, consider the construction and maintenance of large computer networks
by independent economic agents with different, and often competing, self-interests.
The game-theoretic perspective offers tools and insights that are fundamental to the
understanding and analysis of these settings.

In a symmetric network design game, a network is given, where each edge is
associated with some cost; and a set of n agents wish to buy some path from the
network’s source (s) to its sink (t). Every agent chooses an s-t path, and the cost
of every edge is divided equally among the agents who use it. This is often called a
fair cost-sharing method. The game-theoretic twist is the assumption that each agent
chooses its path strategically, so as to minimize its cost. It is well known that the Nash
equilibria of this game need not be efficient, where efficiency is usually defined with
respect to either the sum of the agents’ costs (referred to as the utilitarian or sum-
cost objective) or to the maximum cost of any agent (referred to as the egalitarian or
max-cost objective).

The efficiency loss is commonly quantified using the price of anarchy (PoA) [21,
27] and price of stability (PoS) [4] measures; the former refers to the ratio between
the cost of the worst Nash equilibrium and the social optimum, whereas the latter
refers to the ratio between the cost of the best Nash equilibrium and the social opti-
mum. The network design game described above is fairly easy to analyze. The PoA
is known to be tightly bounded by n with respect to the utilitarian objective function1

[4]. It is not too difficult to see that the same bound holds with respect to the egali-
tarian objective. In addition, the PoA is independent of the network topology, as the
worst case is obtained for two parallel links. The PoS, in contrast, is always equal to
1 (with respect to both objective functions), since in a symmetric network, the pro-
file in which all agents share the shortest path from s to t is a Nash equilibrium.
Finally, best-response dynamics (i.e., dynamics in which agents sequentially apply
their best-response moves) exhibits a simple structure, where convergence to a NE is
guaranteed within at most n steps.

Interestingly, the majority of those results rely on the assumption that the network
edges are uncapacitated; i.e., it is assumed that edges may hold any number of agents.
While this assumption has been employed by most of the studies on strategic network
formation games, we claim that in real-life applications, network links have a limit
on the number of agents they can serve. To reflect this observation, we introduce
capacitated network design games, in which every edge, in addition to its cost, is
also associated with a capacity that specifies the number of agents it can support.

1While [4] consider an underlying directed graph, this bound carries over to the undirected case.
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We study the quality of NE in these games (using both PoA and PoS measures) and
the convergence rate of best-response dynamics. We are particularly interested in the
effect of the topology of the underlying network on the obtained results.

In cases where edges are associated with capacities, a feasibility problem arises
(i.e., whether there exists a solution that accommodates all the agents). However,
as already hinted at by [4], if a feasible solution exists, the arguments used in the
uncapacitated version can be applied to show that a pure NE exists and, moreover,
every best-response dynamics converges to a pure NE. This observation motivates
our study.

1.1 Our Contribution

For the PoA, the lower bound of n trivially carries over to the capacitated version;
thus, one cannot expect a bound better than n. The upper bound of n, however,
does not carry over. In particular, we demonstrate that the PoA can be arbitrar-
ily high. As it turns out, the network topology plays a major role in the obtained
PoA. A symmetric network topology G is said to be PoA-bounded if for every
symmetric network design game that is played on G, the PoA is bounded by
n, independently of the edge costs and capacities. Our main result here is a full
characterization of PoA-bounded network topologies. Specifically, we show that a
symmetric network topology is PoA-bounded if and only if it is a series-parallel
(SP) network, i.e., a network that is built inductively by series compositions and
parallel compositions of SP networks. This result holds with respect to both the
sum-cost and max-cost objectives. Moreover, for parallel-link networks, we show
that the PoA (with respect to both the sum-cost and max-cost objectives) is essen-
tially bounded by the maximum edge capacity in the network, and that this bound is
tight.

This separation between the graph topology and the assignment of edge costs and
capacities reflects a separation between the underlying infrastructure and the edge
characteristics. While the infrastructure is often stable over time, the edge charac-
teristics may be modified over short time periods. A PoA-bounded topology ensures
that, no matter how edge characteristics evolve, the cost of a NE will never exceed n.
Such topologies are desired by network designers, who wish to guarantee efficiency
in their network despite the fact that they do not control the actions of the individual
users. Notably, within the class of SP networks, the worst case is obtained already for
parallel links.

In contrast to the PoA, the PoS with respect to the sum-cost objective is not
affected by the network topology. In particular, we provide a lower bound of H(n)(
i.e.,

∑n
i=1

1
n

)
for the PoS on parallel-link graphs, and show that for every sym-

metric network the PoS is upper bounded by H(n) (this is a direct consequence of
[4]). As for the max-cost objective function, for SP graphs the upper bound of n that
is established for the PoA trivially carries over to the PoS, and a matching lower
bound is established. For general graphs, we establish an upper bound of n log n.
Closing the gap between n and log n for the PoS in general graphs remains an open
problem.
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Finally, we study the efficiency loss with respect to the sum-cost objective under
the special case of homogeneous capacities, i.e., where all the edges have the same
capacity. Surprisingly, homogeneity of edge capacities has a very different effect on
the PoS that on the PoA. Specifically, homogeneity ensures the existence of an opti-
mal Nash equilibrium (i.e., PoS = 1), but the price of anarchy may still be arbitrarily
high.

Most of our results regarding the PoA and PoS bounds are summarized in Table 1,
where they are also contrasted with the corresponding results in the uncapacitated
version (specified in parentheses). These results suggest that the departure from the
classic assumption of uncapacitated edges results in significant differences in the
quality of equilibria.

Additionally, the consideration of capacities introduces additional complexity that
reveals itself through a slower conversion rate. While BRD in the uncapacitated ver-
sion is guaranteed to converge within at most n iterations, we establish a lower bound
of �(n3/2) for convergence in capacitated games. Moreover, this lower bound is
obtained already in parallel link graphs.

1.2 Related Work

Various models of network design and network formation games have been exten-
sively studied in the past decade from a game-theoretic perspective [4–6, 8, 10, 22],
with a great emphasis on the PoA and PoS measures. The PoA in network design
games has been also studied with respect to the strong equilibrium solution concept
by Epstein et al. [11], Andelman et al. [3] and Albers [2].

Korillis et al. [20, 33] previously considered the influence of capacities on network
games. In [20] Korillis et al. examined the problem of optimal capacity allocation
under noncooperative routing. The network designer’s aim is to allocate link capaci-
ties so that the resulting Nash equilibria are efficient according to some aggregative
performance criterion. Moreover, it is shown that contrary to the common intuition,
adding link capacity may lead to degradation of user performance. In [33] Korillis
et al. proposed methods for efficiently adding resources to a non-cooperative network
of general topology that guarantee an improvement in performance, thus establishing
a methodology for efficiently coping with the Braess paradox [7] in non-cooperative
networks.

Table 1 Summary of our results. All the results, except for the PoS w.r.t. max-cost for general networks,
are tight. Our results are contrasted with the well-known bounds for uncapacitated games, which are
specified in parentheses

Parallel links SP General

sum-cost (sc) PoA n (n) n (n) unbounded (n)

PoS log n(1) log n(1) log n(1)

max-cost (mc) PoA n (n) n (n) unbounded (n)

PoS n (1) n (1) n log n(1)
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The effect of edge capacities in network congestion games was also studied by
Correa et al. [9], who extended the efficiency bounds in network routing games (with
non-atomic traffic) [29, 30] to capacitated networks. They showed that the considera-
tion of edge capacities leads to the existence of multiple equilibria, and that while the
worst equilibrium is not necessarily nearly optimal, the best equilibrium is as efficient
as the (unique) equilibrium in the equivalent network game without capacities.

Motivated by the fact that pure Nash equilibria in congestion games may be inef-
ficient even in parallel-link networks in congestion games, Von Falkenhausen and
Harks [32] studied the design of cost-sharing methods that improve the PoA. They
focused on job-scheduling problems on parallel machines with non-decreasing cost
functions, and characterized a class of instances that admit a bounded PoA.

The role that network topology plays in game-theoretic settings has been stud-
ied in various models. In the model of network routing, it has been shown by
Roughgarden and Tardos [30] that the PoA is independent of the network topol-
ogy. In contrast, the network topology seems to matter a lot in other settings. Some
prominent examples include the following. Milchtaich [25] showed that the Pareto
efficiency of equilibria in network routing games (with a continuum of agents)
strongly depends on the network topology. In addition, topological characterizations
for symmetric network games have been also provided for other equilibrium proper-
ties, including (Nash and strong) equilibrium existence (see Milchtaich [24], Epstein
et al. [11, 12], and Holzman and Law-Yone [18, 19]), and equilibrium uniqueness (see
Milchtaich [23]). Milchtaich [24] identified the topological conditions guaranteeing
the existence of at least one pure Nash equilibrium in every network congestion game
with player-specific costs or weights.

Holzman and Law-Yone [18, 19] characterized the network topologies where
strong equilibrium (where no coalition can improve the cost of each of its members)
always exists in monotone decreasing congestion games. They showed that a strong
equilibrium always exists in the case where all strategies are singletons. In addition,
they showed that in single-commodity networks a strong equilibrium exists if and
only if the underlying graph is extension parallel.

Epstein et al. [11] studied graph topologies that guarantee the existence of a strong
equilibrium in fair cost-sharing connection games and general cost-sharing connec-
tion games. It has been shown that (1) single-commodity networks always admit a
strong equilibrium (in both fair and general games), (2) a strong equilibrium always
exists in single-source multiple-sinks SP networks (in both fair and general games),
and (3) a multi-source and sink network with an underlying extension-parallel graph
always admits a strong equilibrium in fair connection games. They also examined the
quality of the obtained strong equilibrium and established bounds on the PoA with
respect to a strong equilibrium.

Epstein et al. [12] examined the topological structure of networks that guarantee
that any Nash equilibrium achieves the social optimum. Their main contribution is in
showing that for symmetric single-commodity congestion games, the topologies that
guarantee this property are extension-parallel graphs, and for the family of bottleneck
routing games, the topologies that guarantee this property are series-parallel graphs.
In multi-commodity games it is shown that the efficient topologies are very limited
(and include either trees or trees with parallel edges).
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Best-response dynamics and its convergence rate has been the subject of inten-
sive research recently. Since every congestion game is a potential game [26, 28],
best-response dynamics always converge to a pure NE. However, best-response
dynamics may in general be exponentially long, as established in a series of papers
[1, 14, 31]. This observation has led to a large amount of work that identified spe-
cial classes of congestion games, where best-response dynamics converge to a Nash
equilibrium in polynomial time (or even linear time). This agenda was studied in
settings with negative congestion effects (e.g., [13, 16]), settings with positive con-
gestion effects (e.g., [4]), and settings with combined congestion effects (e.g., [15]).
Finally, the robustness of best-response convergence to altruistic agents has been
studied in [17], where it has been shown that BRD may cycle as a result of altruism.

2 Model and Preliminaries

2.1 Capacitated Symmetric Cost-Sharing Games

A capacitated symmetric cost-sharing connection (CCS) game (also known as single
commodity) is a tuple

� = 〈n,G = (V , E), s, t, {pe}e∈E, {ce}e∈E〉,

where n is the number of agents andG = (V , E) is an undirected graph, with s, t ∈ V

as its source and sink nodes, respectively. Every edge e ∈ E is associated with a cost
pe ∈ R≥0 and a capacity ce ∈ N , where an edge capacity specifies the maximum
number of agents that can use it. The set of agents {1, . . . , n} is also denoted by [n].
Every agent i wishes to construct an s-t path in G. The action space of an agent i,
denoted by �i , is the set of s − t paths in G, and an action of an agent i (which is
simply an s − t path in G) is denoted by Si ∈ �i . Since this is a symmetric game, all
agents have the same action space. The joint action space (indicating an s − t path
for each agent) is denoted by �.

We consider the fair cost-sharing game, where an edge’s cost is shared equa-
lly by all the agents that use it in their path. Given an action profile S = (S1, . . . , Sn),
we denote by xe(S) the number of agents that use edge e in their path; i.e., xe(S) =
|{i : e ∈ Si}|. A profile S is said to be feasible if for every e ∈ E, xe(S) ≤ ce. The
cost of agent i in a profile S is defined as

pi(S) =
{ ∑

e∈Si

pe

xe(S)
, if xe(S) ≤ ce for every e ∈ Si

∞ , otherwise
(1)

A profile S is said to be a Nash equilibrium if no agent can improve its cost by
a unilateral deviation; i.e., for every i, S ′

i ∈ �i, S−i ∈ �−i , it holds that pi(S) ≤
pi(S

′
i , S−i ), where S−i denotes the joint action of all agents except i.

Given a game �, let τ(�) denote the set of all feasible profiles in �. A CCS game
� is said to be feasible if it admits a feasible profile; i.e., τ(�) 	= ∅.
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We consider two social cost functions. The sum-cost of a profile S is the total cost
of the agents in S (and also equals the total cost of the purchased edges in S), and is
given by

sc�(S) =
∑

i

pi(S)

The max-cost of a profile S is the maximum cost of any agent in S, and is given by

mc�(S) = max
i∈[n] pi(S)

We denote by OPTsc(�) and OPTmc(�) the optimal profiles with respect to the
sum-cost and max-cost objectives, respectively. When clear in the context, we omit
�, and also abuse notation and use OPTsc and OPTmc to denote the cost of the
respective optimal solutions.

In the figures of the paper, every edge is associated with a tuple (ce, pe), denoting
its capacity and cost, respectively.

2.2 Nash Equilibrium Existence

An uncapacitated fair cost-sharing game is known to be a potential game [4, 28].
Every potential game admits a pure NE [26, 28]. Moreover, BRD (where agents
sequentially apply their best-response moves) always converge to a pure NE. Capac-
itated versions are not guaranteed to admit a feasible solution; however, if a feasible
solution exists, then so does a pure NE.

Observation 1 [4] Let � be a CCS game s.t. τ(�) 	= ∅. Then, � admits a pure NE
and every best- response dynamics converges to a NE.

This proof relies on the existence of a potential function, �(S) =∑
e∈E

∑xe(S)
i=1

pe

xe(S)
, that emulates the cost of an agent when deviating from one

feasible solution to another.

2.3 Efficiency Loss

To quantify the efficiency loss due to strategic behavior, we use the PoA and PoS
measures. The PoA is the ratio of the worst Nash equilibrium and the social optimum,
and is given by PoAsc(�) = maxS∈NE(�) sc�(S)

OPTsc(�)
and PoAmc(�) = maxS∈NE(�) mc�(S)

OPTmc(�)
with respect to the sum-cost and max-cost objectives, where NE(�) denotes the set
of NE of �, and it is assumed that NE(�) 	= ∅. Similarly, the PoS is given by
PoSsc(�) = minS∈NE(�) sc�(S)

OPTsc(�)
and PoSmc(�) = minS∈NE(�) mc�(S)

OPTmc(�)
with respect to the

two objective functions, respectively.

2.4 Graph-Theoretic Preliminaries

In this section we provide some preliminaries regarding network topologies. A
symmetric network is an undirected graph G along with two distinguished nodes, a
source s and a sink t . When clear in the context, we refer to G as the symmetric
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network. A CCS game is symmetric (also called single-commodity) if its underlying
network is symmetric with source s and sink t , and nodes s and t are the respective
source and sink of all the agents. A symmetric networkG is embedded in a symmetric
network G′ if G′ is isomorphic to G or to a network derived from G by applying the
following operations any number of times in any order: (i) Subdivision of an edge
(i.e., its replacement by a path of edges), (ii) Addition of a new edge joining two
existing nodes, (iii) Extension of the source or the sink (i.e., addition of a new
edge joining s or t with a new node, which becomes the new source or sink,
respectively).

Next, we define the following operations on symmetric networks:

• Identification: The identification operation is the collapse of two nodes into one.
More formally, given a graph G = (V , E) we define the identification of nodes
v1 ∈ V and v2 ∈ V forming a new vertex v ∈ V as creating a new graph
G′ = (V ′, E′) where V ′ = V \ {v1, v2} ∪ {v} and E′ includes the edges of E

where the edges of v1 and v2 are now connected to v.
• Parallel composition: Given two symmetric networks, G1 = (V1, E1) and G2 =

(V2, E2), with sources s1 ∈ V1 and s2 ∈ V2 and sinks t1 ∈ V1 and t2 ∈ V2,
respectively, we define a new symmetric network G = G1||G2 as follows. Let
G′ = (V1 ∪ V2, E1 ∪ E2) be the union network. To generate G = G1||G2 we
identify the sources s1 and s2, forming a new source node s, and identify the the
sinks t1 and t2, forming a new sink t .

• Series composition: Given two symmetric networks, G1 = (V1, E1) and G2 =
(V2, E2), with sources s1 ∈ V1 and s2 ∈ V2 and sinks t1 ∈ V1 and t2 ∈ V2,
respectively, we define a new symmetric network G = G1 → G2 as follows.
Let G′ = (V1 ∪ V2, E1 ∪ E2) be the union network. To generate G = G1 → G2
from G′ we identify the vertices t1 and s2, forming a new vertex u. The network
G has a source s = s1 and a sink t = t2.

A series-parallel (SP) network is a symmetric network that is constructed induc-
tively from two SP networks by either a series composition or a parallel composition,
where a single edge serves as the base of the induction. That is, a symmetric network
consisting of a single edge is a SP network. In addition, given two SP networks, G1
and G2, the networks G = G1||G2 and G = G1 → G2 are SP networks.

3 The Sum-Cost Objective Function

3.1 Price of Anarchy (PoA)

Throughout this section, we write PoA to denote PoAsc for simplicity. In uncapac-
itated cost-sharing games, the PoA is n (tightly). This is, however, not the case in
capacitated games, as demonstrated by the following proposition.

Proposition 2 The price of anarchy with respect to the sum-cost function in CCS
games can be arbitrarily high.
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a b

s

t

(1, x ) (1, x )

(1, x ) (1, x )

(2, y )

Fig. 1 The price of anarchy can be arbitrarily high

Proof Consider a CCS game with two agents and an underlying graph as depicted in
Fig. 1, and suppose that y is arbitrarily larger than x. The optimal profile is where one
agent uses the path s-a-t and the other uses the path s-b-t , resulting in a total cost of
4x. However, there is a NE in which one agent uses the path s-a-b-t and the other uses
the path s-b-a-t , resulting in a total cost of 4x + y. Therefore, PoAsc(�) = 4x+y

4x ,
which can be arbitrarily high.

Our goal is to characterize network topologies in which such a “bad” example
cannot occur, i.e., topologies in which the PoA is always bounded, independently of
the specific edge costs and capacities. The lower bound of n for a network with two
parallel links motivates the following definition.

Definition 3 A symmetric network G = (V , E) with source s and sink t is PoA-
bounded for a family of symmetric CCS games F if for every symmetric CCS game
� ∈ F on the symmetric network G, it holds that PoA(�) ≤ n.

Our main result is a full characterization of PoA-bounded network topologies.

Theorem 4 For symmetric CCS games, a symmetric network topology G is PoA-
bounded with respect to sum-cost if and only if G is a series-parallel (SP) network.

The proof of our characterization is composed of two parts. First, we show that for
every symmetric CCS game that is played on a SP network PoAsc ≤ n. This is the
content of Theorem 5. Second, we show that for every symmetric network topology
G that is not a SP network, there exists a game that is played on G for which the PoA
can be arbitrarily high. This part is the content of Theorem 7.

Theorem 5 Let � be a feasible CCS game with an underlying graph G. If G is a SP
graph then PoAsc(�) ≤ n.
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Before presenting the proof, we establish the following lemma, which is used more
than once throughout the paper.

Lemma 6 Let � be a CCS game with an underlying SP graph G. Let S be a feasible
profile of k agents and let S′ be a feasible profile of r agents such that r < k. There
exists a feasible s-t path in G that uses only edges that are used in the profile S that
is feasible in S′.

Proof The SP graph G is constructed by a sequence of series compositions and
parallel compositions of SP graphs. This sequence can be viewed as a binary tree, in
which every leaf is a single edge, and every inner node is either a series-composition
operator or a parallel-composition operator. Given a SP graph G, this tree is termed
the construction tree of G. The lemma is proved using an induction on the height of
the construction tree.

The induction case is the case of a single edge, from which the assertion follows
trivially. The induction hypothesis states the following: given a SP graph G whose
construction tree is of height at most m, and strategy profiles S and S′ as described
above, given S′, there exists a feasible s-t path in G that uses only edges that are used
in S.

Assume the assertion holds for any tree of size m, and consider a SP graph with
construction tree of height m+1, composing graphs G1 and G2. Let Si and S′

i denote
the induced profiles of S and S′, respectively, played on graph Gi for i ∈ 1, 2.

We distinguish between two cases as follows:

Case (a): G = G1||G2. Suppose that in S there are k′ agents using G1 (and k − k′
agents using G2), and in S′ there are r ′ agents using G1 (and thus r − r ′ agents using
G2). Since r < k, it holds that either r ′ < k′ or r − r ′ < k − k′; w.l.o.g. assume that
r ′ < k′. By the induction hypothesis there exists a feasible s-t path in G1 using only
edges that are used in S1. This path is also a feasible s-t path in G.

Case (b): G = G1 → G2. Let si and ti be the respective source and sink nodes of
network Gi for i ∈ 1, 2. By the induction hypothesis, there exists a feasible si-ti path
using only edges that are used in Si , for i = 1, 2. A feasible s-t path in G that uses
only edges in S is obtained by concatenating these two paths. The assertion of the
lemma follows.

With this at hand, we are ready to prove Theorem 5.

Proof Given a game �, let S be a NE and S∗ be an optimal profile with respect to
sum-cost. We claim that the cost of every agent in S is at most the sum-cost of S∗.
Assume by contradiction that there exists an agent i in the profile S whose cost is
higher than sc(S∗). By Lemma 6, given the profile S−i , there exists a feasible s-t
path that uses only edges that are used in S∗. The cost of this path is at most sc(S∗);
therefore, agent i benefits by deviating to this path, in contradiction to S being a
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NE. It follows that the cost of every agent in S is at most sc(S∗); therefore, the
sum of the agents’ costs in S cannot exceed n · sc(S∗). The assertion of the theorem
follows.

In order to complete the characterization it remains to show that for every non-SP
network G, there exists a symmetric CCS game on G that has an unbounded price of
anarchy.

Theorem 7 Let G be a non-SP symmetric network. Then, there exists a symmetric
CCS game on G for which the price of anarchy is arbitrarily high.

In order to prove the last theorem, we use the following result, established by
Milchtaich [25].

Lemma 8 [25] A symmetric network G is a SP network if and only if the symmetric
network in Fig. 2 is not embedded in G.

The network topology in the last lemma is precisely the network topology with
the unbounded PoA that motivated our study (see Proposition 2). The last lemma
asserts that this graph topology is embedded in every non-SP network. Thus, in order
to establish the assertion of Theorem 7, it remains to show that the unbounded PoA
given in Proposition 2 can be extended to every network topology that embeds it.
This is established in the following lemma.

Lemma 9 Let G be a symmetric network that is not PoA-bounded with respect to
sum-cost for a family of symmetric CCS games F , and suppose G is embedded in a

s

t
Fig. 2 A Braess Graph
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symmetric network G′. Then, G′ is not PoA-bounded with respect to sum-cost for the
family F either.

Proof For every symmetric CCS game on the network G, there exists an equiva-
lent symmetric CCS on the network G′, which is obtained by setting edge costs and
capacities as follows: for a subdivision operation of an edge e into two edges e1 and
e2, assign edge costs pe1 = 0 and pe2 = pe and capacities ce1 = ce2 = ce. For an
addition operation of an edge e, set ce = 0. For an extension operation of an edge
e, set pe = 0 and ce = n. The original game (played on G) can be simulated in the
network G′ using the appropriate capacities and costs as specified above. It is easy to
verify that if the embedded network G is not PoA-bounded with respect to sum-cost
for a given CCS game, then this is also the case for any other network G′, such that
G is embedded in G′.

This established the assertion of Theorem 7.

3.1.1 Parallel-Edge Networks

For the case of parallel-edge networks, we show that the PoA cannot exceed the
maximum edge capacity in the network.

Theorem 10 Let� be a feasible CCS game with an underlying graphG that consists
of parallel edges. Let Cm denote the maximum capacity of any edge in G. It holds
that PoAsc(�) ≤ Cm.

Proof Let S and S∗ be a worst NE and an optimal solution in �, respectively.
Denote by L the set of edges used only in S, by Q the set of edges used only in
S∗ and by M the set of edges used in both solutions, S and S∗. In addition, let xe

(respectively, x∗
e ) denote the number of agents using edge e in profile S (resp., S∗).

Also, for every set of edges T ∈ {L,Q,M}, let XT = ∑
e∈T xe denote the total

number of agents that use edges in T in the profile S, and let X∗
T = ∑

e∈T x∗
e denote

the total number of agents that use edges in T in the profile S∗. Similarly, let PT =∑
e∈T pe denote the total cost of edges in T .
We are now ready to state the proof of the theorem. Let e′ = argmine∈Qpe be the

cheapest edge in Q. By the definition of a NE, it holds that for every edge e ∈ L,

pe

xe

≤ pe′ . (2)

We distinguish between two cases, namely, the case in which XL ≤ X∗
Q and the

complementary case.
Case (a): XL ≤ X∗

Q. We get:

∑
e∈L

pe =
∑
e∈L

xe

pe

xe

≤ pe′
∑
e∈L

xe = pe′XL ≤ pe′X∗
Q,
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where the first inequality follows from (2), and the last inequality follows by the
assumption of case (a). On the other hand, by the definition of the edge e′ ∈ Q, it
follows that

∑
q∈Q

pq ≥ � x∗
Q

Cm

� · pe′ .

Therefore, PoA(�) ≤ x∗
Q·pe′

� X∗
Q

Cm
�·pe′

≤ Cm.

Case (b): XL > X∗
Q. In this case we further distinguish between the case where

Q = ∅ and the case where Q 	= ∅.
We begin with the case where Q = ∅. One can easily verify that in every NE,

there is at most one edge that is neither empty nor full. To see this, note that if there
are two partially full edges, simple arithmetics show that the fact that no agent wishes
to deviate in one direction necessarily implies that there exists an agent that wishes
to deviate in the opposite direction. Since XL > X∗

Q, the partially-full edge must
belong to M; denote it by ê. This further implies that XL ≤ Cm − 1.

By the definition of ê, for every e ∈ L, pe/ce ≤ pê/2. Therefore, PL ≤ 1
2pêXL ≤

1
2pê(Cm−1), where the last inequality follows from the observation above that XL ≤
Cm − 1.

On the other hand, it clearly holds that PM ≥ pê, as ê ∈ M .
We get that

PoA(�) = PL + PM

PM

= 1 + PL

PM

≤ 1 +
1
2pê(Cm − 1)

pê

= 1 + 1

2
(Cm − 1) ≤ Cm,

where the last inequality holds for every Cm ≥ 1.
We now prove the case in which Q 	= ∅. Recall that we are in case (b), where

XL > X∗
Q. Let λ = XL − X∗

Q. Note that 1 ≤ λ ≤ Cm − 1 due to the observation
above that in every NE there could be at most one edge that is neither full nor empty.
As before, let e′ be the cheapest edge in Q.

To complete the proof, we use both (2) and the following observation. Let ê be the
partially full edge in M (as before). By the definition of NE, for every e ∈ L,

pe

xe

≤ pê

xê + 1
. (3)

Recall that XL = X∗
Q + λ. We can bound the individual cost of every agent in L

in the profile S both by (2) and by (3). For X∗
Q of the agents, we will use (2), and for

the remaining λ agents, we will use (3). We get PL ≤ X∗
Qpe′ + λ

pê

xê+1 .

Note that PQ ≥ X∗
Q

Cm
pe′ ; hence, X∗

Q · pe′ ≤ Cm · PQ. In addition, since λ ≤ Cm − 1,

and xê ≥ 1, it follows that λ
pê

xê+1 ≤ (Cm − 1)pê

2 . Using the fact that pê ≤ PM , we
get PL ≤ CmPQ + (Cm − 1)PM , and therefore PL + PM ≤ Cm(PQ + PM).
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Fig. 3 The PoS with respect to sum-cost is H(n)

In conclusion,

PoA(�) = PL + PM

PQ + PM

≤ Cm(PQ + PM)

PQ + PM

≤ Cm.

The assertion of the theorem follows.

Theorems 5 and 10 assert that PoA(�) ≤ min{n,Cm}. If the number of agents
is big, i.e., n is fairly big compared to Cm, the effective PoA is bounded by Cm and
therefore the result obtained in Theorem 10 is stronger.

3.2 Price of Stability (PoS)

In uncapacitated symmetric games, PoS = 1. In capacitated games, however, the
PoS need not be optimal. Moreover, sub-optimality is obtained already in parallel-
link networks.2

Theorem 11 There exists a symmetric CCS game in which the PoS with respect to
sum-cost is H(n).

Proof Consider a CCS game with n agents played on a graph that consists of n + 1
parallel links, e1, . . . , en+1, such that for i ∈ [n], pi = 1/i and ci = 1; and pn+1 =
1 + ε and cn+1 = n (see Fig. 3). It is easy to verify that the optimal solution is
achieved when all the agents share edge en+1. However, this profile is not a NE since
a single agent can benefit by deviating to edge en, thereby incurring a cost of 1/n

instead of (1 + ε)/n. Following similar reasonings, agents will continue to deviate,
one by one, until reaching the profile in which for every agent i ∈ [n], agent i uses
edge ei . The cost of this profile is H(n); the assertion follows.

2A similar example is given in [32] for more general non-decreasing cost functions.
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Using the potential-function method [4], it is established that the last bound
is in fact tight. In particular, the proof uses the potential function φ(S) =∑

e∈E

∑xe(S)
i=1 pe/i and follows the same reasoning as in the uncapacitated case.

Theorem 12 For every feasible symmetric CCS game, it holds that PoSsc ≤ H(n).

3.3 Homogeneous Capacities

It is interesting to note that in the special case in which all edges have the same capac-
ity, it holds that PoSsc = 1. To see this, observe that an optimal solution chooses
� n

C
� disjoint s-t paths with minimum total cost. We claim that the profile in which

the cheaper � n
C

� of these paths are saturated (and, possibly, the most expensive one
is not full) is a NE. Indeed, a beneficial deviation will contradict the minimality of
the total cost of the chosen paths. It follows that PoS = 1.

One might hope that homogeneity of capacities improves the PoAsc as well.
Unfortunately, the following example demonstrates that the PoA may still be
unbounded. In particular, consider a game with two agents played on the graph
depicted in Fig. 4. An optimal solution is one in which each agent uses a path that
does not include the middle edge, for a total cost of 5. However, there exists an equi-
librium in which one agent uses the path s-a-b-t (using the b-t edge of cost 1) and the
other uses the path s-b-t (using the b-t edge of cost x). The total cost of this profile
is 4 + x, which can be arbitrarily high compared to 5.

4 The Max-Cost Objective Function

4.1 Price of Anarchy (PoA)

We first observe that the PoA can be arbitrarily high also with respect to the max-cost
function.

a b

s

t

(1, 1) (1, 1)

(1, 2) (1, 1)

(1, 1)

(1, x )

Fig. 4 The price of anarchy can be arbitrarily high, even with homogeneous capacities
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Proposition 13 The PoA with respect to max-cost in CCS games can be arbitrarily
high.

Proof As in the proof of Proposition 2, consider a game with two agents played on
the graph depicted in Fig. 1. The optimal solution w.r.t. max-cost is the same as the
one for sum-cost, and entails a cost of 2x. However, in the worst NE, the maximal
cost is 2x + y/2. Therefore, PoAmc = 2x+y/2

2x , which can be arbitrarily high.

As in the sum-cost case, we wish to characterize network topologies in which the
PoA cannot exceed n. Interestingly, we obtain the exact same characterization as in
the sum-cost case.

Theorem 14 A symmetric network topology G is PoA-bounded w.r.t. max-cost if and
only if G is a SP network.

The necessity direction is established through similar arguments to the sum-cost
function. In particular, by Proposition 13, the game given in Proposition 2 has an
unbounded PoA with respect to the max-cost objective as well. This is exactly the
topology given in 8, and it is easy to verify that Lemma 9 holds with respect to the
max-cost objective function as well. Thus, the following theorem is established.

Theorem 15 Let G be a non-SP symmetric network. Then, there exists a symmetric
CCS game on G for which the price of anarchy is arbitrarily high.

The sufficiency of SP networks is established in the following theorem.

Theorem 16 Let � be a feasible CCS game with an underlying graph G. If G is a
SP graph, then PoAmc(�) ≤ n.

Proof Let S be a NE and let S∗ be an optimal solution with respect to max-cost.
It follows by Lemma 6 that the cost of every agent in S is at most sc(S∗). We
get mc(S) ≤ sc(S∗) ≤ n·mc(S∗), where the second inequality follows since, by
definition, for every profile T , mc(T ) ≥ sc(T )/n. The assertion of the theorem
follows.

4.1.1 Parallel-Edge Networks

For the case of parallel-edge networks, we show that the PoA cannot exceed the
maximum edge capacity in the network.

Theorem 17 Let� be a feasible CCS game with an underlying graphG that consists
of a parallel edge. Let Cm denote the maximum cost of any edge in G. It holds that
PoAmc(�) ≤ Cm.

Proof Let S and S∗ be one of the worst NE and an optimal solution in �, respec-
tively. Denote by L the set of edges used only in S, by Q the set of edges used only
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in S∗ and by M the set of edges used in both solutions, S and S∗. In addition, let xe

(respectively, x∗
e ) denote the number of agents using edge e in profile S (resp., S∗).

We distinguish between two cases, as follows:

Case (a): the maximum cost of any agent in the profile S∗ is obtained on an edge
e ∈ Q. Let e′ be the cheapest edge in Q. Clearly, the max-cost in S∗ is at least
pe′/Cm. On the other hand, by the definition of NE, no agent in S incurs a cost
higher than pe′ (otherwise, the agent that incurs a higher cost will deviate to e′).
Therefore PoA ≤ Cm.

Case (b): the maximum cost of any agent in the profile S∗ is obtained on an edge
e ∈ M . We further distinguish between two cases.

If the maximum cost of any agent in the profile S is also obtained on an edge in M ,
then let e1 ∈ M and e2 ∈ M denote the edges that realize the max cost in S and S∗,
respectively. Since e2 is more costly per agent in S∗ than e1, it holds that

pe2
x∗
e2

≥ pe1
x∗
e1
.

Since x∗
e1

≤ Cm, it follows that pe1 ≤ Cm
pe2
x∗
e2
, which implies that PoA ≤ Cm.

If the maximum cost of any agent in the profile S is obtained on an edge in L, then
let 
 ∈ L denote the edge that realizes the max cost in S.

If Q = ∅ and S 	= S∗, then there exists one edge in M that is neither full nor
empty; denote this edge by m ∈ M . Since 
 realizes the max cost in S, then p


x

≥ pm

xm
.

On the other hand, by the definition of NE, it holds that p


x

≤ pm

xm+1 . A contradiction
is reached.

Assume that Q 	= ∅, and let m ∈ M denote the edge that realizes the max cost
in S∗. Let e′ denote the cheapest edge in Q. Since m is the edge that realizes the
max cost in S∗, then pm

x∗
m

≥ pe′
x∗
e′
. Since x∗

e′ ≤ Cm, it follows that pe′ ≤ Cm
pm

x∗
m
.

By the definition of NE, it holds that p


x

≤ pe′ , and we get p


x

≤ Cm

pm

x∗
m
; i.e.,

PoA ≤ Cm.

4.2 Price of Stability (PoS)

For SP graphs, it follows directly from Theorem 16 that the PoS is bounded by n

(since PoS is always bounded by PoA). This bound is tight, as follows from the
example given in the proof of Theorem 11 (see Fig. 3). In this example, the unique
NE is one in which every agent uses a distinct path, and the maximal cost incurred
by any agent is 1, compared to 1/n in the optimal solution. For general networks, we
establish the following bound.

Theorem 18 For every CCS game �, it holds that PoSmc(�) is bounded by nH(n).

Proof Consider the function �(S) = ∑
e∈E

∑xe(S)
i=1

pe

xe(S)
. It is shown by [4] that this

is an exact potential function for the game; i.e., it emulates the change in the cost of
a deviating agent. It is easy to verify that for every profile T ,

sc(T ) ≤ �(T ) ≤ H(n) · sc(T ). (4)
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Let S∗ be an optimal solution with respect to max-cost, and consider a NE
S that is obtained by running best-response dynamics with an initial profile
S∗. We get that mc(S) ≤ sc(S) ≤ �(S) ≤ �(S∗) ≤ H(n)sc(S∗) ≤
nH(n)mc(S∗), where the second and fourth inequalities follow from (4), the
third inequality follows from the fact that � is a potential function and S is
obtained from S∗ through best-response steps, and the last inequality follows
from the definition of max-cost. It follows that mc(S)/mc(S∗) ≤ H(n) · n,
as promised.

The bound presented above is not tight and the closing the gap between n and
n·H(n) remains an open problem.

5 Convergence Rate of Best-Response Dynamics (BRD)

In this section we study the convergence rate of Best-Response Dynamics (BRD) to
a NE. While BRD may in general be exponentially long [4], the following proposi-
tion establishes that in the case of a symmetric, undirected graph, BRD converges to
a pure NE in at most n steps, and that this bound is tight. The intuition for this obser-
vation is that, in the uncapacitated version, after an agent deviates to some path P

(as its best-response), the cost incurred by an agent using this path in the next iter-
ation can only decrease; therefore, P remains a best-response move until all agents
converge to the same path.

Observation 19 For every uncapacitated cost-sharing game, every BRD converges
to a NE in at most n steps, independently of the initial profile.

In contrast, the following proposition shows that the convergence process of a
capacitated gamemay be longer. In particular, we establish a lower bound of�(n3/2),
even for parallel-link graphs.

Proposition 20 There exists a symmetric CCS game and a best-response dynamics
with a convergence time of �(n3/2).

Before presenting the proof, we provide the intuition for the long convergence
rate through an example. The �(n3/2) bound is obtained through BRD in which at
every stage, the agent who incurs the lowest cost (among all agents who can deviate)
is the one who deviates. The instance that realizes this bound is one in which there
are

√
n + 2 edges (assume for simplicity that n is a perfect square), where for i =

1, . . . ,
√

n + 1, edge ei has capacity i, and the last edge has capacity n. Originally,
all the agents reside on the last edge, which has a very high cost. We construct a
cost vector of the remaining edges, such that whenever a new edge (among the first√

n + 1 edges) is “activated” (i.e., becomes non-empty), it will cause a chain of
improvement steps that will end up in a profile where the edge preceding it is empty.
The process that this edge undergoes when it is first activated repeats recursively. The
cost functions that lead to such dynamics satisfy pi ≤ pi+1 for every i, but the gap is
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sufficiently small so that agents prefer edges with a higher index if the cost is shared
among more agents.

For example, consider the illustration given in Fig. 5. This figure demonstrates
BRD that follows the process described above. In particular, we construct an instance
with capacities as described above and cost functions (to be specified soon) that
induce the following BRD process. Originally, all of the agents reside in the costly
edge. Agent 1 migrates to edge 1, and agent 2 migrates to edge 2. After edge 2 has
agent 2, agent 1 is better off joining agent 2 on edge 2. Edge 2 is now full (since it
has a capacity of 2). Then, agent 3 migrates to edge 1, and agent 4 migrates to edge
3. Once edge 3 contains agent 4, agents 1 and 3 join agent 4 on edge 3. Agent 2 is
now left alone on edge 2, so it migrates to edge 1, which is cheaper.

More generally, once a new edge i is activated, one agent from every edge j < i

deviates to the new edge i. As a result, the remaining (i − 2) agents on edge i − 1
migrate to edges j < i − 1, one to each edge. This process results in edge i − 1
being empty. Thus, in the next iteration, edge i − 1 is activated, which initiates the
same process, recursively. The challenge is, therefore, to count the number of times a
particular edge is activated, and the number of iterations each such activation entails.

We are now ready to state the proof of the proposition.

Proof Let G be a graph of k + 1 parallel edges, denoted e1, ..., ek+1, and let n =
k(k + 1)/2. For every i ∈ [k + 1], let ci and pi denote the capacity and cost of edge
ei , respectively. Suppose that for every i ∈ [k], ci = i and pi = 1 + (i − 1)ε, and
edge ek+1 is such that ck+1 = n, pk+1 = n (i.e., edge k + 1 has high capacity, but is
very expensive relative to the other edges). We choose ε to be sufficiently small such
that the following inequality is satisfied:

pj/(i + 1) < pi/i for every i < j. (5)

Consider BRD in which in every step, the agent who incurs the minimum cost
(among the agents that can benefit by a deviation) deviates. This dynamic has n

phases, where the j ’th phase starts at the first time the j ’th agent deviates from edge
ek+1 to one of the k edges. Consider phase j +1. Before the deviation of agent j +1,
the other j agents are assigned to a subset of the k edges, such that the edges in
use are all saturated (otherwise they could benefit from deviating and would incur a
lower cost than agent j + 1). Agent j + 1 will “activate” a new edge ei (for some i

that shall be determined soon). Due to the edge cost structure (see Eq. 5), one agent
from every edge e1 to ei−1 (in that order) will deviate to the new edge ei . Following
the above migrations, due to the price structure (in particular pi < pj for i < j ), the
agents from edge ei−1 will deviate to edges ei−2 to e1 (one to each of these edges),
and will fill them up.
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Fig. 5 Illustration of BRD with 4 agents
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At this point, edge ei−1 is empty, and this will therefore be the edge to which
the next agent from the expensive edge will migrate, causing the process to repeat
itself.

In order to complete the analysis, we need to identify the edge to which agent
j + 1 will deviate in its first deviation. Recall that this edge will be empty right
before this deviation, and some subset of the other edges will be all saturated with
the first j agents. Let m be the maximal number such that j = m(m + 1)/2 + r

for some r ≥ 0. If r = 0, then it implies that edges e1 to em are full (with a total
capacity of m(m + 1)/2) and the (j + 1)’th agent will deviate to edge em+1. The
process described above will follow, amounting to 2m steps during this phase. If
r > 0, then among the first m + 1 edges, edge em−r+1 is empty (the sum of the other
m edges’ capacities is exactly j ). The deviation of agent j + 1 to em−r+1 will be
followed by 2m−2r steps. At the end of this phase, edge em−r+1 will be full and edge
em−r will be empty and the same process will apply to edge em−r when agent j + 2
deviates.

It follows that for every i ∈ [k], edge ei is filled once during the first time it is
activated, and once more for every edge e
 such that i < 
 ≤ k, i.e., k − i + 1
times. Each such occurrence takes 2i improvement steps. The total number of steps
is, therefore, given by

∑k
i=1(k − i + 1)2i = �(k3) = �(n3/2). The assertion of the

theorem follows.

6 Conclusions

In this work we introduce a model of capacitated network design games, and study
the implications of edge capacities on the existence and quality of Nash equilib-
ria with respect to different objective functions, as well as their implication on the
convergence rate of best-response dynamics. We find that the consideration of edge
capacities has a significant effect on all the above properties. Our main contribution
is a full characterization of network topologies that have a bounded price of anarchy,
independently of the edge capacities and costs.

Our results suggest many avenues for future research. A few obvious directions
include studying asymmetric networks, better understanding the convergence rate of
best-response dynamics, and closing the gap of the PoS with respect to the max-
cost objective for general networks. In particular, in Section 4.2 we established an
n · H(n) upper bound on the price of stability with respect to the max-cost objective
for general graphs. We conjecture that the actual bound is n, and this remains an open
question.

In addition, all the results presented here refer to single-commodity networks,
where all the agents use the same sink and source. It will be interesting to
study this problem in the more general case of multi-commodity networks (where
each agent is associated with a different source and sink). Some of the results
from the single-commodity case extend to the multi-commodity networks (such
as the unbounded price of anarchy for non-series-parallel networks (under both
the sum-cost and max-cost functions). Unfortunately, not all the results carry
over.



596 Theory Comput Syst (2015) 57:576–597

In Section 5 we established a lower bound of �(n3/2) on the convergence rate of
best-response dynamics in symmetric CCS games. Establishing an upper bound on
the convergence rate of BRD in this case is an interesting open problem.

Finally, it will be interesting to consider additional objective functions.
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