Advanced Compiler Design and Implementation

Intermediate Representations

Advanced Compiler Design and Implementation

Intermediate Representations

Chapter 4

David Oren

Outline

In this lecture we will explore issues involved in the design of intermediate-code representations. As we shall we, there are numerous feasible choices for intermediate-code structures. While we discuss several intermediate representations and their relative advantages, we shall finally need to select a particular representation for later use.

 Issues in intermediate representation (IR) design

 High-level IRs

 Medium-level IRs

 Low-level IRs

 Multi-level IRs

 MIR, HIR and LIR

 ICAN representations

 Other intermediate representations

Issues in IR design

Intermediate language selection

There is a great number of different possible intermediate representations, and the differences between them is often very important. Let us consider what the different possibilities are:

- There may be differences in the level of complexity of the control structures involved. Some IR may contains only low-level control structures. Others will have high-level structures, more closely resembling those in high-level programming languages.

- The IR may be either flat or hierarchical. Most programming languages we know allow complex expressions, using several operators and operands (for instance: 2+3*(a+2*z)). The IR may choose to represent the expressions in a hierarchical way, or use temporary variables to convert them to a flat representation, that more closely resembles the representation in the machine-language level.

- The IR may either limit itself to instructions present on the architecture in use, or define an abstract set of instructions.

- Arguments may be passed either on the stack or in registers. While passing parameters on the stack has many advantages (an unlimited number of temporaries, efficient implementation on some architectures), it will not be efficient for some architectures (especially RISC architectures that are mostly based on Load and Store instructions).

- Let us also mention that an intermediate representation may use normal forms (SSA), that make optimizations both easier and more effective. We will not discuss these in the course.

It can be seen that these choices define the level of the intermediate representation. The intermediate representation can be high-level, and completely machine-independent. On the other hand, it may be low-level, with an almost 1:1 relationship to the actual generated machine-code. Both of these approaches are legal and valid, each one being better in some cases. In the lesson, we will discuss three different levels of intermediate representations: high-level (HIR), medium-level (MIR) and low-level (LIR).

Choosing an intermediate representation can be considered an art. Personal tastes or historical reasons may influence it. Most IR will make some optimizations easy to implement, at the expense of others.

Issues in intermediate representation design

Artistic considerations apart, what should be considered when choosing an intermediate representation design? Several items come to mind.

The first is portability. If the main goal is writing a portable compiler, it may be a good idea to choose an intermediate representation that is not machine-specific. While this may seem like an important goal, we should keep in mind that it is not always present. In some cases, portability is not an issue.

The desired optimization level also plays an important role in the decision. Some optimizations are more easily attained with a certain level of intermediate representation. As we will see later, in some cases, the need for optimizations sometimes forces the designers of the compiler to use several levels of intermediate representations.

Finally, an important issue is the complexity of the compiler. In some cases, we may wish to reuse code of existing compilers, and will thus be forced to use a certain intermediate representations. In others, the compiler will be expected to have features that will be more easily implemented for certain representations. And, of course, let us not forget that compilers, like all software, need to be maintained. Keeping this in mind, it may be useful to choose a representation that will be easily maintained, and to keep the number of intermediate representations used by the compiler to a minimum.

Let us now examine two concrete examples of how these considerations affect choices of intermediate representations in several commercial products. First, consider the MIPS compiler. The input is a UCODES stack-based intermediate representation; the desired output is for a RISC Load/Store based architecture. The solution that was chosen was to introduce another intermediate level. The original representation is translated to this new intermediate level, optimizations are performed at this level, and the result is translated back to a UCODES representation, from which code is generated.

One possible explanation for this solution is that a code generator converting the UCODES intermediate representation to the RISC code was already available. It was considered important to use this code generator, either to facilitate maintenance later, or simply to avoid writing another code generator. However, optimization could not be easily accomplished in the stack-based intermediate representation – and hence the need for a representation where it could be done.

Another similar example is the Hewlett-Packard PA-RISC architecture. The problem here was similar: converting a stack-based intermediate representation to RISC code. The solution that was eventually chosen is completely different, however. HP chose to translate the stack-based intermediate representation to a very low-level one (SLLIC), perform optimization using this representation, and generate code directly from it.

Why use multiple representations?

In the preceding examples, we could see that in both cases we have more than one level of intermediate representation. HP, for instance, have both a stack-based representation and a very low-level one. Obviously, several different intermediate representations make the compiler much more complex to write and maintain. Why, then, are several representations used? As was stated earlier, different representations, or different levels of representations, have an effect on the optimizations we can perform.

Lower level representations expose more computations. Consider, for instance, the following C code:

float a[20][10];
float f;
...
f = a[i][j + 2];

As we all know, array access in C involves pointer arithmetic. This will be completely hidden by a high-level representation. For instance, such a representation might be:

f (a[i, j + 2]

A medium-level representation will be much more explicit:

t1 (j + 2
t2 (i * 10
t3 (t1 + t2
t4 (4 * t3
t5 (addr a
t6 (t4 + t5
t7 (*t6

A low-level representation will replace variable names with access to the actual memory location of the variables. For instance, the first two lines may become:

r1 ([fp – 4]
r2 (r1 + 2
r3 ([fp – 8]
r4 (r3 * 20

We see that using a low-level representation enables the compiler to have more effective standard optimizations. For instance, a well-known technique involves moving invariants out of loops. These invariants may be more easily spotted when computations (and array access) are broken down to smaller parts.

On the other hand, higher level representations provide room for more “non-determinism”. Because we have more information about variables and array access, we can more easily determine which instructions can be executed in parallel or reordered. For similar reasons, data cache optimizations are more easily done with a higher level representation. In this case, what we earlier considered an advantage of low-level representation is now its weakness. Calculations are broken down two very small steps, and analyzing dependencies between these small parts or reordering them becomes much more complicated.

As we can see, both low- and high-level representations are useful in certain circumstances. As we have seen (remember the MIPS compiler…), the solution in many cases in use both representations: some of the optimizations are performed using a low-level representation (loop invariants, for instance), and others using a high-level representation.

External representation

During the compilation, the compiler maintains the intermediary representation internally. In order to achieve both speed and compactness, this representation is usually binary: for instance, pointers to symbol-table information are stored instead of variable names. However, in some cases, a way to export this representation is needed. This exported version is called external representation.

External representation may be needed for several reasons. For instance, when debugging a compiler one usually needs to examine the intermediate representation created by the compiler, to detect bugs and possible problems.

A more down-to-earth reason to have external representation may be cross-module integration. As we have seen, a compiler often consists of several different stages (scanning, parsing, semantic analysis, code generation, etc.). These may be implemented as several processes, with the output of each one serving as input to the next. This obviously requires representing the output in a way that can not only be printed, but also easily read by the next stage in the pipe. There are several problems related to external representation.

Some problems are no different from the problems we encounter in other cases we wish to represent a data structure. For instance, we have to find a way to represent pointers in a way that will be meaningful even if the data structure is moved to a different memory address. The obvious solution is, of course, to save pointers as displacements from a known base address.

Other problems are unique to compilers. For instance, when we create temporary variables or labels, we have to insure that their names are unique. The obvious solutions in this case are to add to the symbol additional information that will insure its uniqueness (this is related to C++ name-mangling, for those who are familiar with it).

The third issue is making the external representation both compact and fast to write and read. One possibility is to use two external representations – a character-based one for human consumption and a binary one to support cross-module integration and interprocedural optimizations.

High-level intermediate representations

High-level intermediate representations are used almost entirely in the earliest stages of the compilation process, or in preprocessors before compilation. In the former case, they are produced by compiler front ends and are usually transformed shortly thereafter into lower-level forms; in the latter, they are often transformed back into source code in the original language or another language.

Abstract syntax trees

One frequently occurring form of high-level representation is the abstract syntax tree. An abstract syntax tree is a representations of the source-code, and is thus very much language-dependent. It is a compact representation, as it does not include punctuation. Since this representation is often smaller than the equivalent source, it can be used for compaction. It should also be noted that translating the tree representation back to the original source is very easy (in fact, it can be said that the source is the external representation of the tree).

A major use of abstract syntax trees is in language-sensitive or syntax-directed editors for programming languages, in which they usually are the standard internal representation for programs.

The tree defined the hierarchy of the language, as can be seen in the following example. For the following C code:

int f (int a, int b)
{

int c;

c = a + 2;

print (c);
}

[image: image1.wmf]ident

f

ident

a

ident

b

end

paramlist

paramlist

ident

c

end

decllist

ident

c

ident

a

const

2

+

=

ident

print

ident

b

ident

c

end

arglist

arglist

call

end

stmtlist

stmtlist

body

function

The syntax tree will be:

The tree may include only names of functions and variables, but may also include pointers to the symbol table. In these cases, the tree will contain much more information.

A single tree traversal by a compiler is all that is necessary to transform the abstract syntax tree into a medium-level intermediate representation. Virtual memory has made it possible for compilers to convert the whole source into an AST before beginning compilation. With the source thus represented, many operations become easier.

Other high-level intermediate representations

There are other forms of high-level expressions, which we will not discuss in the course, but which should be mentioned.

Lambda expressions are useful in functional languages (like Lisp and Scheme). They are similar to trees, but also have an executional meaning.

Normal linear forms are slightly less high-level. They preserve control flow structures and array as represented in the original source, but may use only simplified control flow structures. For instance, the for statement may be replaced by a while statement, to simplify compilation. Often these representations eliminate goto statements, as compilation is often easier done without them. Finally, they may also remove continuations, the functional language equivalent of a goto statement.

Medium-level intermediate representations

Medium-level intermediate representations are, as their name indicates, situated somewhere between high-level and low-level representations. Their main goal is portabiliy, and they therefore strive to be both source and target language independent. They are designed to reflect the range of features in a set of source languages, but in a language-independent way, and are designed to be good bases for generation of efficient machine code for one or more architectures.

In order not to be source dependent, they use only simplified control flow constructs: simple conditional and unconditional branches, calls and returns. Thus, they are not bound to the control constructs of a specific language.

In order not to be target dependent, they use a machine independent representation for program variables and temporaries. For instance, they may use an unlimited number of symbolic registers, making it the responsibility of the code generator to limit itself to the number of registers available on a given machine. Similarly, they may represent variables and temporaries on a stack, regardless of whether the underlying architecture directly supports one.

These medium-level intermediate representations are sufficient in many optimizing compilers. For instance, the representation used in Sun compilers is medium-level, and all optimizations are performed at that level.

Low-level intermediate representations

The lower we go, we more we resemble the machine. Low-level representations usually have an almost one-to-one correspondence with the machine. Deviations are possible, however, in cases where there are alternatives for the most effective code to generate.

For instance, some architectures do not support multiplication. The low-level representation may include a multiplication command nevertheless, this command being replaced by an appropriate sequence during code generation. The reason for this deviation is that sometimes knowing that a multiplication exists will be important for optimizations (converting a series of multiplications to a series of additions in a loop, for instance).

Other deviations may be related to addressing modes that exist on the processor but are not represented in the representation, to keep it from becoming too complex. Some processors have instructions with side-effects (the string instructions on the x86 architecture are an example: these instructions move data in memory, and update two count registers). The low-level representation can choose to ignore these instructions, or to use them. The basic problem here is that incorporating every single processor instruction in the representation not only makes it completely processor dependent, but also extremely complex.

For these reasons, instruction selection is done in the last phase of the compilation. In becomes the function of the final instruction-selection phase of the compilation process or of a postpass optimizer to select the appropriate instruction or instruction sequence to generate from the intermediate code. This method allows maximal optimizations to be performed on the intermediate code and in the final phases of compilation, to either expand intermediate-code instructions into code sequences or to combine related ones into more powerful instructions.

Side-effect instructions are often a trade-off choice: on the one hand, they may require more clock cycles than simpler instructions, on the other hand, they may free up registers for other uses. For instance consider the two possible translations of the following MIR code:

L1:
t2 (*t1
t1 (t1 + 4
…
t3 (t3 + 1
t5 (t3 < t4
if t5 then goto L1

One possible translation into PA-RISC is:

L1:
LDWM
4(0, r2), r3
…
ADDI
1, r4, r4
COMB,
< r4, r5, L1

This options uses the Load Word and Modify (LDWM) instruction. Another option is to use the Load Word with indeX (LDWX) instruction:

L1:
LDWX
r2(0, r1), r3

…

ADDIB
< 4, r2, r5, L1

While low-level intermediate representations usually are very much machine dependent, an appropriate data structure in the compiler can hide this dependency. This enables us to have a machine-independent low-level representation.

Multi-level intermediate representations

Finally, it should be noted that this classification of intermediate representations as either high-, medium-, or low-level is somewhat synthetic. In the real word, an intermediate representation may combine elements from several different levels.

As we have seen, some low-level representations expose more computations, but with a high-level description parallelization is more easily achieved. The compiler may therefore use several separate representations, and convert the code back and forth between them, or allow a single representation to have elements of several levels.

This second option is sometimes better, especially if the deviations from the main level are not that great. For instance, the intermediate representation used by SUN is basically medium-level representation, but allows arrays to be represented with multiple subscripts. Another example is the HP very low-level representation (SLLIC), which includes multiply and divide instructions, that are not present in the architecture.

Mixing levels gives the compiler greater flexibility, and may improve optimizations or reduce the complexity of the compiler.

MIR, HIR and LIR

In most examples later in the course, we will use a language called MIR (Medium-level Intermediate Representation). Where appropriate we will use an enhanced, high-level, version, called HIR. Correspondingly, where appropriate, a low-level version (LIR) will be used. On occasion, we mix features of MIR and HIR, or MIR and LIR, to make a specific point or to represent a stage in the translation from one level to the next,

We will know present the detailed XBNF description of these different intermediate-representations.

MIR

The main program

Program ([label:] ProgUnit*
ProgUnit ([label:] begin MIRInsts end
MIRInsts ({[label:] MIRInst [|| Comment]}*
Label (Identifier
MIRInst (ReceiveInst | AssignInst | GotoInst | IfInst
MIRInst (CallInst | ReturnInst | SequenceInst

The receive instruction

This instruction is used by a function to receive the parameters it was passed. No mention is made as to how the parameters were passed (in registers, on the stack, etc.), as this representation is not machine-dependent

ReceiveInst (receive varname (ParamType)
ParamType (val | res | valres | ref

ParamType denotes the passing discipline of the parameter: value (val), result (res), value-result (valres) or reference (ref).

Assignments

AssignInst (VarName (Expression
AssignInst (VarName ((VarName) Operand
AssignInst ([*]VarName[.EltName] (Operand
Expression (Operand BinOper Operand
Expression (UnaryOper Operand | Operand
Operand (VarName | Const
BinOper (+ | - | * | / | mod | min | max | RelOper
BinOper (shl | shr | shra | and | or | xor | . | *.
RelOper (= | != | < | <= | > | >=
UnaryOper (- | ! | addr | (TypeName) | *

The assignments are rather straight-forward. The only element worth noting is the second assignment syntax, which is called conditional assignment. The operand is assigned to the variable to the left of the arrow, only if the boolean variable in parentheses is true.

The main difference between programming languages we know is this representation can be seen in the definition of Expression. In this representation, an expression may be two operands separated by a binary operator, but not a concatenation of several binary operations (a + b + c). This is, of course, since medium-level representations are closer to the machine than high-level languages.

Also note that min and max are defined as standalone binary operators. Although these two operators are usually not available as machine instructions, there is often an efficient way of implementing them, sometimes without branches. By maintaining them as separate operators, we make sure the code generators can identify them and implement them efficiently. For instance, consider the following PA-RISC code:

MOVE

r2, r1
COM,>=
r3, r2
/* compare r3 to r2, skip next if >= */
MOVE

r3, r1
/* r1 is now min (r2, r3) */

Control flow instructions

GotoInst (goto Label
IfInst (if RelExpr {goto Label | trap Const}
RelExpr (Operand RelOp Operand | [!] Operand

Here it should be noted that the representation allows both value (if t3 goto L1) and “location” (if t1 < t2 goto L1) computations for boolean conditions. The formed approach is well suited to an architecture with condition codes, such as SPARC, POWER, or the Intel x86 architecture. The latter approach is well suited to an architecture with compare and branch instructions, such as PA-RISC or MIPS, since the MIR instruction can then be translated to a single machine instruction.

The trap instruction is an OS interface, which is used primarily when error occurs.

Call/Return instructions

CallInst ([call | VarName (] ProcName, Arglist
ArgList (([{Operand,TypeName}(;])
ReturnInst (return [Operand]

Sequence instruction

As we mentioned earlier, the compiler may modify the execution order of instructions to achieve better parallelization. In some cases, this is not appropriate. A sequence instruction represents a barrier in the intermediate code. Instructions with one or more operands with the volatile storage class modifier must not be moved across a sequence instruction, either forward or backward. This obviously restricts the optimizations that can be performed on code that contains such instructions.

Sequence (sequence

Constants

Const (Integer | FloatNumber | Boolean | nil
Integer (0 | [-] NZDecDigit DecDigit*
Integer (0x HexDigit*
NZDecDigit (1 | 2 | … | 9
DecDigit (0 | NZDecDigit
HexDigit (DecDigit| a | … | f | A | … | F
FloatNumber ([-] DecDigit+ .DecDigit+ [E [-] DecDigit+][D]
Boolean (true | false

Identifiers

Label (Identifier
VarName (Identifier
EltName (Identifier
Identifier (Letter {Letter | DecDigit | _}*

An example

We will now give two examples, to demonstrate the syntax of the MIR. Consider the following C code:

void make_node (struct note *p, int n)
{

struct node *q;

q = malloc (sizeof (struct node));

q -> next = nil;

q -> value = n;

p -> next = q;
}

The equivalent MIR code is:

make_node:
begin

receive p (val)

receive n (val)

q (call malloc, (8, int)

*q.next (nil

*q.value (n

*p.next (q

return
end

Notice that since the original code is in C, all parameters are passed by value, and that sizeof (int) has been replaced by its value. For a more complex example, consider:

void insert_node (int n, struct node *l)
{

if (n > l.value)

if (l -> next == nil)

make_node (l, n);

else

insert_node (n, l -> next);
}

Which translates as:

insert_node:
begin

receive n (val)

receive l (val)

t1 (*l.value

if n <= t1 goto L1

t2 (*l.next

if t2 != nil goto L2

call make_node, (l, type1; n, int)

return
L2:
t4 (*l.next

call insert_node, (n, int; t4, type1)

return
L1:
return
end

Notice that all intermediate values are held in temporaries, and that the type struct node *, which is not a basic type, is now passed as type1.

HIR

The high-level representation is obtained from the medium-level representation, with several constructs added. These extra constructs are array references, and high-level flow control constructs.

We will describe only differences in syntax between these two representations.

The main program

HIRInst (ReceiveInst | AssignInst | GotoInst | TrapInst | IfInst
HIRInst (ForInst | CallInst | ReturnInst | SequenceInst

Notice the addition of a for construct, and that the trap instruction has moved here.

Assignments

AssignInst ([VarName | ArrayRef] (Expression
AssignInst ([*] VarName[.EltName] (Operand
Operand (VarName | ArrayRef | Const
ArrayRef (VarName[{IntExpr(,}]

Notice the addition of array references. In arrays, the last subscript varies fastest.

Control flow instructions

IfInst (if RelExp then HIRInst* endif
ForInst (for VarName (Operand [by Operand] to Operand do HIRInst*

endfor
TrapInst (trap Const

Note the for construct and the more complex if statement.

Example

Consider the following HIR code:

for v (opd1 by opd2 to opd3

instructions
endfor

And the equivalent MIR code:

v (opd1
t2 (opd2
t3 (opd3
if t2 > 0 goto L2

L1:
if v < t3 goto L3
instructions
v (v + t2
goto L1

L2:
if v > t3 goto L3
instructions
v (v + t2
goto L2

L3:

LIR

The low-level representation is also obtained from the middle-level one. Some constructs have been eliminated, for instance: variables, selectors and parameters. Others have been added: low level addressing and load/store instructions. Once again, we will only describe the changes from the MIR.

Parameters are defined passed in the run-time stack or in registers (or, if there are more than a predetermined number of parameters, the excess ones are also passed in the run-time stack).

For the names of registers, we reserve r0 through r31 for integer or general-purpose registers, f0 through f31 for floating point registers and s0 and on for symbolic registers.

The main program

LIRInst (RegAsgInst | CondAsgnInst | StoreInst | LoadInst
LIRInst (CallInst | ReturnInst | SequenceInst
LIRInst (GotoInst | IfInst

Assignments

RegAsgnInst (RegName (Expression
RegAsgnInst (RegName (Const, Const) (Operand
CondAsgnInst (RegName ((RegName) Operand
Operand (RegName | Const

Note the second assignment syntax, which uses a bit-mask (the two constants between brackets), to modify only part of the register.

Memory related instructions

StoreInst (MemAddr [(Length)] (Operand
LoadInst (RegName (MemAdder [(Length)]
MemAddr (‘[‘RegName’]’[(Length)]
MemAddr (‘[‘RegName + RegName’]’[(Length)]
MemAddr (‘[‘RegName [+|-] Const’]’[(Length)]
Length (Const

Control flow instructions

GotoInst (goto {Label | RegName [{+|-} Const]}

Call/Return instructions

CallInst ([RegName (] call {ProcName | RegName}, RegName

Notice that a call is either to a procedure (a label) or to the address contained inside a register. The last register is the return address.

Representing MIR, HIR and LIR in ICAN

Up to now, we’ve seen external representations of MIR, HIR and LIR. So as to be able to conveniently manipulate MIR, HIR and LIR code in ICAN programs, we next present an internal representation for them.

To represent the code in ICAN, we have to choose an appropriate data structure. The structure we have chosen to use is an abstract syntax tree. An abstract syntax tree can be made either flat or very hierarchical. For instance, we may define different node types for different operators, with the node’s sons containing the operands. Or we may define a single node type, containing the type of the operator as well as the operands. We have chosen the latter approach, as it facilitates generalization: we can use the same code to deal with several different operators, if they require similar manipulation.

We begin by defining an enumerated type, IROper (also called Operator), containing the names of all intermediate-language operators.

IROper = Operator = enum {

add,
sub,
mul,
div,
mod,
min,
max,
eql,
neql,
less,

lseq,
grtr,
gteq,
shl,
shr,
shra,
and,
or,
xor,
indelt,

elt,
ind,
neg,
not,
addr,
val,
cast,
lind,
lcond,lindent,

lelt }

Most of these names are self-explanatory (for instance, add corresponds to the ‘+’ operator). The only ones needing explanation are: elt (‘.’), ind (unary ‘*’) and indelt (‘*.’). For a list of all operators, the reader is referred to table 4.6, on page 82 of the book. We next define several ICAN types:

Var = CharString
Const = CharString
Register = CharString
Symbol = Var (Const
Operand = Var (Const (TypeName
LIROperand = Register (Const (TypeName

A Var is an identifier, as was earlier defined. Temporaries are variables that begin with a lowercase ‘t’ and follow it by a sequence of digits. Symbols beginning with ‘s’, ‘r’ or ‘f’ followed by digits are registers, and not variables. A Const is an integer or a floating-point number, and a member of Integer is an integer. A Register is a symbol that begins with ‘s’, ‘r’ or ‘f’, followed by decimal digits.

Finally, we define:

Instruction = HIRInst (MIRInst (LIRInst

The remaining parts of the representation depend on the particular intermediate code, so we will describe them separately.

Representing MIR

Each kind of MIR instruction is represented by an ICAN tuple. The list of all possible tuples serves as an implicit declaration of the type MIRInst. We will bring here several examples of these tuples. The reader is referred to table 4.7 (page 83) for a complete list.

Label:

<kind: label, lbl: Label>

receive VarName (ParamType)

<kind: receive, left: VarName, ptype: ParamType>

VarName (Operand1 BinOp Operand2

<kind: binasgn, left: VarName, opr: BinOp, opd1: Operand1,

opd2: Operand2>

VarName (Unop Operand

<kind: unasgn, left: VarName, opr: Unop, opd: Operand>

With these tuples defined, we would like to have generic treatment of different types of nodes. To this end we define the functions Exp_Kind and Has_Left.

Exp_Kind (k) indicates whether a MIR instruction of kind k contains a binary expression, a unary expression, a list of expressions, or no expression. Has_Left (k) returns true if a MIR instruction of kind k has a left field, and false otherwise. The definition of these functions, as well as that of the enumerated type MIRKind is given in figure 4.8.

A sequence of intermediate-code instructions will be represented by the array:

Inst: array [1..n] of Instructions

For instance, the MIR sequence:

L1:
b (a

c (b + 1

Is represented by:

Inst[1] = <kind: label, lbl: “L1”>
Inst[2] = <kind: valasgn, left: “b”, opd: <kind: var, val: “a”>>
Inst[3] = <kind: binasgn, left: “c”, opr: add,

opd1: <kind: var, val: “b”>, opd2: <kind: const, val: 1>>

Representing HIR

To represent HIR in ICAN, we proceed essentially as for MIR. We implicitly define the type HIRInst, which maps HIR instructions to ICAN tuples. The definition of this type is given in table 4.8.

HIR needs no additional operands, so we use the type IROper defined earlier to represent the type of its operands. Several other enumerated types, as well as the function HIR_Exp_Kind and HIR_Has_Left are different for HIR, and are defined in figure 4.10.

The only thing worth noting is that for and endfor are represented as separate nodes, as are if, else and endif. This flattening of the tree allows the compiler greater flexibility when reordering instructions.

Representing LIR

To represent LIR in ICAN, we proceed essentially as for MIR. The implicit definition of the type LIRInst is given in table 4.9. The other enumerated types, and the functions LIR_Exp_Kind and LIR_Has_Left are declared in figure 4.11.

A RegName operand may have as its value an integer register, a floating-point register, or a symbolic register. The enumeration and function declared by:

RegType = enum {reg, freg, symreg}
Reg_Type: Register (RegType

Can be used to distinguish the three varieties. Memory addresses, the only thing really new in LIR, are represented by:

[RegName](Length)

<kind: addr1r, reg: RegName, len: Length>

[RegName1 + RegName2](Length)

<kind: addr2r, reg: RegName, reg2: RegName, len: Length>

[RegName + Integer](Length)

<kind: addrrc, reg: RegName, disp: Integer, len: Length>

For example, consider the following LIR code:

L1:
r1 ([r7 + 4]

r2 ([r7 + r8]

r3 (r1 + r2

r4 (-r3

if r3 > 0 goto L2

r5 ((r9) r1

[r7 – 8](2) (r5
L2:
return r4

Is represented in ICAN by:

Inst[1] = <kind: label, lbl: “L1”>
Inst[2] = <kind: loadmem, left: “r1”,

addr: <kind: addrrc, reg: “r7”, disp: 4, len: 4>>
Inst[3] = <kind: loadmem, left: “r2”,

addr: <kind: addr2r, reg: “r7”, reg2: “r8”, len: 4>>
Inst[4] = <kind: regbin, left: “r3”, opr: add,

opd1: <kind: regno, val: “r1”>,

opd2: <kind: regno, val: “r2”>>
Inst[5] = <kind: regun, left: “r4”, opr: neg,

opd: <kind: regno, val: “r3”>>
Inst[6] = <kind: regbinif, opr: grtr,

opd1: <kind: regno, val: “r3”>,

opd2: <kind: const, val: 0>, lbl: “L2”>
Inst[7] = <kind: regcond, left: “r5”, sel: “r9”,

opd: <kind: regno, val: “r1”>>
Inst[8] = <kind: stormem,

addr: <kind: addrrc, reg: “r7”, disp: -8, len: 2>

opd: <kind: regno, val: “r5”>>
Inst[9] = <kind: label, lbl: “L2”>
Inst[10] = <kind: retval, opd: <kind: regno, val: “t4”>>

Other intermediate-language forms

We will now describe several alternative representations of the instructions in a basic block of a medium-level intermediate code, how they are related to MIR, and their advantages and disadvantages relative to it.

For our comparisons, we will use the following MIR code fragment:

L1:
i (i + 1

t1 (i + 1

t2 (p + 4

t3 (*t2

p (t2

t4 (t1 < 10

*r (t3

if t4 goto L1

Triples

Triples are similar to the quadruples used in MIR, except that the results are not named explicitly in a triples representation. Instead, the results of the triples have implicit names that are used in other triples when they are needed as operands, and an explicit store operation must be provided.

In internal representations, triple numbers are usually either pointers to, or index numbers of the triples they correspond to. This can significantly complicate insertion and deletion of triples, unless the targets of control transfers are nodes in a representation of the basic-block structure of the procedure, rather than references to specific triples.

Translation back and forth between quadruples and triples is straightforward. Going from quadruples to triples requires replacing temporaries and labels by triples numbers and introducing explicit store triples. The reverse direction replaces triple numbers by temporaries and labels, and may absorb store triples into quadruples that compute the result being stored.

Using triples has no particular advantage in optimization, except that it simplifies somewhat the creation of the DAG for a basic block before code generation. The triples provide direct references to their operands and so simplify determining the descendants of a node.

The triple code equivalent to the MIR code fragment is:

(1)
i + 1
(2)
i sto (1)
(3)
i + 1
(4)
p + 4
(5)
*(4)
(6)
p sto (4)
(7)
(3) < 10
(8)
r *sto (5)
(9)
if (7), (1)

Trees

[image: image2.wmf]i

i

1

add

<-

To represent intermediate code by trees, we may choose either to have explicit assignment operators in the trees, or to label the root node of an expression computation with the result variable.

This choice is somewhat analogous to using quadruples or triples. We chose to use the second form, since it more closely corresponds to the DAGs we will discuss next. We label the interior nodes with the operation names that make up the IROper type.

Trees are almost always used in intermediate code to represent the portions of the code that do non-control-flow computation, and control flow is represented in a form that connects sequences of trees to each other.

[image: image3.wmf]i

1

i: add

A basic translation of the MIR fragment is:

This translation is almost useless. It provides one tree for each quadruple, and contains no more information. A more ambitious translation would determine that the temporary computer by the second tree is used only as an operand in the sixth tree, and there is no need to store it. Similarly, the third tree [image: image4.wmf]a

1

a: add

a

1

a: add

b: add

can be combined into the fifth. The result is:

This version of the tree representation has eliminated two temporaries (and the stores to them), provides the desired input form for the algebraic simplifications we will discuss later, and provides a form that can easily be translated into Polish-prefix code. Moreover, some optimizations are very easily done on trees.

It should be pointed out that incorrectly merging trees can lead to incorrect computation. For instance, consider the following MIR code:

a (a + 1
b (a + a

[image: image5.wmf]i

1

i: add

Trying to merge the two trees will result in the tree:

Which corresponds to evaluating the first instruction twice.

Translation from trees to quadruples is simple. For instance, we can perform a preorder of each tree, in the order they appear. For each interior node, with at least one descendant that is an interior node, we create a new temporary, and divide the tree into two along the edge connecting these two interior nodes. We label the root of the lower tree with the new temporary, and insert the pair of trees in sequence (the lower one being first) in place of the one we are dividing. Finally, we put the new temporary in the upper tree (in the place the lower tree used to be). When we no longer have any interior nodes with interior-node descendants, each tree corresponds to a single MIR instruction, and the remainder of the translation is obvious.

Direct acyclic graphs

The DAG representation of a basic block can be thought of as compressing the minimal sequence of trees that represents it even further. The leaves in the DAG represent the values of the variables and constants available on entry to the block that are used within it. The other nodes of the DAG all represent operations and may also be annotated with variable names.

It is important to node that the DAG reuses values, and so is generally a more compact representation than either trees or the linear notations.

To translate a sequence of MIR assignment instructions to a DAG, we process the instructions in order. For each one, we check whether each operand is already represented by a DAG node. If not, we make a DAG leaf for it. Then we check whether there is a parent of the operand node (or nodes) that represents the current operation; if not, we create one. Then we label the node representing the result with the name of the result variable and remove that name as a label of any other node in the DAG.

The DAG form is useful for performing local value numbering and eliminating common sub-expressions, but it is a comparatively difficult form on which to perform most other optimizations. On the other hand, there are algorithms that generate quite efficient code given a DAG representation.

Summary

In the lessons we have examined the different intermediate-representations we will use throughout the course: MIR, HIR and LIR. We have then given a brief overview of other intermediate-representations: triples, trees and DAGs.

The concerns of selecting an intermediate-code form include expressiveness, appropriateness for tasks to be performed on it, compactness and speed of access, ease of translating from source code to intermediate code and from it to machine code, and development cost.

References

S. S. Muchnick, Advanced Compiler Design and Implementation, Chapter 4

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

14

[image: image6.wmf]p

4

t2: add

[image: image7.wmf]i

1

t1: add

[image: image8.wmf]p

t3: ind

[image: image9.wmf]p: t2

[image: image10.wmf]t1

10

t4: less

[image: image11.wmf]t3

r: indasgn

[image: image12.wmf]t3

r: indasgn

[image: image13.wmf]i

1

add

10

t4: less

[image: image14.wmf]p

4

p: add

[image: image15.wmf]p

t3: ind

[image: image16.wmf]i

1

i: add

[image: image17.wmf]p

4

t2: add

[image: image18.wmf]a

1

a: add

a

1

a: add

b: add

[image: image19.wmf]i

1

i: add

[image: image20.wmf]ident

f

ident

a

ident

b

end

paramlist

paramlist

ident

c

end

decllist

ident

c

ident

a

const

2

+

=

ident

print

ident

b

ident

c

end

arglist

arglist

call

end

stmtlist

stmtlist

body

function

[image: image21.wmf]p

t3: ind

[image: image22.wmf]i

1

t1: add

[image: image23.wmf]p

t3: ind

[image: image24.wmf]p: t2

[image: image25.wmf]t1

10

t4: less

[image: image26.wmf]t3

r: indasgn

[image: image27.wmf]i

i

1

add

<-

[image: image28.wmf]i

1

i: add

[image: image29.wmf]p

4

p: add

[image: image30.wmf]i

1

add

10

t4: less

_986877532.bin

_986877576.bin

_986877747.bin

_986878443.bin

_986878459.bin

_986878428.bin

_986877605.bin

_986877551.bin

_986877567.bin

_986877540.bin

_986877513.bin

_986877522.bin

_986877502.bin

_986877476.bin

