Advanced Topics in Programming Languages

Untyped Lambda Calculus

Oded Padon & Mooly Sagiv

(original slides by Kathleen Fisher, John Mitchell,
Shachar Itzhaky, S. Tanimoto)

Types and
Programming

Reference:
Types and Programming Languages
by Benjamin C. Pierce, Chapter 5

Languages

Computation Models

Turing Machines
Wang Machines
Counter Programs

Lambda Calculus

Historical Context

Like Alan Turing, another mathematician, Alonzo Church, was very
interested, during the 1930s, in the question “What is a computable
function?”

He developed a formal system known as the pure lambda calculus, in order
to describe programs in a simple and precise way.

Today the Lambda Calculus serves as a mathematical foundation for the
study of functional programming languages, and especially for the study of
“denotational semantics.”

Reference: http://en.wikipedia.org/wiki/Lambda_calculus

Untyped Lambda Calculus - Syntax

= terms
X variable
A Xt abstraction
tt application

Terms can be represented as abstract syntax trees
Syntactic Conventions:
« Applications associates to left :
e, e,e3= (e, €, e;
» The body of abstraction extends as far as possible:
AX. AY. XY X=AX. (AY. (X Y) X)
Examples:
o (AX. AX. (AX.X) X) ((AX. X X) AX.X)

o (AL AF. 1) (AX.X) ((AX.X) (AS. Az. S 2))

Free vs. Bound Variables

e An occurrenceof xintis boundinAx.t

— otherwise it is free
— AXxis a binder

 FV:t— P(Var)is the set free variables of t

— FV(x) = {x}
— FV(A x.t) = FV(t) = {x}
— BV (t, t,) = FV(t,) U FV(t,)

 Examples:

— FV(x(yz))=

— FV(Ax. Ay.x(y z)) =
— FV((Ax.x)) =

— FV((Ax.x) x) =

Semantics: Substitution, B-reduction, a-conversion

e Substitution
XS] x=s
X—s]ly=y ify #X

xs] (Ay. t;) =Ay. [xs]t; ify#xandygFV(s)

x5 (t, t,) = (o] ty) ([xs] t,)
* [(3-reduction

(Ax.4)t, =5 [xt] Yy
* o-conversion

(Ax. t) =, Ay. [xoy] t if ye FV(t)

Beta-Reduction: Examples

(Ax.4)t, =5 [x = L]t (B-reduction)

redex

(AX.X)y =g Y

(A x. x (A x.x)) (u r):>B ur (A x. x)

(A x (Aw. x w)) (y z) =5 AW.YyZW

Substitution Subtleties

(A X. 1) T, =g [x 1] T (B-reduction)
[XHs] x=s
[XPs]y=y ify #Xx
[x—s] (Ay. t)) = Ay. [x &S] t, if y#xand ygFV(s)

[x=>s] (t; t,) = ([xe=s] 1) ([xs] 1)

(Ax. (AX. X))y = [xPy] (Ax.x) = Ax.y?

(Ax. (Ay. X))y =5 [x=y] (Ay. x) = Ay.y?

(AX. (AX. X)) Y and (Ax. (Ay. x)) y are stuck! They have no 3-reduction

Alpha — Conversion

Alpha conversion:
Renaming of a bound variable and its bound occurrences

(AX. 1) =, AY. [xpy] t ifyeFV(1)

AX. X
3

(AX. (Ax. X))y =, (Ax. (Az.2))y = [xy] (Az.2) = Az.z #AX.y

(AX. (Ay. X))y =, (Ax. (Az. X))y =g [xPy] (Az.X)= Az.y #Ay.y

Examples of B-reduction, a-conversion

(7Lx.x)y:>B y

(A X. X (AX. X)) (UF) =wgr UT (A x. Xx)

(A x (Aw. x w)) (y 2) =5 AW.YyZW

(AX. (AX. X))y = (Ax. (Az.2))y =5 Az.z

(AX. (Ay. X))y =, (Ax. (Az. X))y =5 Az.y

Non-Deterministic
Operational Semantics

t=>t
(E-AppAbs) (A x. t)) t, = [x L] t, (E-Abs)
AX.t=Ax. t
t, =t t, =t
(E-App,) (E-App,)
t, L, =ttt t, t,=>t t

Why is this semantics non-deterministic?

11

Different Evaluation Orders

t=>t
(E-AppAbs) (A X. t,) t, = [x t,] t (E-Abs)
()t =1 It AX.t=>Ax t
t, =1t t, >t
(E-App,) p - (E-App,)
t, L=t t, L=t t,

(Ax. (add x x)) (add 2 3) = (Ax. (add x x)) (5) = add 55 = 10

(Ax. (add x x)) (add 2 3) = (add (add 2 3) (add 2 3)) =

(add5(add23)) = (add55) = 10

This example: same final result but lazy performs more computations

12

Different Evaluation Orders

t=t

(E-AppAbs) (A X. t,) t, = [x t,] t (E-Abs)
() 6= It AX.t=>Ax t
t, =1t t, >t
(E-App,) p — ., (E-App))
t, L=t t, L=t t,

(Ax. Ay. x) 3 (div50) = Exception: Division by zero
(AX. Ay.X) 3(div50)= (Ay.3)(div50)= 3

This example: lazy suppresses erroneous division and reduces to final result

Can also suppress non-terminating computation.
Many times we want this, for example:

if 1 < len(a) and a[i]==0: print “found zero”

Strict Lazy Normal Order

(E-App,) (E-AppAbs)
L=t (E-AppAbs) (Ax.t)t, = [xpt,] ty
t, L= t’l t, (A x. tl) t, = [x |—>t2] t, precedence
precedence @@= 00| = e e e e e e e e - (E-App,)
t, >t
(E-App,) (E-App,)
t,=>t, t, >t b=t
) precedence
t1t2:>t1t'2 tLL=1,1
(E-App,)

d ’
precedence t, =t
(E-AppAbs) ’

t,L=>4t,
(Ax.t)t, = [xt]t, (E-Abs)
t=>1t
AX.t=Ax.t' 14

Divergence

(A X 1) =g [XPL] Y (B-reduction)
(A X.(X X)) (A X.(X X))

Qppiy
QX Q3

pply Qppiy
OSIONOISO

Divergence

(A X 1) =g [XPL] G (B-reduction)
(A X.(X X)) (A X.(X X))

Different Evaluation Orders

(A X 1) =g [XPL] Y (B-reduction)
(A X.y) (A X.(X X)) (A X.(X X))

Qppiy Qppiy

~, G D
(0 (b O (0

Qppiy Qpply Qpply pply
W WS W WS

Different Evaluation Orders

(A X 1) =g [XPL] Y (B-reduction)
(A X.y) (A X.(X X)) (A X.(X X))

Qppiy

=B

Qppiy pply
OO

0

Different Evaluation Orders

(A X 1) =g [XPL] Y (B-reduction)
(A x.y) (A x.(x X)) (A x.(x X))
ol
def f():
@ m while True: pass
o @ @ def g(x):
m m return 2

° ° ° ° print g(f())

Summary Order of Evaluation

Full-beta-reduction
— All possible orders
Applicative order call by value (strict)
— Left to right
— Fully evaluate arguments before function
Normal order
— The leftmost, outermost redex is always reduced first
Call by name (lazy)
— Evaluate arguments as needed
Call by need
— Evaluate arguments as needed and store for subsequent usages
— Implemented in Haskell

Different Evaluation Orders

(AX.AY.(Az.2)y) (A u.u) (Aw. w))

ppiy
) Qppp
) Qw Qo

oy (W W
DO

Call By Value

(AX.AY.(Az.2)y) (A u.u) (Aw. w))

Call By Name (Lazy)

(AX.AY.(Az.2)y) (A u.u) (Aw. w))

G S
GO Gory an
) W = @ *
G (@ (&
SO

Normal Order

(AX.AY.(Az.2)y) (A u.u) (Aw. w))

Qppiy Q)

N

o G (@) %
G W = W "

G O W (&
OO

Currying — Multiple arguments

Say we want to define a function with two arguments:
— “F=A(x,y). 5"
We do this by Currying:
— f=AX. Ay. s
— fis now “a function of x that returns a function of y”
Currying and [3-reduction:

fvw =(fv)w= ((Ax.Ay.s)v)w

= (Ay.[xPV]s)w =[x V] [y >w]s

Conclusion:
— “fF=A(x,y).s" =2 f=AX.Ay.s
— “f(v,w)” - fvw

Church Booleans

Define: tru=At. Af. t fls =At. Af. test=Al. Am.An.Imn
test tru then else = (Al. Am. An. | mn) (At. Af. t) then else
=(Am. An. (At. Af. £) m n) then else
=(An. (ALt. Af. t) then n) else
—(At. Af. t) then else
= (Af. then) else
—then
test fls then else = (Al. Am. An. | m n) (At. Af. f) then else
=(Am. An. (At. Af. f) m n) then else
=(An. (At. Af. f) then n) else
= (At. Af. f) then else
= (Af. f) else
—else
and =Ab. Ac. bcfls
or =
not =

26

Church Numerals

Co = AS. Az. 2
C,=AS.AZ.52

C, = AS. Az. s (s z)

C; = AS. Az.s (s (s z))

scc=An.As. Az.s(nsz)
plus =Am.An.As. Az.ms (nsz)
times = Am. An. m (plus n) c,

iszero =

Combinators

A combinator is a function in the Lambda Calculus having no
free variables

Examples

— AX. X is a combinator

— AX. Ay. (xy) is @ combinator

— AX. Ay. (x 2) is not a combinator

Combinators can serve nicely as modular building blocks for
more complex expressions

The Church numerals and simulated Booleans are examples of
useful combinators

Iteration in Lambda Calculus

omega = (Ax. x X) (AX. X X)
— (Ax. x x) (Ax. X X) = (Ax. X X) (AX. X X)

Combinator

Y = Af (Ax. f (x x)) (Ax. f (x x))
Z =M. (Ax. f(Ay. xxy)) (Ax. f(Ay. xxV))
Recursion can be simulated
— Y only works with call-by-name semantics
— Z works with call-by-value semantics
Defining factorial:
— g=Af. An.if n==0then 1 else (n * (f (n - 1)))
— fact =Y g (for call-by-name)
— fact = Z g (for call-by-value)

29

Y-Combinator in action (lazy)

Y Combmator

“o=Af. An.if n==0then 1else (n * (f (n-1)))”
Y = Af (Ax. T (x x)) (Ax. f (x x))

Ygv= (M (Ax. f (xx)) (Ax. f (xXx))) g Vv

=((Ax. g (xx)) (Ax. g (x X))) v

= (g [(Ax. g (x x)) (Ax. g (xx)))) v

~ (g(vg)v
(YF)=(F(YF))

What happensto Y
in strict semantics?

30

Z-Combinator in action (strict)

“o=Af. An.if n==0then 1else (n * (f (n-1)))”

Z =M (Ax. f(Ay. xxy)) (Ax. T (Ay. x x y))
Zgv=(AL (Ax. f(Ay. xxVy)) (Ax. f(Ay.xXVy))) gV
= ((Ax. g (Ay. X X)) (AX. g (Ay. X X y))).v

=(g (Ay. (Ax. g (Ay. x X Y)) (AX. g (Ay. XX ¥)) Y)) Vv
~ (g (ry. (Zg)y)) v
~ (g(Zg)v

def fl(y):
return f2(y)

31

Simulating laziness like Z-Combinator

def f(x):
if ask user("wanna see it?"):
print x

def g(x, y, z):
very expensive computation without side effects

def main():
compute a, b, c with side effects

f(g(a, b, c))

* |n strict semantics, the above code computes g anyway
— Lazy will avoid it
* How can achieve this in a strict programming language?

Simulating laziness like Z-Combinator

def f(x): def f(x):
if ask user(“?"): if ask user("?"):
print Xx print x()

def g(x, y, z):

def g(x, y, z):
expensive # expensive

def main(): def main():
compute a, b, c # compute a, b, c
f(g(a, b, c)) f(lambda: g(a, b, c))

Z =M. O Oy, x X y)) . F QL. X X Y))

(E-Abs)

X.t= A X.

33

Church—Rosser Theorem

If: 5
a—="b,
a="c /\
then there exists d such that:
b="d, and E\ ;
c=d N S
d

34

Normal Form & Halting Problem

e Atermisin normal form ifitis stuck in normal order
semantics

* Under normal order every term either:
— Reduces to normal form, or
— Reduces infinitely

* For a given term, it is undecidable to decide which is the
case

