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Historical Context

Like Alan Turing, another mathematician, Alonzo Church, was very
interested, during the 1930s, in the question “What is a computable
function?”

He developed a formal system known as the pure lambda calculus, in order
to describe programs in a simple and precise way.

Today the Lambda Calculus serves as a mathematical foundation for the
study of functional programming languages, and especially for the study of
“denotational semantics.”

Reference: http://en.wikipedia.org/wiki/Lambda_calculus



Untyped Lambda Calculus - Syntax

= terms
X variable
A Xt abstraction
tt application

Terms can be represented as abstract syntax trees
Syntactic Conventions:
« Applications associates to left :
e, e,e3= (e, €, e;
» The body of abstraction extends as far as possible:
AX. AY. XY X=AX. (AY. (X Y) X)
Examples:
o (AX. AX. (AX.X) X) ((AX. X X) AX.X)

o (AL AF. 1) (AX.X) ((AX.X) (AS. Az. S 2))



Free vs. Bound Variables

e An occurrenceof xintis boundinAx.t

— otherwise it is free
— AXxis a binder

 FV:t— P(Var)is the set free variables of t

— FV(x) = {x}
— FV( A x.t) = FV(t) = {x}
— BV (t, t,) = FV(t,) U FV(t,)

 Examples:

— FV(x(yz))=

— FV(Ax. Ay.x(y z)) =
— FV((Ax.x)) =

— FV((Ax.x) x) =



Semantics: Substitution, B-reduction, a-conversion

e Substitution
XS] x=s
X—s]ly=y ify #X

xs] (Ay. t;) =Ay. [xs]t;  ify#xandygFV(s)

x5 (t, t,) = (o] ty) ([xs] t,)
* [(3-reduction

(Ax.4)t, =5 [xt] Yy
* o-conversion

(Ax. t) =, Ay. [xoy] t if ye FV(t)



Beta-Reduction: Examples

(Ax.4)t, =5 [x = L]t (B-reduction)

redex

(AX.X)y =g Y

(A x. x (A x.x)) (u r):>B ur (A x. x)

(A x (Aw. x w)) (y z) =5 AW.YyZW




Substitution Subtleties

(A X. 1) T, =g [x 1] T (B-reduction)
[XHs] x=s
[XPs]y=y ify #Xx
[x—s] (Ay. t)) = Ay. [x &S] t, if y#xand ygFV(s)

[x=>s] (t; t,) = ([xe=s] 1) ([xs] 1)

(Ax. (AX. X))y = [xPy] (Ax.x) = Ax.y?

(Ax. (Ay. X))y =5 [x=y] (Ay. x) = Ay.y?

(AX. (AX. X)) Y and (Ax. (Ay. x)) y are stuck! They have no 3-reduction



Alpha — Conversion

Alpha conversion:
Renaming of a bound variable and its bound occurrences

(AX. 1) =, AY. [xpy] t  ifyeFV(1)

AX. X
3

(AX. (Ax. X))y =, (Ax. (Az.2))y = [xy] (Az.2) = Az.z #AX.y

(AX. (Ay. X))y =, (Ax. (Az. X))y =g [xPy] (Az.X)= Az.y #Ay.y



Examples of B-reduction, a-conversion

(7Lx.x)y:>B y

(A X. X (AX. X)) (UF) =wgr UT (A x. Xx)

(A x (Aw. x w)) (y 2) =5 AW.YyZW

(AX. (AX. X))y = (Ax. (Az.2))y =5 Az.z

(AX. (Ay. X))y =, (Ax. (Az. X))y =5 Az.y




Non-Deterministic
Operational Semantics

t=>t
(E-AppAbs) (A x. t)) t, = [x L] t, (E-Abs)
AX.t=Ax. t
t, =t t, =t
(E-App,) (E-App,)
t, L, =ttt t, t,=>t t

Why is this semantics non-deterministic?
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Different Evaluation Orders

t=>t
(E-AppAbs) (A X. t,) t, = [x t,] t (E-Abs)
( )t =1 It AX.t=>Ax t
t, =1t t, >t
(E-App,) p - (E-App,)
t, L=t t, L=t t,

(Ax. (add x x)) (add 2 3) = (Ax. (add x x)) (5) = add 55 = 10

(Ax. (add x x)) (add 2 3) = (add (add 2 3) (add 2 3)) =

(add5(add23)) = (add55) = 10

This example: same final result but lazy performs more computations

12



Different Evaluation Orders

t=t

(E-AppAbs) (A X. t,) t, = [x t,] t (E-Abs)
( ) 6= It AX.t=>Ax t
t, =1t t, >t
(E-App,) p — ., (E-App))
t, L=t t, L=t t,

(Ax. Ay. x) 3 (div50) =  Exception: Division by zero
(AX. Ay.X) 3(div50)= (Ay.3)(div50)= 3

This example: lazy suppresses erroneous division and reduces to final result

Can also suppress non-terminating computation.
Many times we want this, for example:

if 1 < len(a) and a[i]==0: print “found zero”



Strict Lazy Normal Order

(E-App,) (E-AppAbs)
L=t (E-AppAbs) (Ax.t)t, = [xpt,] ty
t, L= t’l t, (A x. tl) t, = [x |—>t2] t, precedence
precedence @@= 00| = e e e e e e e e - (E-App,)
t, >t
(E-App,) (E-App,)
t,=>t, t, >t b=t
) precedence
t1t2:>t1t'2 tLL=1,1
(E-App,)

d ’
precedence t, =t
(E-AppAbs) ’

t,L=>4t,
(Ax.t)t, = [xt]t, (E-Abs)
t=>1t
AX.t=Ax.t' 14




Divergence

(A X 1) =g [XPL] Y (B-reduction)
(A X.(X X)) (A X.(X X))

Qppiy
QX Q3

pply Qppiy
OSIONOISO



Divergence

(A X 1) =g [XPL] G (B-reduction)
(A X.(X X)) (A X.(X X))




Different Evaluation Orders

(A X 1) =g [XPL] Y (B-reduction)
(A X.y) (A X.(X X)) (A X.(X X))

Qppiy Qppiy

~, G D
(0 (b O (0

Qppiy Qpply Qpply pply
W WS W WS




Different Evaluation Orders

(A X 1) =g [XPL] Y (B-reduction)
(A X.y) (A X.(X X)) (A X.(X X))

Qppiy

=B

Qppiy pply
OO

0



Different Evaluation Orders

(A X 1) =g [XPL] Y (B-reduction)
(A x.y) (A x.(x X)) (A x.(x X))
ol
def f():
@ m while True: pass
o @ @ def g(x):
m m return 2

° ° ° ° print g(f())



Summary Order of Evaluation

Full-beta-reduction
— All possible orders
Applicative order call by value (strict)
— Left to right
— Fully evaluate arguments before function
Normal order
— The leftmost, outermost redex is always reduced first
Call by name (lazy)
— Evaluate arguments as needed
Call by need
— Evaluate arguments as needed and store for subsequent usages
— Implemented in Haskell



Different Evaluation Orders

(AX.AY.(Az.2)y) (A u.u) (Aw. w))

ppiy
) Qppp
) Qw Qo

oy (W W
DO



Call By Value

(AX.AY.(Az.2)y) (A u.u) (Aw. w))




Call By Name (Lazy)

(AX.AY.(Az.2)y) (A u.u) (Aw. w))

G S
GO Gory an
) W = @ *
G (@ (&
SO



Normal Order

(AX.AY.(Az.2)y) (A u.u) (Aw. w))

Qppiy Q)

N

o G (@) %
G W = W "

G O W (&
OO



Currying — Multiple arguments

Say we want to define a function with two arguments:
— “F=A(x,y). 5"
We do this by Currying:
— f=AX. Ay. s
— fis now “a function of x that returns a function of y”
Currying and [3-reduction:

fvw =(fv)w= ((Ax.Ay.s)v)w

= (Ay.[xPV]s)w =[x V] [y >w]s

Conclusion:
— “fF=A(x,y).s" =2 f=AX.Ay.s
— “f(v,w)” - fvw



Church Booleans

Define: tru=At. Af. t fls =At. Af. test=Al. Am.An.Imn
test tru then else = (Al. Am. An. | mn) (At. Af. t) then else
=(Am. An. (At. Af. £) m n) then else
=(An. (ALt. Af. t) then n) else
—(At. Af. t) then else
= (Af. then) else
—then
test fls then else = (Al. Am. An. | m n) (At. Af. f) then else
=(Am. An. (At. Af. f) m n) then else
=(An. (At. Af. f) then n) else
= (At. Af. f) then else
= (Af. f) else
—else
and =Ab. Ac. bcfls
or =
not =
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Church Numerals

Co = AS. Az. 2
C,=AS.AZ.52

C, = AS. Az. s (s z)

C; = AS. Az.s (s (s z))

scc=An.As. Az.s(nsz)
plus =Am.An.As. Az.ms (nsz)
times = Am. An. m (plus n) c,

iszero =



Combinators

A combinator is a function in the Lambda Calculus having no
free variables

Examples

— AX. X is a combinator

— AX. Ay. (xy) is @ combinator

— AX. Ay. (x 2) is not a combinator

Combinators can serve nicely as modular building blocks for
more complex expressions

The Church numerals and simulated Booleans are examples of
useful combinators



Iteration in Lambda Calculus

omega = (Ax. x X) (AX. X X)
— (Ax. x x) (Ax. X X) = (Ax. X X) (AX. X X)

Combinator

Y = Af (Ax. f (x x)) (Ax. f (x x))
Z =M. (Ax. f(Ay. xxy)) (Ax. f(Ay. xxV))
Recursion can be simulated
— Y only works with call-by-name semantics
— Z works with call-by-value semantics
Defining factorial:
— g=Af. An.if n==0then 1 else (n * (f (n - 1)))
— fact =Y g (for call-by-name)
— fact = Z g (for call-by-value)
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Y-Combinator in action (lazy)

Y Combmator

“o=Af. An.if n==0then 1else (n * (f (n-1)))”
Y = Af (Ax. T (x x)) (Ax. f (x x))

Ygv= (M (Ax. f (xx)) (Ax. f (xXx))) g Vv

=((Ax. g (xx)) (Ax. g (x X))) v

= (g [(Ax. g (x x)) (Ax. g (xx))) ) v

~ (g(vg)v
(YF)=(F(YF))

What happensto Y
in strict semantics?
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Z-Combinator in action (strict)

“o=Af. An.if n==0then 1else (n * (f (n-1)))”

Z =M (Ax. f(Ay. xxy)) (Ax. T (Ay. x x y))
Zgv=(AL (Ax. f(Ay. xxVy)) (Ax. f(Ay.xXVy))) gV
= ((Ax. g (Ay. X X)) (AX. g (Ay. X X y))).v

=(g (Ay. (Ax. g (Ay. x X Y)) (AX. g (Ay. XX ¥)) Y)) Vv
~ (g (ry. (Zg)y)) v
~ (g(Zg)v

def fl(y):
return f2(y)
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Simulating laziness like Z-Combinator

def f(x):
if ask user("wanna see it?"):
print x

def g(x, y, z):
# very expensive computation without side effects

def main():
# compute a, b, c with side effects

f(g(a, b, c))

* |n strict semantics, the above code computes g anyway
— Lazy will avoid it
* How can achieve this in a strict programming language?



Simulating laziness like Z-Combinator

def f(x): def f(x):
if ask user(“?"): if ask user("?"):
print Xx print x()

def g(x, y, z):

def g(x, y, z):
# expensive # expensive

def main(): def main():
# compute a, b, c # compute a, b, c
f(g(a, b, c)) f(lambda: g(a, b, c))

Z =M. O Oy, x X y)) . F QL. X X Y))

(E-Abs)

X.t= A X.
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Church—Rosser Theorem

If: 5
a—="b,
a="c /\
then there exists d such that:
b="d, and E\ ;
c=d N S
d
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Normal Form & Halting Problem

e Atermisin normal form ifitis stuck in normal order
semantics

* Under normal order every term either:
— Reduces to normal form, or
— Reduces infinitely

* For a given term, it is undecidable to decide which is the
case



