Programming Language Recap

* Prolog
* Javascript
* Haskel

e Lua
»_Scala

+ Ruby

Languages

* Syntax
— Context free grammar
— Ambiguous grammars
— Syntax vs. semantics
* Static semantics
— Scope rules
* Semantics
— Small vs. big step
* Axiomatic semantics

Static Analvsi

Concepts

* Functional programming

Lambda calculus
Recursion

Higher order programming
Lazy vs. Eager evaluation
Pattern matching

Continuation

* Types

Type safety

Static vs. dynamic

Type checking vs. type inference
Most general type
Polymorphism

Type inference algorithm

Non Ambiguous Grammars
for Arithmetic Expressions

Ambiguous grammar

1 E—>E+E 1E>E+T 1E—>E*T
2 ESE*E 2E>T 2E>T
3 E—id 3T>T*F 3T>F+T
4 E— (E) 4T > F 4T >F
5F—id 5F—id
6 F— (E) 6 F— (E)

Formal Syntax and
Semantics of Programming
Languages

Mooly Sagiv
Reference: Semantics with Applications
Chapter 2

H. Nielson and F. Nielson
http://www.daimi.au.dk/~bra8130/Wiley book/wiley.html

Natural Semantics for While

ass,] <x := a, s> — s[x »A[a]s]
axioms . .
skip,] <skip, s> — s
comp,] <S,,s>—>5,<S,,>—>5"
rules

<S$.;S,,s>—>5"

[iff]<S;,s>—>5¢

<if bthen S elseS,, s> —> ¢ 7 B[b]s=tt

[iff]<S,,s>—>¢

if B[[b]s=ff
<if bthen S elseS,, s> —> ¢’

Natural Semantics for While
(More rules)

[whilef] |
<while bdo S, s> —s if B[b[ls=ff

[while®]<S,s>—> ¢, <whilebdoS§, s'>—>s" |
<whilebdo S, s> > s” if B[b]s=tt

A Derivation Tree

A “proof” that <S§, s> —s’

The root of tree is <S, s> —¢’

Leaves are instances of axioms

Internal nodes rules

— Immediate children match rule premises

Simple Example

<skip; X := X +1, 55> —>S,[x —»1]>

<skip, So> =S,

compns \

<x:=Xx+1,5,> s [x »1]>

An Example Derivation Tree

<(x :=x+1; y:=x+1); z:=vy), sO> —>s0[x ~»1][y »2][z »2]

compns
<X :=x+1; y :=x+1, s0> —s0[x »1][y »2] <z :=y,s0[x ~»1][y »2]>—>s0[x~1][y~2][z —»2]
/L”’”W
<X :=x+1; s0> —>s0[x —~1] <y :=x+1, sO[x —»1]> —>s0[x ~1][y ~2]

assns assns

Top Down Evaluation of Derivation Trees

Given a program S and an input state s

Find an output state s’ such that
<S, s> —¢’

Start with the root and repeatedly apply rules
until the axioms are reached

Inspect different alternatives in order

In While s” and the derivation tree is unique

The meaning of the program

* A proof tree

— The root is labeled by <i, com> —o0
* iis the input state
e com is the abstract syntax tree of the program
* 0is the output state

— Leafs axioms
— Internal nodes are rules

Semantic Equivalence

* S, and S, are semantically equivalent if
forallsand s’

<S,,s>—> s’ ifandonlyif<S,, s> —> ¢

* Simple example
“while b do §”
is semantically equivalent to:
“if b then (S ; while b do S) else skip”

Properties of Natural Semantics

* Equivalence of program constructs
— “skip ; skip” is semantically equivalent to “skip”
— “((S1; S,) ; S3)” is semantically equivalent to “(S, ;(
S,;S3))"
— “(x:=5;y:=x* 8)” is semantically equivalent to
“(x :=5; y :=40)”
* Deterministic

—If<S, s> —> s, and <S, s> — s, then s;=s,

Deterministic Semantics for While

¢ If<S,s>—s;,and<S, s> — s, then s, =s,

* The proof uses induction on the shape of
derivation trees

— Prove that the property holds for all simple
derivation trees by showing it holds for axioms

— Prove that the property holds for all composite
trees:
e For each rule assume that the property holds for its

premises (induction hypothesis) and prove it holds for
the conclusion of the rule

Structural Semantics for While

ass,] <x :=a, s> = s[x »A[a]s]
axioms S .
skip,,.] <skip, s> = s
[comp?l,]<S;,s>=><5,, s>
rules

<$;S,, > =><5;S5,,s>

[comp?,] <S,, s> =5

<S;S,, s> =<5S,,5>

Structural Semantics for While
if construct

[iftt...] <if bthenS,elseS,, s> =<S,, s> if B[[b]s=tt

SOS

[iff] <if bthen S, elseS,, s> =<S,, s> if B[b]s=ff

Structural Semantics for While
while construct

[while_ .] <whilebdo §, s> =

SOS

<if b then (S; while b do S) else skip, s>

Derivation Sequences

A finite derivation sequence starting at <S§, s>
Yor Y1 ¥ - Y SUch that

~ =<5, >

—%i = Vi

— v, is either stuck configuration or a final state

An infinite derivation sequence starting at <S,
s>

Yor Y1, ¥ --- Such that

— Y5=<S, s>

— Vi = Yin

Yo ='V; In i steps

Yo = ¥, in finite number of steps

For each step there is a derivation tree

SOS vs. Natural Semantics

* Natural semantics is more intuitive
— Simulates structural induction

e SOS allows to express more low level
construct

— Exposes implementation details
* Program locastion
* Storage

Untyped Lambda Calculus

t:= terms
X variable
AX.t abstraction
tt application

Terms can be represented as abstract syntax trees

Syntactic Conventions

e Applications associates to left
e;e,e;= (e &) e,

e The body of abstraction extends as far as possible

® AX. AY. Xy X =AX. (Ay. (X y) x)

Free vs. Bound Variables

e An occurrence of xis freeinatermtifitis notin the
body on an abstraction Ax. t

— otherwise it is bound
— AX is a binder

 Examples
— AZ. AX. Ay X (Y 2)
— (Ax. x) x

 Terms w/o free variables are combinators
— ldentify function: id = A x. X

Operational Semantics

(A x. t,)t, > [xt,] t, (B-reduction)

FV:t — P(Var) is the set free variables of t
FV(x) = {x}
FV(A x. t) = FV(t) — {x}
FV (t; t,) = FV(t,) U FV(t,)

[XFs] x=s
[X—s]y =y ify #x
[x>s] (Ay. t;) = Ay. [x 5] t, if y#xand ygFV(s)

[x=s] (t; t,) = ([xes] ty) ([xs] t,)

Operational Semantics

(Ax.t,)t, > x> t]tg, (B-reduction)

redex
(AX. X))y > y
(AX.x(AXx.x))(ur)—> ur (A xx)

(A x (Aw. x w)) (v z) —> AW.V ZW

Lambda Calculus vs. JavaScript

(A Xx.X)y (function (x) {return x;}) y

Spring 2014

Introduction to Haskell

Shachar ltzhaky & Mooly Sagiv
(original slides by Kathleen Fisher & John Mitchell)

Example: Differentiate

The differential operator
F(x) = lim o (f(x+h)-f(x))/h

In Haskell:
diff £ = f;prime
where
f prime x = (£ (x + h) - £ x) / h
h = 0.0001
diff :: (float -> float) -> (float -> float)

(diff square) 0 = 0.0001
(diff square) 0.0001 = 0.0003
(diff (diff square)) 0 = 2

Pattern Matching

e Patterns can be used in place of variable names
<pat>::=<var> | <tuple> | <cons> | <record> ...

* Value declarations
— General form: <pat> = <exp>
— In global declarations

myTuple = (“Flitwick”, “Snape”)
(x,y) = myTuple

myList = [1, 2, 3, 4]

Z:zS = myList

— In local declarations

let (x,y) = (2, “Snape”) in x * 4

Pattern Matching

* Explicit case expression

myTuple = (“Flitwick”, “Snape”)
v = case myTuple of
(x, “Snape”) -S> x 4+ “or
(“Flitwick”, y) -> y ++ “!”
> woyn

Map Function on Lists

* Apply function to every element of list

map £ [] = []
map £ (x:xs) = £ x : map £ xs

map (\x -> x+1) [1,2,3] — [2,3,4]

* Compare to Lisp

(define map
(lambda (f xs)

(1f (egq? xs ()) ()
(cons (£ (car xs)) (map £ (cdr xs)))

)))

More Functions on Lists

* Append lists

append ([], ys) = ys
append (x:xs, ys) = x : append (xs, ys)

e Reverse a list

reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]
* Questions

— How efficient is reverse?
— Can it be done with only one pass through list?

More Efficient Reverse

reverse Xs =
let rev ([], accum) = accum
rev (y:ys, accum) = rev (ys, y:accum)
in rev (xs, [])

Datatype Declarations

e Examples

data Color = Red | Yellow | Blue

elements are Red, Yellow, Blue

data Atom = Atom String | Number Int

elements are Atom “A”, Atom “B”, ..., Number O, ...

data AtomList = Nil | Cons Atom AtomList

elements are Nil, Cons (Atom “A”) Nil, ...
Cons (Number 2) (Cons (Atom “Bill”)) Nil, ...

e General form

data <name> = <clause> | ... | <clause>
<clause> ::= <constructor> | <constructor> <type>

— Type name and constructors must be Capitalized

Datatypes and Pattern Matching

m Recursively defined data structure
data Tree = Leaf Int | Node (Int, Tree, Tree)

Node (4, Node (3, Leaf 1, Leaf 2), °
Node (5, Leaf 6, Leaf 7))
B Recursive function

sum (Leaf n) = n

sum (Node(n,tl,t2)) = n + sum(tl) + sum(t2)

Example: Evaluating Expressions

* Define datatype of expressions

data Exp = Var Int | Const Int | Plus (Exp, Exp)

write (x+3)+ vy as Plus(Plus(Var 1, Const 3), Var 2)

e Evaluation function

ev(Var n) = Var n
ev(Const n) = Const n
ev (Plus(el,e2)) =

 Examples

ev (Plus (Const 3, Const 2)) - Const 5

ev(Plus (Var 1, Plus(Const 2, Const 3))) mm)p
Plus(Var 1, Const 5)

Use the Case Expression

B Datatype

data Exp = Var Int | Const Int | Plus (Exp, Exp)

® (Case expression

case e of
Var n ->
Const n -> ..
Plus (el,e2) -> ..

Indentation matters in case statements in Haskell

Laziness
m Haskell is a lazy language

B Functions and data constructors don’t
evaluate their arguments until they need
them

cond :: Bool -> a -> a -> a
cond True ¢t e t
cond False t e e

B Programmers can write control-flow operators
that have to be built-in in eager languages

Short- (1]1) :: Bool -> Bool -> Bool
circuiting True || x True
“or” False || x x

isSubString

suffixes::

suffixes]|[]

Using Laziness

String -> String -> Bool
X isSubString s = or [x " isPrefixOf t

t <- suffixes s]

Stri -> [Stri
ring [String] type String = [Chatr]

—— All suffixes of s

suffixes(x:xs) =

or

or
or

[Bool]

[]
(b:bs)

= False

b

[[]]

(x:x8)

-> Bool
(or bs) returns True if any of the bs is True

suffixes xs

A Lazy Paradigm

* Generate all solutions (an enormous tree)

* Walk the tree to find the solution you want

nextMove :: Board -> Move
nextMove b = selectMove allMoves
where

allMoves = allMovesFrom b

A gigantic (perhaps infinite)

tree of possible moves

Benefits of Lazy Evaluation

e Define streams:
main = take 100 [1 ..]

deriv £f x = 1lim [(f (x + h) - £ x) / h | h<- [1/2”n | n <- [1..]1]
where lim (a:b:1lst) = if abs(a/b-1) < eps then b
else 1lim (b: 1lst)

eps = 1.0 e-6

* Lower asymptotic complexity

* Language extensibility
— Domain specific languages

e But some costs

Core Haskell

* Basic Types
— Unit
— Booleans
— Integers
— Strings
— Reals
— Tuples
— Lists

— Records

Patterns
Declarations
Functions
Polymorphism
Type declarations
Type Classes
Monads
Exceptions

Functional Programming Languages

Scheme Dynamically typed Eager

Racket

ML Polymorphic Eager References
OCAML strongly typed

F#

Haskell Polymorphic Lazy None

strongly typed

Types and Type Inference

Mooly Sagiv
Slides by Kathleen Fisher and John Mitchell

Reading: “Concepts in Programming Languages”,
Revised Chapter 6 - handout on the course homepage

Expressiveness

* |n JavaScript, we can write a function like

function £(x) { return x < 10 ? x : x(), }

Some uses will produce type error, some will not

e Static typing always conservative

if (complicated-boolean-expression)
then £(5);
else £(15);

Type Safety

Type safe programming languages protect its
own abstractions

Type safe programs cannot go wrong

No run-time errors

But exceptions are fine

The small step semantics cannot get stuck
Type safety is proven at language design time

Relative Type-Safety of Languages

* Not safe: BCPL family, including C and C++
— Casts, unions, pointer arithmetic

* Almost safe: Algol family, Pascal, Ada
— Dangling pointers

* Allocate a pointer p to an integer, deallocate the memory
referenced by p, then later use the value pointed to by p

* Hard to make languages with explicit deallocation of
memory fully type-safe

e Safe: Lisp, Smalltalk, ML, Haskell, Java, JavaScript

— Dynamically typed: Lisp, Smalltalk, JavaScript
— Statically typed: ML, Haskell, Java

If code accesses data, it is handled with the type associated with the
creation and previous manipulation of that data

Type Checking vs Type Inference

e Standard type checking:

int f£f(int x) { return x+1; };
int g(int y) { return f(y+1l)*2; };

— Examine body of each function
— Use declared types to check agreement

* Type inference:
%f(in?ﬁ { return x+1; };

%g(in% { return f(y+1)*2; };

— Examine code without type intormation

— Infer the most general types that could have been
declared

ML and Haskell are designed to make type inference feasible

Step 1: Parse Program

* Parse program text to construct parse tree

Infix operators are converted
to Curied function application
during parsing:

2+X = (+)2X

Step 2: Assign type variables to nodes

Variables are given same type
as binding occurrence

Step 3: Add Constraints

O NAN M

UL

Step 4: Solve Constraints

WNDN|dO
L N | I [|

T Tt Ly

o of o
N

WwrRR
I
\'%
H o o
hlmlm

nt -> Int ——#{t 3 -> t 4 = Int -> (Int -> Int)

Int J

(N ()
| N | I [|

lﬂlﬂlﬂlﬂ ct
(VU \V

Int
Int -> Int

t
t1l >t 6 t_
tl >t 6 —

Int -> Int \
\

Int -> Int -> Int :==$ t 1l >t 6 = Int -> Int

Int l

SRR
W NDOEFE O

Int -> Int |t 1 = Int
Int
Int -> Int

Int -> Int -> Int
Int

Step 5:

Determine type of declaration

(o e o o
N N N N

WNdOKHK O

Int
Int
Int
Int
Int
Int

-> Int

-> Int
-> Int
-> Int

-> Int

Unification

* Given two type terms t,, t,

* Compute the most general unifier of t, and t,
— A mapping m from type variables to typed terms
such that
* ty{m}==t,{m}

* Every other unifier is a refinement of m

* Example
mgu(t 3 -> t 4, Int -> (Int -> Int)=
[t 3 » Int, t 4 »Int -> Int]=

Type Inference Algorithm

Parse program to build parse tree
Assign type variables to nodes in tree

Generate constraints:

— From environment: literals (2), built-in operators
(+), known functions (tail)

— From form of parse tree: e.g., application and
abstraction nodes

Solve constraints using unification
Determine types of top-level declarations

Constraints from Application Nodes

RIS

* Function application (apply f to x)

mmm) (t 0=t1->t2

— Type of f (t_0in figure) must be domain — range

— Domain of f must be type of argument x (t_1 in fig)
— Range of f must be result of application (t_2 in fig)
— Constraint: t 0=t 1->t 2

Constraints from Abstractions

* Function declaration:

t0=t1->¢t2

— Type of f (t_O in figure) must domain — range

— Domain is type of abstracted variable x (t_1 in fig)

— Range is type of function body e
— Constraint:t 0=t 1->t 2

(t_2in fig)

Inferring Polymorphic Types

fg=g 2
> £

 Example: :: (Int -> t 4) -> t 4

* Step 1:
Build Parse Tree

Inferring Polymorphic Types

fg=g 2
> £

 Example: :: (Int -> t 4) -> t 4

* Step 2:
Assign type variables

Inferring Polymorphic Types

fg=g 2
> £

 Example: :: (Int -> t 4) -> t 4

* Step 3:
Generate constraints

t0=t1->¢t4
tl=¢t3->t4
t 3 = Int

Inferring Polymorphic Types

f g=g 2
> f (Int -> t 4) -> t 4

* Example:

* Step 4:
Solve constraints

t0=¢t1->t4
tl=¢t3->t4
t 3 = Int

l ap

t 0= (Int -> t 4) -> t 4
t 1= Int->t 4
t_3 = Int

Inferring Polymorphic Types

o : fg=g2
Example: > f (Int -> t 4) -> t 4
* Step 5:
Determine type of top-level declaration
Unconstrained type

variables become
polymorphic types

t 0= (Int -> t 4) >t 4
t 1= Int->t 4
t_3 = Int

Using Polymorphic Functions

fg=g 2
> £

* Function: (Int -> t 4) -> t 4

* Possible applications:

add x = 2 + x isEven x = mod (x, 2) ==
> add :: Int -> Int > isEven:: Int -> Bool
f add f isEven

> 4 :: Int > True :: Bool

Recognizing Type Errors

e Function: £g=g2
>f :: (Int -> t 4) -> t 4

* |ncorrect use

not x = if x then True else False
> not :: Bool -> Bool
f not

> Error: operator and operand don’t agree
operator domain: Int -> a
operand: Bool -> Bool

* Type error:
cannot unify Bool — Bool and Int > t

Multiple Clauses

* Function with multiple clauses

append ([],r) =r
append (x:xs, r) = x : append (xs, r)

* |Infer type of each clause

— First clause:
> append :: ([t 1], t 2) -> t 2

— Second clause:
> append :: ([t 3], t 4) -> [t 3]

* Combine by equating types of two clauses
> append :: ([t 1], [t 1]) -> [t 1]

Most General Type

* Type inference produces the most general type

map (£, []) []
map (f, x:xs) f x : map (£, xs)
>map :: (t 1 ->t 2, [t 1]) -> [t 2]

e Functions may have many less general types

>map :: (t 1 ->1Int, [t 1]) -> [Int]
> map :: (Bool -> t 2, [Bool]) -> [t 2]
> map :: (Char -> Int, [Char]) -> [Int]

* Less general types are all instances of most general
type, also called the principal type

Type Inference Algorithm

* When Hindley/Milner type inference

algorithm was developed, its complexity was
unknown

* In 1989, Kanellakis, Mairson, and Mitchell
proved that the problem was exponential-
time complete

e Usually linear in practice though...

— Running time is exponential in the depth of
polymorphic declarations

Information from Type Inference

e Consider this function...

reverse [] = []
reverse (x:xXxs) = reverse Xs

... and its most general type:

> reverse :: [t 1] -> [t 2]

 What does this type mean?

Reversing a list should not change its type, so
there must be an error in the definition of reverse!

Type Inference: Key Points

Type inference computes the types of expressions

— Does not require type declarations for variables

— Finds the most general type by solving constraints

— Leads to polymorphism
Sometimes better error detection than type checking

— Type may indicate a programming error even if no type error
Some costs

— More difficult to identify program line that causes error

— Natural implementation requires uniform representation sizes

— Complications regarding assignment took years to work out
Idea can be applied to other program properties

— Discover properties of program using same kind of analysis

Spring 2014

JavaScript

John Mitchell
Adapted by Mooly Sagiv

Closures

e Return a function from function call
function f(x) {
vary =x;
return function (z){y += z; return y;}
}
var h = f(5);
h(3);
e Can use this idea to define objects with “private” fields

uniqgueld function () {
if (largument.calle.id) arguments.calee.id=0;
return arguments.callee.id++;

Iy

— Can implement breakpoints

Implementing Closures

function f(x) {
function g(y) { return x +v; };

return g ;
}
var h = f(3); h .
var = (a); undefined
var z = h(5); W ‘, N undefined

var w = j(7); undefined undefined

Implementing Closures(1)

function f(x) {
function g(y) { return x +v; };

return g ;
}
var h = f(3);
varj =f(4);
var z = h(5); W ,

var w = j(7); undefined undefined

Implementing Closures(2)

function f(x) {
function g(y) { return x +v; };
return g ;
}
var h =1(3);
varj =f(4);
var z = h(5);
varw=j(7); undefined

undefined

Implementing Closures(3)

function f(x) {
function g(y) { return x +v; };
return g ;

}

var h =1(3);

varj =f(4);

var z = h(5);

varw=j(7); undefined

Implementing Closures(4)

function f(x) {
function g(y) { return x +v; };
return g ;
}
var h =1(3);
varj =f(4);
var z = h(5);
var w =j(7);
h= null;

Garbage collection

* Automatic reclamation of unused memory

— Navigator 2: per page memory management
* Reclaim memory when browser changes page

— Navigator 3: reference counting
 Each memory region has associated count
e Count modified when pointers are changed
* Reclaim memory when count reaches zero
— Navigator 4: mark-and-sweep, or equivalent
* Garbage collector marks reachable memory
e Sweep and reclaim unreachable memory

Discuss garbage collection in connection with memory management

