Programming Language Recap

Mooly Sagiv

Languages

- Prolog
- Javascript
- Haskel
- Lua
- Scala
- Ruby

Concepts

- Syntax
 - Context free grammar
 - Ambiguous grammars
 - Syntax vs. semantics
- Static semantics
 - Scope rules
- Semantics
 - Small vs. big step
- Axiomatic semantics
- Static Analysis

- Functional programming
 - Lambda calculus
 - Recursion
 - Higher order programming
 - Lazy vs. Eager evaluation
 - Pattern matching
 - Continuation
- Types
 - Type safety
 - Static vs. dynamic
 - Type checking vs. type inference
 - Most general type
 - Polymorphism
 - Type inference algorithm

Non Ambiguous Grammars for Arithmetic Expressions

Ambiguous grammar

$1 E \rightarrow E + E$	$1 \text{ E} \rightarrow \text{E} + \text{T}$	$1 \text{ E} \rightarrow \text{E} * \text{T}$
2 E \rightarrow E * E	$2 \text{ E} \rightarrow \text{T}$	$2 \text{ E} \rightarrow \text{T}$
3 $E \rightarrow id$	$3 \text{ T} \rightarrow \text{T} * \text{F}$	$3 \text{ T} \rightarrow \text{F} + \text{T}$
4 $E \rightarrow (E)$	$4 \text{ T} \rightarrow \text{F}$	$4 \text{ T} \rightarrow \text{F}$
	5 F \rightarrow id	5 F \rightarrow id
	$6 \text{ F} \rightarrow (\text{E})$	$6 \text{ F} \rightarrow (\text{E})$

Formal Syntax and Semantics of Programming Languages

Mooly Sagiv Reference: Semantics with Applications Chapter 2 H. Nielson and F. Nielson http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

$$\begin{split} & \text{Natural Semantics for While}\\ & [ass_{ns}] < x := a, s > \rightarrow s[x \mapsto A[[a]]s]\\ & [skip_{ns}] < skip, s > \rightarrow s\\ & [comp_{ns}] < S_1, s > \rightarrow s', < S_2, s' > \rightarrow s''\\ & \rightarrow s''\\ & \hline (if^{\text{ft}}_{ns}] < S_1, s > \rightarrow s'\\ & \hline (if b \text{ then } S_1 \text{ else } S_2, s > \rightarrow s') & \text{ if } B[[b]]s = \text{tt} \end{split}$$

axioms

rules

Natural Semantics for While (More rules)

[while^{ff}_{ns}] <while b do S, s> \rightarrow s

if B[[b]]s=ff

 $[while^{tt}_{ns}] < S , s > \rightarrow s', < while b do S, s' > \rightarrow s'' \\ \hline < while b do S, s > \rightarrow s'' \qquad \text{if } \mathbf{B}[\![b]\!]s = tt$

A Derivation Tree

- A "proof" that $\langle S, s \rangle \rightarrow s'$
- The root of tree is $\langle S, s \rangle \rightarrow s'$
- Leaves are instances of axioms
- Internal nodes rules

- Immediate children match rule premises

• Simple Example

An Example Derivation Tree

assns

Top Down Evaluation of Derivation Trees

- Given a program S and an input state s
- Find an output state s' such that $\langle S, s \rangle \rightarrow s'$
- Start with the root and repeatedly apply rules until the axioms are reached
- Inspect different alternatives in order
- In While s' and the derivation tree is unique

The meaning of the program

- A proof tree
 - The root is labeled by <i, com> \rightarrow o
 - i is the input state
 - com is the abstract syntax tree of the program
 - o is the output state
 - Leafs axioms
 - Internal nodes are rules

Semantic Equivalence

- S₁ and S₂ are semantically equivalent if for all s and s'
 <S₁, s> → s' if and only if <S₂, s> → s'
- Simple example
 "while b do S"
 is semantically equivalent to:
 - "if b then (S; while b do S) else skip"

Properties of Natural Semantics

- Equivalence of program constructs
 - "skip ; skip" is semantically equivalent to "skip"
 - "((S₁ ; S₂) ; S₃)" is semantically equivalent to "(S₁ ; (S₂ ; S₃))"
 - "(x := 5 ; y := x * 8)" is semantically equivalent to "(x := 5; y := 40)"
- Deterministic

- If <S, s> \rightarrow s₁ and <S, s> \rightarrow s₂ then s₁=s₂

Deterministic Semantics for While

- If $\langle S, s \rangle \rightarrow s_1$ and $\langle S, s \rangle \rightarrow s_2$ then $s_1 = s_2$
- The proof uses induction on the shape of derivation trees
 - Prove that the property holds for all simple derivation trees by showing it holds for axioms
 - Prove that the property holds for all composite trees:
 - For each rule assume that the property holds for its premises (induction hypothesis) and prove it holds for the conclusion of the rule

Structural Semantics for While

$$[ass_{sos}] < x := a, s > \Rightarrow s[x \mapsto A[[a]]s]$$

$$[skip_{sos}] < skip, s > \Rightarrow s$$

$$[comp^{1}_{sos}] < S_{1}, s > \Rightarrow < S'_{1}, s' >$$

$$< S_{1}; S_{2}, s > \Rightarrow < S'_{1}; S_{2}, s' >$$

$$[comp^{2}_{sos}] < S_{1}, s > \Rightarrow s'$$

axioms

rules

$$\langle S_1; S_2, s \rangle \Rightarrow \langle S_2, s' \rangle$$

Structural Semantics for While if construct

 $[if_{sos}^{tt}] < if b then S_1 else S_2, s > \Rightarrow < S_1, s > if B[[b]]s=tt$

 $[if_{os}^{ff}] < if b then S_1 else S_2, s > \Rightarrow < S_2, s > if B[[b]]s=ff$

Structural Semantics for While while construct

[while_{sos}] <while b do S, s> \Rightarrow <if b then (S; while b do S) else skip, s>

Derivation Sequences

- A finite derivation sequence starting at <S, s> $\gamma_0, \gamma_1, \gamma_2 ..., \gamma_k$ such that $-\gamma_0 = <$ S, s>
 - $-\gamma_i \Longrightarrow \gamma_{i+1}$
 - γ_k is either stuck configuration or a final state
- An infinite derivation sequence starting at <S, s>
 - $\gamma_0, \gamma_1, \gamma_2 \dots$ such that

$$-\gamma_0 =$$

$$-\gamma_i \Longrightarrow \gamma_{i+1}$$

- $\gamma_0 \Rightarrow^i \gamma_i$ in i steps
- $\gamma_0 \Rightarrow^* \gamma_i$ in finite number of steps
- For each step there is a derivation tree

SOS vs. Natural Semantics

- Natural semantics is more intuitive
 - Simulates structural induction
- SOS allows to express more low level construct
 - Exposes implementation details
 - Program locastion
 - Storage

Untyped Lambda Calculus

t ::=	terms
X	variable
λ x. t	abstraction
tt	application

Terms can be represented as abstract syntax trees

Syntactic Conventions

• Applications associates to left

 $e_1 e_2 e_3 \equiv (e_1 e_2) e_3$

• The body of abstraction extends as far as possible

•
$$\lambda x$$
. λy . $x y x \equiv \lambda x$. (λy . ($x y$) x)

Free vs. Bound Variables

- An occurrence of x is free in a term t if it is not in the body on an abstraction λx . t
 - otherwise it is bound
 - $-\lambda x$ is a binder
- Examples
 - $-\lambda z. \lambda x. \lambda y. x (y z)$
 - (λx. x) x
- Terms w/o free variables are combinators

 Identify function: id = λ x. x

Operational Semantics $(\lambda x. t_{12}) t_2 \rightarrow [x \mapsto t_2] t_{12}$ (β -reduction)

FV: $t \rightarrow P(Var)$ is the set free variables of t $FV(x) = \{x\}$ $FV(\lambda x. t) = FV(t) - \{x\}$ $FV(t_1, t_2) = FV(t_1) \cup FV(t_2)$ $[x \mapsto s] x = s$ if $y \neq x$ $[x \mapsto s] y = y$ if $y \neq x$ and $y \notin FV(s)$ $[\mathbf{x} \mapsto \mathbf{s}] (\lambda \mathbf{y}, \mathbf{t}_1) = \lambda \mathbf{y}, [\mathbf{x} \mapsto \mathbf{s}] \mathbf{t}_1$ $[x \mapsto s] (t_1 t_2) = ([x \mapsto s] t_1) ([x \mapsto s] t_2)$

Operational Semantics

$$(\lambda \mathbf{x}, \mathbf{t}_{12}) \mathbf{t}_2 \rightarrow [\mathbf{x} \mapsto \mathbf{t}_2] \mathbf{t}_{12}$$
 (β -reduction)
redex

 $(\lambda x. x) y \rightarrow y$ $(\lambda x. x (\lambda x. x)) (u r) \rightarrow u r (\lambda x. x)$ $(\lambda x (\lambda w. x w)) (y z) \rightarrow \lambda w. y z w$

Lambda Calculus vs. JavaScript

$(\lambda \mathbf{x}, \mathbf{x}) \mathbf{y}$ (function (x) {return x;}) y

Spring 2014

Introduction to Haskell

Shachar Itzhaky & Mooly Sagiv (original slides by Kathleen Fisher & John Mitchell)

Example: Differentiate

• The differential operator

$$f'(x) = \lim_{h \to 0} (f(x+h)-f(x))/h$$

• In Haskell:

```
diff f = f_prime
    where
    f_prime x = (f (x + h) - f x) / h
    h = 0.0001
```

- diff :: (float -> float) -> (float -> float)
- (diff square) 0 = 0.0001
- (diff square) 0.0001 = 0.0003
- (diff (diff square)) 0 = 2

Pattern Matching

- Patterns can be used in place of variable names
 <pat> ::= <var> | <tuple> | <cons> | <record> ...
- Value declarations
 - General form: <pat> = <exp>
 - In global declarations

myTuple	<pre>= ("Flitwick",</pre>	"Snape")
(x,y)	= myTuple	
myList	= [1, 2, 3, 4]	
z:zs	= myList	

In local declarations

let (x, y) = (2, "Snape") in x * 4

Pattern Matching

• Explicit case expression

Map Function on Lists

Apply function to every element of list

```
map f [] = []
map f (x:xs) = f x : map f xs
map (x \rightarrow x+1) [1,2,3]
[2,3,4]
```

• Compare to Lisp

```
(define map
  (lambda (f xs)
    (if (eq? xs ()) ()
        (cons (f (car xs)) (map f (cdr xs)))
  )))
```

More Functions on Lists

• Append lists

append ([], ys) = ys
append (x:xs, ys) = x : append (xs, ys)

• Reverse a list

reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]

- Questions
 - How efficient is reverse?
 - Can it be done with only one pass through list?

More Efficient Reverse

Datatype Declarations

Examples

data Color = Red | Yellow | Blue

elements are Red, Yellow, Blue

data Atom = Atom String | Number Int

elements are Atom "A", Atom "B", ..., Number 0, ...

data AtomList = Nil | Cons Atom AtomList

elements are Nil, Cons (Atom "A") Nil, ...

Cons (Number 2) (Cons (Atom "Bill")) Nil, ...

• General form

```
data <name> = <clause> | ... | <clause>
  <clause> ::= <constructor> | <constructor> <type>
```

Type name and constructors must be Capitalized

Datatypes and Pattern Matching

Recursively defined data structure

data Tree = Leaf Int | Node (Int, Tree, Tree)


```
Recursive function
```

```
sum (Leaf n) = n
sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2)
```

Example: Evaluating Expressions

• Define datatype of expressions

data Exp = Var Int | Const Int | Plus (Exp, Exp)

write (x+3)+ y as Plus(Plus(Var 1, Const 3), Var 2)

Evaluation function

ev(Var n) = Var n
ev(Const n) = Const n
ev(Plus(e1,e2)) = ...

• Examples

ev(Plus(Const 3, Const 2)) Const 5

Use the Case Expression

Datatype

data Exp = Var Int | Const Int | Plus (Exp, Exp)

Case expression

case e of Var n -> ... Const n -> ... Plus(e1,e2) -> ...

Indentation matters in case statements in Haskell

Laziness

- Haskell is a lazy language
- Functions and data constructors don't evaluate their arguments until they need them

cond :: Bool -> a -> a -> a cond True t e = t cond False t e = e

Programmers can write control-flow operators that have to be built-in in eager languages

Short-	() :: Bool -> Bool -> Bool
circuiting	True x = True
"or"	False $ \mathbf{x} = \mathbf{x}$
Using Laziness

A Lazy Paradigm

- Generate all solutions (an enormous tree)
- Walk the tree to find the solution you want

```
nextMove :: Board -> Move
nextMove b = selectMove allMoves
where
allMoves = allMovesFrom b
```

A gigantic (perhaps infinite) tree of possible moves

Benefits of Lazy Evaluation

 Define streams: main = take 100 [1 ..]

 deriv f x = lim [(f (x + h) - f x) / h | h <- [1/2^n | n <- [1..]]]
 where lim (a:b:lst) = if abs(a/b-1) < eps then b
 else lim (b: lst)
 eps = 1.0 e-6

- Lower asymptotic complexity
- Language extensibility
 - Domain specific languages
- But some costs

Core Haskell

- Basic Types
 - Unit
 - Booleans
 - Integers
 - Strings
 - Reals
 - Tuples
 - Lists
 - Records

- Patterns
- Declarations
- Functions
- Polymorphism
- Type declarations
- Type Classes
- Monads
- Exceptions

Functional Programming Languages

PL	types	evaluation	Side-effect
Scheme Racket	Dynamically typed	Eager	yes
ML OCAML F#	Polymorphic strongly typed	Eager	References
Haskell	Polymorphic strongly typed	Lazy	None

Types and Type Inference

Mooly Sagiv Slides by Kathleen Fisher and John Mitchell

Reading: "Concepts in Programming Languages", Revised Chapter 6 - handout on the course homepage

Expressiveness

• In JavaScript, we can write a function like

function $f(x) \{ return x < 10 ? x : x(); \}$

Some uses will produce type error, some will not

• Static typing always conservative

```
if (complicated-boolean-expression)
then f(5);
else f(15);
```

Type Safety

- Type safe programming languages protect its own abstractions
- Type safe programs cannot go wrong
- No run-time errors
- But exceptions are fine
- The small step semantics cannot get stuck
- Type safety is proven at language design time

Relative Type-Safety of Languages

- Not safe: BCPL family, including C and C++

 Casts, unions, pointer arithmetic
- Almost safe: Algol family, Pascal, Ada
 - Dangling pointers
 - Allocate a pointer p to an integer, deallocate the memory referenced by p, then later use the value pointed to by p
 - Hard to make languages with explicit deallocation of memory fully type-safe
- Safe: Lisp, Smalltalk, ML, Haskell, Java, JavaScript
 - Dynamically typed: Lisp, Smalltalk, JavaScript
 - Statically typed: ML, Haskell, Java

If code accesses data, it is handled with the type associated with the creation and previous manipulation of that data

Type Checking vs Type Inference

• Standard type checking:

int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };

- Examine body of each function
- Use declared types to check agreement
- Type inference:

```
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };
```

- Examine code without type information
- Infer the most general types that could have been declared

ML and Haskell are *designed* to make type inference feasible

Step 1: Parse Program

• Parse program text to construct parse tree

Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence

Step 3: Add Constraints

Step 4: Solve Constraints

Step 5: Determine type of declaration

Unification

- Given two type terms t₁, t₂
- Compute the most general unifier of t₁ and t₂
 - A mapping m from type variables to typed terms such that
 - $t_1 \{m\} == t_2 \{m\}$
 - Every other unifier is a refinement of m
- Example

 $mgu(t_3 \rightarrow t_4, Int \rightarrow (Int \rightarrow Int) = [t_3 \rightarrow Int, t_4 \rightarrow Int \rightarrow Int] =$

Type Inference Algorithm

- Parse program to build parse tree
- Assign type variables to nodes in tree
- Generate constraints:
 - From environment: literals (2), built-in operators (+), known functions (tail)
 - From form of parse tree: e.g., application and abstraction nodes
- Solve constraints using *unification*
- Determine types of top-level declarations

Constraints from Application Nodes

- Function application (apply f to x)
 - Type of f (t_0 in figure) must be domain \rightarrow range
 - Domain of f must be type of argument x (t_1 in fig)
 - Range of f must be result of application (t_2 in fig)
 - Constraint: t_0 = t_1 -> t_2

Constraints from Abstractions

- Function declaration:
 - Type of f (t_0 in figure) must domain \rightarrow range
 - Domain is type of abstracted variable x (t_1 in fig)
 - Range is type of function body e (t_2 in fig)
 - Constraint: t_0 = t_1 -> t_2

• Example:

t 4

• Step 1: Build Parse Tree

• Example:

 Step 2: Assign type variables

t 4

• Example:

t 4

• Step 3:

Generate constraints

• Example:

Step 4:
 Solve constraints

• Example:

 Step 5: Determine type of top-level declaration

Using Polymorphic Functions

• Function:

• Possible applications:

add x = 2 + x
> add :: Int -> Int
f add
> 4 :: Int

isEven x = mod (x, 2) == 0
> isEven:: Int -> Bool

f isEven

> True :: Bool

Recognizing Type Errors

• Function:

Incorrect use

```
not x = if x then True else False
> not :: Bool -> Bool
f not
> Error: operator and operand don't agree
operator domain: Int -> a
operand: Bool -> Bool
```

• Type error: cannot unify Bool \rightarrow Bool and Int \rightarrow t

Multiple Clauses

• Function with multiple clauses

append ([],r) = r
append (x:xs, r) = x : append (xs, r)

- Infer type of each clause
 - First clause:

> append :: ([t_1], t_2) -> t_2

– Second clause:

> append :: ([t_3], t_4) -> [t_3]

• Combine by equating types of two clauses

> append :: ([t_1], [t_1]) -> [t_1]

Most General Type

• Type inference produces the *most general type*

```
map (f, [] ) = []
map (f, x:xs) = f x : map (f, xs)
> map :: (t_1 -> t_2, [t_1]) -> [t_2]
```

• Functions may have many less general types

> map	::	(t_1	->	Int,	[t_1])	->	[Int]
> map	::	(Bool	->	t_2,	[Bool])	->	[t_2]
> map	::	(Char	->	Int,	[Char])	->	[Int]

 Less general types are all instances of most general type, also called the *principal type*

Type Inference Algorithm

- When Hindley/Milner type inference algorithm was developed, its complexity was unknown
- In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponentialtime complete
- Usually linear in practice though...
 - Running time is exponential in the depth of polymorphic declarations

Information from Type Inference

• Consider this function...

reverse [] = []
reverse (x:xs) = reverse xs

... and its most general type:

> reverse :: [t_1] -> [t_2]

• What does this type mean?

Reversing a list should not change its type, so there must be an error in the definition of reverse!

Type Inference: Key Points

- Type inference computes the types of expressions
 - Does not require type declarations for variables
 - Finds the most general type by solving constraints
 - Leads to polymorphism
- Sometimes better error detection than type checking
 - Type may indicate a programming error even if no type error
- Some costs
 - More difficult to identify program line that causes error
 - Natural implementation requires uniform representation sizes
 - Complications regarding assignment took years to work out
- Idea can be applied to other program properties
 - Discover properties of program using same kind of analysis

Spring 2014

JavaScript

John Mitchell Adapted by Mooly Sagiv

Closures

```
Return a function from function call
function f(x) {
var y = x;
return function (z){y += z; return y;}
}
var h = f(5);
h(3);
Can use this idea to define objects with "private" fields
uniqueld function () {
```

```
if (!argument.calle.id) arguments.calee.id=0;
return arguments.callee.id++;
};
```

Can implement breakpoints

Implementing Closures

Implementing Closures(1)

Implementing Closures(2)

Implementing Closures(3)

Implementing Closures(4)

Garbage collection

- Automatic reclamation of unused memory
 - Navigator 2: per page memory management
 - Reclaim memory when browser changes page
 - Navigator 3: reference counting
 - Each memory region has associated count
 - Count modified when pointers are changed
 - Reclaim memory when count reaches zero
 - Navigator 4: mark-and-sweep, or equivalent
 - Garbage collector marks reachable memory
 - Sweep and reclaim unreachable memory

Reference http://www.unix.org.ua/orelly/web/jscript/ch11_07.html Discuss garbage collection in connection with memory management