Programming Language Recap

Mooly Sagiv

Languages

- Prolog
- Javascript
- Haskel
- Lua
- Scala
- Rub

Concepts

- Syntax
	- Context free grammar
	- Ambiguous grammars
	- Syntax vs. semantics
- Static semantics
	- Scope rules
- Semantics
	- Small vs. big step
- Axiomatic semantics
- Static Analysis
- Functional programming
	- Lambda calculus
	- Recursion
	- Higher order programming
	- Lazy vs. Eager evaluation
	- Pattern matching
	- Continuation
- **Types**
	- Type safety
	- Static vs. dynamic
	- Type checking vs. type inference
	- Most general type
	- Polymorphism
	- Type inference algorithm

Non Ambiguous Grammars for Arithmetic Expressions

Ambiguous grammar

Formal Syntax and Semantics of Programming Languages

Mooly Sagiv Reference: Semantics with Applications Chapter 2 H. Nielson and F. Nielson http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

Natural Semantics for While
$[ass_{ns}] < x := a, s > \rightarrow s[x \mapsto A[[a]]s]$
$[skip_{ns}] < skip, s > \rightarrow s$
$[comp_{ns}] < S_1, s > \rightarrow s', < S_2, s' > \rightarrow s''$
$[iftt_{ns}] < S_1, s > \rightarrow s'$
$[iftt_{ns}] < S_1, s > \rightarrow s'$
$[iftt_{ns}] < S_2, s > \rightarrow s'$
$[ifff_{ns}] < S_2, s > \rightarrow s'$
$[ifff_{ns}] < S_2, s > \rightarrow s'$
$[ifff_{ns}] < S_2, s > \rightarrow s'$
$[ifff_{ns}] < S_2, s > \rightarrow s'$

Natural Semantics for While (More rules)

 $[white^{ff}_{ns}]$

 \le while b do S, s> \rightarrow s

if $B\|b\|s=ff$

[while^{tt}_{ns}] <S, s> \rightarrow s', <while b do S, s'> \rightarrow s'' $\overline{\text{while }b \text{ do }S, s > \rightarrow s''}$ if $B[\![b]\!]$ s=tt

A Derivation Tree

- A "proof" that $\langle S, s \rangle \rightarrow s'$
- The root of tree is $\langle S, s \rangle \rightarrow s'$
- Leaves are instances of axioms
- Internal nodes rules

– Immediate children match rule premises

• Simple Example

An Example Derivation Tree

Top Down Evaluation of Derivation Trees

- Given a program S and an input state s
- Find an output state s' such that $\langle S, s \rangle \rightarrow s'$
- Start with the root and repeatedly apply rules until the axioms are reached
- Inspect different alternatives in order
- In While s' and the derivation tree is unique

The meaning of the program

- A proof tree
	- $-$ The root is labeled by $\langle i, \text{com}\rangle \rightarrow o$
		- i is the input state
		- com is the abstract syntax tree of the program
		- o is the output state
	- Leafs axioms
	- Internal nodes are rules

Semantic Equivalence

- \bullet S₁ and S₂ are semantically equivalent if for all s and s' $\langle S_1, s \rangle \rightarrow s'$ if and only if $\langle S_2, s \rangle \rightarrow s'$
- Simple example "while b do S"

is semantically equivalent to:

"if b then (S ; while b do S) else skip"

Properties of Natural Semantics

- Equivalence of program constructs
	- "skip ; skip" is semantically equivalent to "skip"
	- $-$ "((S₁; S₂); S₃)" is semantically equivalent to "(S₁;(S_2 ; S_3))"
	- $-$ " $(x := 5 ; y := x * 8"$ is semantically equivalent to " $(x := 5; y := 40$ "
- Deterministic

 $-$ If <S, s> \rightarrow s₁ and <S, s> \rightarrow s₂ then s₁=s₂

Deterministic Semantics for While

- If $\langle S, s \rangle \rightarrow s_1$ and $\langle S, s \rangle \rightarrow s_2$ then $s_1 = s_2$
- The proof uses induction on the shape of derivation trees
	- Prove that the property holds for all simple derivation trees by showing it holds for axioms
	- Prove that the property holds for all composite trees:
		- For each rule assume that the property holds for its premises (induction hypothesis) and prove it holds for the conclusion of the rule

Structural Semantics for While
$[ass_{sos}] < x := a, s > \Rightarrow s[x \mapsto A[[a]]s]$
$[skip_{sos}] < skip, s > \Rightarrow s$
$[comp^1_{sos}] < S_1, s > \Rightarrow < S'_1, s'_2$
$[comp^2_{sos}] < S_1, s > \Rightarrow < S'_1, S_2, s' >$

 $\langle S_1; S_2, s \rangle \Rightarrow \langle S_2, s' \rangle$

Structural Semantics for While if construct

[if^{tt}_{sos}] <if b then S_1 else S_2 , s> \Rightarrow < S_1 if $B\|b\|$ s=tt

[if^{ff}_{os}] \langle if b then S₁ else S₂, s> \Rightarrow <S₂ if $B\|b\|s=ff$

Structural Semantics for While while construct

[while_{sos}] <while b do S, s> \Rightarrow <if b then (S; while b do S) else skip, s>

Derivation Sequences

- A finite derivation sequence starting at <S, s> γ_{0} , γ_{1} , γ_{2} $...,$ γ_{k} such that $-\gamma_0 = , s>$
	- $-\gamma_i \implies \gamma_{i+1}$
	- $-\gamma_k$ is either stuck configuration or a final state
- An infinite derivation sequence starting at <S, S
	- γ_0 , γ_1 , γ_2 ... such that
	- $-\gamma_0 = < S$, s>

$$
-\,\gamma_i\!\Rightarrow\!\gamma_{i\texttt{+1}}
$$

- $\gamma_0 \implies \gamma_i$ in i steps
- $\gamma_0 \Longrightarrow^* \gamma_i$ in finite number of steps
- For each step there is a derivation tree

SOS vs. Natural Semantics

- Natural semantics is more intuitive
	- Simulates structural induction
- SOS allows to express more low level construct
	- Exposes implementation details
		- Program locastion
		- Storage

Untyped Lambda Calculus

Terms can be represented as abstract syntax trees

Syntactic Conventions

• Applications associates to left

 $e_1 e_2 e_3 \equiv (e_1 e_2) e_3$

• The body of abstraction extends as far as possible

•
$$
\lambda x. \lambda y. x y x \equiv \lambda x. (\lambda y. (x y) x)
$$

Free vs. Bound Variables

- An occurrence of x is free in a term t if it is not in the body on an abstraction λx . t
	- otherwise it is bound
	- $-\lambda x$ is a binder
- Examples
	- λ z. λ x. λ y. x (y z)
	- $-$ (λ x. x) x
- Terms w/o free variables are combinators – Identify function: $id = \lambda x. x$

Operational Semantics $(\lambda x. t_{12}) t_2 \rightarrow [x \mapsto t_2] t_{12}$ $(\beta$ -reduction)

 $[x \mapsto s] x = s$ $[x \mapsto s] y = y$ if $y \neq x$ $[x \mapsto s] (\lambda y. t_1) = \lambda y. [x \mapsto s] t_1$ if $y \neq x$ and $y \notin FV(s)$ $[x \mapsto s]$ $(t_1 t_2) = ([x \mapsto s] t_1)$ $([x \mapsto s] t_2)$ FV: $t \rightarrow P(Var)$ is the set free variables of t $FV(x) = {x}$ FV(λ x. t) = FV(t) – {x} FV $(t_1 t_2)$ = FV (t_1) \cup FV (t_2)

Operational Semantics

$$
(\lambda x. t_{12}) t_2 \rightarrow [x \mapsto t_2] t_{12} \qquad (\beta\text{-reduction})
$$

redex

 $(\lambda x. x) y \rightarrow y$ $(\lambda x. x (\lambda x. x)) (u r) \rightarrow uu r (\lambda x. x)$

 $(\lambda \times (\lambda w. \times w)) (y z) \rightarrow \lambda w. y z w$

Lambda Calculus vs. JavaScript

$(\lambda x. x) y$ (function (x) {return $x;$ }) y

Spring 2014

Introduction to Haskell

Shachar Itzhaky & Mooly Sagiv (original slides by Kathleen Fisher & John Mitchell)

Example: Differentiate

• The differential operator

```
f'(x) = \lim_{h\to 0} (f(x+h)-f(x))/h
```
• In Haskell:

```
diff f = f_prime
      where
        f_prime x = (f (x + h) – f x) / h
        h = 0.0001
```
- **diff :: (float -> float) -> (float -> float)**
- **(diff square) 0 = 0.0001**
- **(diff square) 0.0001 = 0.0003**
- **(diff (diff square)) 0 = 2**

Pattern Matching

- Patterns can be used in place of variable names <pat> ::= <var> | <tuple> | <cons> | <record> …
- Value declarations
	- $-$ General form: \langle \rangle <pat > = \langle exp >
	- In global declarations

– In local declarations

 $let (x, y) = (2, "Shape") in x * 4$

Pattern Matching

• Explicit case expression

```
myTuple = ("Flitwick", "Snape")
v = case myTuple of
       (x, "Snape") -> x ++ "?"
       ("Flitwick", y) -> y ++ "!"
                      _ -> "?!"
```
Map Function on Lists

• Apply function to every element of list

$$
\begin{array}{ll}\n \text{map } f [] = [] \\
 \text{map } f (x : xs) = f x : \text{map } f xs \\
 \text{map } (\x \rightarrow x+1) [1, 2, 3] & \text{max } (2, 3, 4]\n \end{array}
$$

• Compare to Lisp

```
(define map 
     (lambda (f xs)
       (if (eq? xs ()) ()
        (cons (f (car xs)) (map f (cdr xs)))
   )))
```
More Functions on Lists

• Append lists

– **append ([], ys) = ys** – **append (x:xs, ys) = x : append (xs, ys)**

• Reverse a list

– **reverse [] = []** – **reverse (x:xs) = (reverse xs) ++ [x]**

- Questions
	- How efficient is reverse?
	- Can it be done with only one pass through list?

More Efficient Reverse

Datatype Declarations

• Examples

–

data Color = Red | Yellow | Blue

```
elements are Red, Yellow, Blue
```
data Atom = Atom String | Number Int

elements are Atom "A", Atom "B", …, Number 0, ...

data AtomList = Nil | Cons Atom AtomList

elements are Nil, Cons (Atom "A") Nil, …

Cons (Number 2) (Cons (Atom "Bill")) Nil, ...

• General form

```
data <name> = <clause> | \dots |<clause>
<clause> ::= <constructor> | <constructor> <type>
```
– Type name and constructors must be Capitalized

Datatypes and Pattern Matching

■ Recursively defined data structure

data Tree = Leaf Int | Node (Int, Tree, Tree)

sum (Leaf n) = n sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2)

Example: Evaluating Expressions

• Define datatype of expressions

data Exp = Var Int | Const Int | Plus (Exp, Exp)

write (x+3)+ y as Plus(Plus(Var 1, Const 3), Var 2)

• Evaluation function

ev(Var n) = Var n ev(Const n) = Const n ev(Plus(e1,e2)) = …

• Examples

ev(Plus(Const 3, Const 2)) Const 5

Use the Case Expression

■ Datatype

data Exp = Var Int | Const Int | Plus (Exp, Exp)

■ Case expression

case e of Var n -> … Const n -> … Plus(e1,e2) -> …

Indentation matters in case statements in Haskell

Laziness

- Haskell is a lazy language
- Functions and data constructors don't evaluate their arguments until they need them

cond :: Bool -> a -> a -> a cond True t e = t cond False t e = e

Programmers can write control-flow operators that have to be built-in in eager languages

Using Laziness

isSubString :: String -> String -> Bool x `isSubString` s = or [x `isPrefixOf` t | t <- suffixes s]

or :: [Bool] -> Bool -- (or bs) returns True if any of the bs is True or [] = False or (b:bs) = b || or bs

A Lazy Paradigm

- Generate all solutions (an enormous tree)
- Walk the tree to find the solution you want

```
nextMove :: Board -> Move
nextMove b = selectMove allMoves
 where
     allMoves = allMovesFrom b
```
A gigantic (perhaps infinite) tree of possible moves

Benefits of Lazy Evaluation

• Define streams: **main = take 100 [1 ..] deriv f x = lim [(f (x + h) – f x) / h | h <- [1/2^n | n <- [1..]]]** $where$ \lim $(a:b:1st) = if$ $abs(a/b-1) < eps$ then b **else lim (b: lst) eps = 1.0 e-6**

- Lower asymptotic complexity
- Language extensibility
	- Domain specific languages
- But some costs

Core Haskell

- Basic Types
	- Unit
	- Booleans
	- Integers
	- Strings
	- Reals
	- Tuples
	- Lists
	- Records
- Patterns
- Declarations
- Functions
- Polymorphism
- Type declarations
- *Type Classes*
- *Monads*
- *Exceptions*

Functional Programming Languages

Types and Type Inference

Mooly Sagiv Slides by Kathleen Fisher and John Mitchell

Reading: "Concepts in Programming Languages", Revised Chapter 6 - handout on the course homepage

Expressiveness

• In JavaScript, we can write a function like

```
function f(x) { return x < 10 ? x : x(); }
```
Some uses will produce type error, some will not

• Static typing always conservative

```
 Cannot decide at compile time if run-time error will occur!
     if (complicated-boolean-expression)
    then f(5);
     else f(15);
```
Type Safety

- Type safe programming languages protect its own abstractions
- Type safe programs cannot go wrong
- No run-time errors
- But exceptions are fine
- The small step semantics cannot get stuck
- Type safety is proven at language design time

Relative Type-Safety of Languages

• Not safe: BCPL family, including C and C++

– Casts, unions, pointer arithmetic

- Almost safe: Algol family, Pascal, Ada
	- Dangling pointers
		- Allocate a pointer p to an integer, deallocate the memory referenced by p, then later use the value pointed to by p
		- Hard to make languages with explicit deallocation of memory fully type-safe
- Safe: Lisp, Smalltalk, ML, Haskell, Java, JavaScript
	- Dynamically typed: Lisp, Smalltalk, JavaScript
	- Statically typed: ML, Haskell, Java

If code accesses data, it is handled with the type associated with the creation and previous manipulation of that data

Type Checking vs Type Inference

• Standard type checking:

int f(int x) { return x+1; }; int g(int y) { return f(y+1)*2; };

- Examine body of each function
- Use declared types to check agreement
- Type inference:

```
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };
```
- Examine code without type information
- Infer the most general types that could have been declared

ML and Haskell are *designed* to make type inference feasible

Step 1: Parse Program

• Parse program text to construct parse tree

Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence

Step 3: Add Constraints

Step 4: Solve Constraints

Step 5: Determine type of declaration

Unification

- Given two type terms t_1 , t_2
- Compute the most general unifier of t_1 and t_2
	- A mapping m from type variables to typed terms such that
		- t_1 {m } == t_2 {m}
		- Every other unifier is a refinement of m
- Example

mgu(**t_3 -> t_4, Int -> (Int -> Int)=** $[t_3 \rightarrow Int, t_4 \rightarrow Int -\geq Int]=$

Type Inference Algorithm

- Parse program to build parse tree
- Assign type variables to nodes in tree
- Generate constraints:
	- From environment: literals (2), built-in operators (+), known functions (tail)
	- From form of parse tree: e.g., application and abstraction nodes
- Solve constraints using *unification*
- Determine types of top-level declarations

Constraints from Application Nodes

- Function application (apply f to x)
	- $-$ Type of f (t 0 in figure) must be domain \rightarrow range
	- $-$ Domain of f must be type of argument x (t 1 in fig)
	- Range of f must be result of application $(t_2$ in fig)
	- Constraint: t 0 = t 1 -> t 2

Constraints from Abstractions

- Function declaration:
	- $-$ Type of f (t 0 in figure) must domain \rightarrow range
	- $-$ Domain is type of abstracted variable x (t 1 in fig)
	- $-$ Range is type of function body e $(t_2$ in fig)
	- $-$ Constraint: t 0 = t 1 -> t 2

• Example:

$$
f g = g 2
$$

> f :: (Int -> t_4) -> t_4

• Step 1: Build Parse Tree

• Example:

$$
f g = g 2
$$

> f :: (Int -> t 4) -> t 4

• Step 2: Assign type variables

• Example:

$$
f g = g 2
$$

> f :: (Int -> t_4) -> t_4

• Step 3: Generate constraints

• Example:

$$
f \, g = g \, 2
$$

> f :: (Int -> t_4) -> t_4

• Step 4: Solve constraints

• Example:

$$
f g = g 2
$$

> f :: (Int -> t 4) -> t 4

• Step 5: Determine type of top-level declaration

Using Polymorphic Functions

• Function:

```
f g = g 2
> f :: (Int -> t_4) -> t_4
```
• Possible applications:

 $\text{add } x = 2 + x$ **> add :: Int -> Int f add > 4 :: Int**

isEven $x = mod (x, 2) == 0$ **> isEven:: Int -> Bool**

f isEven

> True :: Bool

Recognizing Type Errors

• Function:

```
f g = g 2
> f :: (Int -> t_4) -> t_4
```
• Incorrect use

```
not x = if x then True else False 
> not :: Bool -> Bool
f not
> Error: operator and operand don't agree
   operator domain: Int -> a
   operand: Bool -> Bool
```
• Type error: cannot unify Bool \rightarrow Bool and Int \rightarrow t

Multiple Clauses

• Function with multiple clauses

append ([],r) = r append (x:xs, r) = x : append (xs, r)

- Infer type of each clause
	- First clause:

> append :: ([t_1], t_2) -> t_2

– Second clause:

> append :: ([t_3], t_4) -> [t_3]

• Combine by equating types of two clauses

> append :: ([t_1], [t_1]) -> [t_1]

Most General Type

• Type inference produces the *most general type*

```
map (f, [] ) = []
map (f, x:xs) = f x:map (f, xs)
> map :: (t_1 -> t_2, [t_1]) -> [t_2]
```
• Functions may have many less general types

• Less general types are all instances of most general type, also called the *principal type*

Type Inference Algorithm

- When Hindley/Milner type inference algorithm was developed, its complexity was unknown
- In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponentialtime complete
- Usually linear in practice though...
	- Running time is exponential in the depth of polymorphic declarations

Information from Type Inference

• Consider this function…

reverse [] = [] reverse (x:xs) = reverse xs

… and its most general type:

> reverse :: [t_1] -> [t_2]

• What does this type mean?

Reversing a list should not change its type, so there must be an error in the definition of reverse!

Type Inference: Key Points

- Type inference computes the types of expressions
	- Does not require type declarations for variables
	- Finds the most general type by solving constraints
	- Leads to polymorphism
- Sometimes better error detection than type checking
	- Type may indicate a programming error even if no type error
- Some costs
	- More difficult to identify program line that causes error
	- Natural implementation requires uniform representation sizes
	- Complications regarding assignment took years to work out
- Idea can be applied to other program properties
	- Discover properties of program using same kind of analysis

Spring 2014

JavaScript

John Mitchell Adapted by Mooly Sagiv

Closures

```
• Return a function from function call
       function f(x) {
           var y = x;
           return function (z){y == z}; return y;
         }
        var h = f(5);
        h(3);
• Can use this idea to define objects with "private" fields
```

```
uniqueId function () {
  if (!argument.calle.id) arguments.calee.id=0;
  return arguments.callee.id++;
};
```
– Can implement breakpoints

Implementing Closures

Implementing Closures(1)

Implementing Closures(2)

Implementing Closures(3)

Implementing Closures(4)

Garbage collection

- Automatic reclamation of unused memory
	- Navigator 2: per page memory management
		- Reclaim memory when browser changes page
	- Navigator 3: reference counting
		- Each memory region has associated count
		- Count modified when pointers are changed
		- Reclaim memory when count reaches zero
	- Navigator 4: mark-and-sweep, or equivalent
		- Garbage collector marks reachable memory
		- Sweep and reclaim unreachable memory

Reference http://www.unix.org.ua/orelly/web/jscript/ch11_07.html Discuss garbage collection in connection with memory management