
Programming Language Recap 

Mooly Sagiv 



Languages 

• Prolog 

• Javascript 

• Haskel 

• Lua 

• Scala 

• Ruby 



Concepts 

• Syntax  

– Context free grammar 

– Ambiguous grammars 

– Syntax vs. semantics 

• Static semantics 

– Scope rules 

• Semantics 

– Small vs. big step 

• Axiomatic semantics 

• Static Analysis 

• Functional programming 
– Lambda calculus 

– Recursion 

– Higher order programming 

– Lazy vs. Eager evaluation 

– Pattern matching 

– Continuation 

• Types 

– Type safety 

– Static vs. dynamic 

– Type checking vs. type inference 

– Most general type 

– Polymorphism 

– Type inference algorithm 

 



Non Ambiguous Grammars 
for Arithmetic Expressions 

Ambiguous grammar 

1 E  E + T 
2 E  T 
3 T  T * F 
4 T  F 
5 F  id 
6 F  (E) 

1  E  E + E 
2  E  E * E 
3  E  id 
4  E  (E) 

1 E  E * T 
2 E  T 
3 T  F + T 
4 T  F 
5 F  id 
6 F  (E) 

4 



Formal Syntax and 
Semantics of Programming 

Languages 

Mooly Sagiv 

Reference: Semantics with Applications 

Chapter 2 

H. Nielson and F. Nielson 
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html 



Natural Semantics for While 
[assns] <x := a, s>  s[x Aas] 

[skipns] <skip, s>  s 

 [compns] <S1 , s>  s’, <S2, s’>  s’’ 

                  <S1; S2, s>  s’’  

 [iftt
ns] <S1 , s>  s’ 

          <if b then S1 else S2, s>  s’  

 

if Bbs=tt 

[ifff
ns] <S2 , s>  s’ 

          <if b then S1 else S2, s>  s’  

 

if Bbs=ff 

axioms 

rules 



Natural Semantics for While 
(More rules) 

[whilett
ns] <S , s>  s’, <while b do S, s’>  s’’ 

                 <while b do S, s>  s’’  

 

if Bbs=tt 

[whileff
ns]  

                 <while b do S, s>  s 

 

if Bbs=ff 



A Derivation Tree 

• A “proof” that <S, s> s’ 

• The root of tree is <S, s> s’ 

• Leaves are instances of axioms 

• Internal nodes rules  

– Immediate children match rule premises 

• Simple Example 
 <skip; x := x +1, s0> s0[x 1]> 

 

<skip, s0> s0  
 

< x := x +1, s0> s0[x 1]> 
 

compns 



An Example Derivation Tree 

<(x :=x+1; y :=x+1) ;  z := y), s0> s0[x 1][y 2][z 2] 
 
 

<x :=x+1; y :=x+1, s0> s0[x 1][y 2] <z :=y,s0[x 1][y 2]>s0[x1][y2][z 2] 

<x :=x+1; s0> s0[x 1] <y :=x+1, s0[x 1]> s0[x 1][y 2] 

compns 

compns 

assns assns 



Top Down Evaluation of Derivation Trees 

• Given a program S and an input state s 

• Find an output state s’ such that 
 <S, s> s’ 

• Start with the root and repeatedly apply rules 
until the axioms are reached 

• Inspect different alternatives in order 

• In While s’ and the derivation tree is unique 



The meaning of the program 

• A proof tree  

– The root is labeled by <i, com> o 

• i is the input state 

• com is the abstract syntax tree of the program 

• o is the output state 

– Leafs axioms 

– Internal nodes are rules 



Semantic Equivalence 

• S1 and S2 are semantically equivalent if 
 for all s and s’ 
<S1, s>  s’ if and only if <S2, s>  s’  

• Simple example 
“while b do S” 
is semantically equivalent to: 
“if b then (S ; while b do S) else skip” 



Properties of Natural Semantics 

• Equivalence of program constructs 

– “skip ; skip” is semantically equivalent to “skip” 

– “((S1 ; S2) ; S3)” is semantically equivalent to “(S1 ;( 
S2 ; S3))” 

– “(x := 5 ; y := x * 8)” is semantically equivalent to 
“(x :=5; y := 40)” 

•  Deterministic 

– If <S, s>  s1 and <S, s>  s2 then s1=s2 

 

 



Deterministic Semantics for While 

•  If <S, s>  s1 and <S, s>  s2 then s1=s2 

• The proof uses induction on the shape of 
derivation trees 
– Prove that the property holds for all simple 

derivation trees by showing it holds for axioms 

– Prove that the property holds for all composite 
trees:  

• For each rule assume that the property holds for its 
premises (induction hypothesis) and prove it holds for 
the conclusion of the rule 



Structural Semantics for While 
[asssos] <x := a, s>  s[x Aas] 

[skipsos] <skip, s>  s 

 [comp1
sos] <S1 , s>  <S’1, s’> 

                  <S1; S2, s>   < S’1; S2, s’>  

 

axioms 

rules 

[comp2
sos] <S1 , s> s’ 

                  <S1; S2, s>   < S2, s’>  

 



Structural Semantics for While 
if construct 

[iftt
sos]  <if b then S1 else S2, s> <S1, s>  

 

if Bbs=tt 

[ifff
os]  <if b then S1 else S2, s> <S2, s>  

 

if Bbs=ff 



Structural Semantics for While 
while construct 

[whilesos]  <while b do S, s>  
                 <if b then (S; while b do S) else skip, s>                    

 



Derivation Sequences  
• A finite derivation sequence  starting at <S, s> 
0, 1, 2 …, k  such that 
– 0=<S, s>  
– i  i+1 

– k is either stuck configuration or a final state 

• An infinite derivation sequence  starting at <S, 
s> 
0, 1, 2 …  such that 
– 0=<S, s>  
– i  i+1 

• 0 i i  in i steps 
• 0 * i  in finite number of steps 
• For each step there is a derivation tree 



SOS vs. Natural Semantics 

• Natural semantics is more intuitive 

– Simulates structural induction 

• SOS allows to express more low level 
construct 

– Exposes  implementation details 

• Program locastion 

• Storage 

 



Untyped Lambda Calculus 

t ::= terms 

     x variable 

     x. t abstraction 

     t t application 

Syntactic Conventions 

• Applications associates to left     
 e1 e2 e3   (e1 e2) e3 

• The body of abstraction extends as far as possible 

• x. y. x y x  x. (y. (x y) x) 

Terms can be represented as abstract syntax trees 



Free vs. Bound Variables 

• An occurrence of x is free in a term t if it is not in the 
body on an abstraction x. t  
– otherwise it is bound 
– x is a binder 

• Examples 
– z. x. y. x (y z) 
– (x. x) x 

• Terms w/o free variables are combinators 
– Identify function: id =  x. x  

 



Operational Semantics 

[x↦s] x = s 

[x↦s] y = y if y  x 

[x↦s] (y. t1) = y. [x ↦s] t1 if y  x and yFV(s) 

[x↦s] (t1 t2) = ([x↦s] t1) ([x↦s] t2)  

FV: t  P(Var) is the set free variables of t 

FV(x) = {x} 

FV( x. t) = FV(t) – {x} 

FV (t1 t2) = FV(t1)  FV(t2) 
 

( x. t12) t2  [x ↦t2] t12 (-reduction) 



Operational Semantics 

( x. t12) t2  [x ↦ t2] t12 (-reduction) 

( x. x) y   

( x. x ( x. x) ) (u r)  

y 

u r ( x.x) 

( x (w. x w)) (y z)  w. y z w 

redex 



Lambda Calculus vs. JavaScript 

( x. x) y  (function (x) {return x;}) y  



Introduction to Haskell 

Shachar Itzhaky & Mooly Sagiv 

(original slides by Kathleen Fisher & John Mitchell) 

Spring 2014 



Example: Differentiate 
• The differential operator 

 f’(x) = lim h0 (f(x+h)-f(x))/h 

• In Haskell: 
 

 

 

 
• diff :: (float -> float) -> (float -> float) 

• (diff square) 0 = 0.0001 

• (diff square) 0.0001 = 0.0003 

• (diff (diff square)) 0 = 2  

diff f = f_prime 

     where 

       f_prime x = (f (x + h) – f x) / h 

       h = 0.0001 



Pattern Matching 

• Patterns can be used in place of variable names 
    <pat> ::= <var> | <tuple> | <cons> | <record> … 

• Value declarations 
– General form:       <pat> = <exp> 

– In global declarations 
  

  

  

  

– In local declarations 
•   

myTuple = (“Flitwick”, “Snape”) 

(x,y)   = myTuple 

myList  = [1, 2, 3, 4] 

z:zs    = myList 

let (x,y) = (2, “Snape”) in x * 4  



Pattern Matching 

• Explicit case expression 

myTuple = (“Flitwick”, “Snape”) 

v = case myTuple of 

      (x, “Snape”)    ->  x ++ “?” 

      (“Flitwick”, y) ->  y ++ “!” 

      _               ->  “?!” 



Map Function on Lists 

• Apply function to every element of list 

  

 

 

• Compare to Lisp 

  

 

map f [] = [] 

map f (x:xs) = f x : map f xs 

(define map  

    (lambda (f  xs) 

      (if   (eq? xs ())  () 

      (cons (f  (car xs))  (map f  (cdr xs))) 

   ))) 

map (\x -> x+1) [1,2,3]               [2,3,4] 



More Functions on Lists  

• Append lists 
–   

–   

• Reverse a list 
–   

–   

• Questions 
– How efficient is reverse? 

– Can it be done with only one pass through list? 

append ([], ys) = ys 

append (x:xs, ys) = x : append (xs, ys) 

reverse [] = [] 

reverse (x:xs) = (reverse xs) ++ [x] 



More Efficient Reverse 

1 

2 

3 1 

2 

3 1 

2 

3 1 

2 

3 

reverse xs = 

    let rev ( [], accum ) = accum 

         rev ( y:ys, accum ) = rev ( ys, y:accum ) 

    in rev ( xs, [] ) 



Datatype Declarations  

• Examples 
–   

elements are Red, Yellow, Blue 

 
elements are Atom “A”, Atom “B”, …, Number 0,  ... 

 
elements are Nil, Cons (Atom “A”) Nil, … 

      Cons (Number 2) (Cons (Atom “Bill”)) Nil, ... 

• General form 
–   

 

– Type name and constructors must be Capitalized 

data Color = Red | Yellow | Blue 

data Atom = Atom String | Number Int 

data AtomList = Nil | Cons Atom AtomList 

data <name> = <clause> | … | <clause> 

<clause> ::= <constructor> | <constructor> <type> 



Datatypes and Pattern Matching 

 Recursively defined data structure 

  

 
  

                  

 

 Recursive function 

4 

5 

7 6 

3 

2 1 

data Tree = Leaf Int | Node (Int, Tree, Tree) 

Node(4, Node(3, Leaf 1, Leaf 2), 

        Node(5, Leaf 6, Leaf 7))          

sum (Leaf n) = n 

sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2) 



Example: Evaluating Expressions 

• Define datatype of expressions 

 

              write (x+3)+ y as Plus(Plus(Var 1, Const 3), Var 2) 

• Evaluation function 

 
 

• Examples 

 

 

 

data Exp = Var Int | Const Int | Plus (Exp, Exp) 

ev(Var n) = Var n 

ev(Const n) = Const n 

ev(Plus(e1,e2)) =  … 

ev(Plus(Const 3, Const 2))              Const 5 

ev(Plus(Var 1, Plus(Const 2, Const 3)))                                                              

                           Plus(Var 1, Const 5) 



Use the Case Expression 

 Datatype 

  

 Case expression 

  

 

  

 

Indentation matters in case statements in Haskell  

data Exp = Var Int | Const Int | Plus (Exp, Exp) 

case e of 

     Var n ->  …    

     Const n -> … 

     Plus(e1,e2) -> … 



Laziness 
 Haskell is a lazy language 

 Functions and data constructors don’t 
evaluate their arguments until they need 
them 

 

 

 Programmers can write control-flow operators 
that have to be built-in in eager languages 

 

cond :: Bool -> a -> a -> a 

cond True  t e = t 

cond False t e = e 

(||) :: Bool -> Bool -> Bool 

True  || x = True 

False || x = x 

Short-

circuiting  

“or” 



Using Laziness 

 

 

isSubString :: String -> String -> Bool 

x `isSubString` s = or [ x `isPrefixOf` t 

                       | t <- suffixes s ]  

suffixes:: String -> [String] 

-- All suffixes of s 

suffixes[]     = [[]] 

suffixes(x:xs) = (x:xs) : suffixes xs 

or :: [Bool] -> Bool 

-- (or bs) returns True if any of the bs is True 

or []     = False 

or (b:bs) = b || or bs 

type String = [Char] 



A Lazy Paradigm 

• Generate all solutions (an enormous tree) 

• Walk the tree to find the solution you want 

 

 
nextMove :: Board -> Move 

nextMove b = selectMove allMoves 

 where 

   allMoves = allMovesFrom b 

A gigantic (perhaps infinite) 

tree of possible moves  



Benefits of Lazy Evaluation 

• Define streams: 
main = take 100 [1 .. ] 

 

 

 

 

• Lower asymptotic complexity 

• Language extensibility 
– Domain specific languages 

• But some costs 

deriv f x = lim [(f (x + h) – f x) / h | h <- [1/2^n | n <- [1..]]] 

            where lim (a:b:lst) = if abs(a/b-1) < eps then b 

                                    else lim (b: lst) 

                  eps = 1.0 e-6 



Core Haskell 

• Basic Types 

– Unit 

– Booleans 

– Integers  

– Strings 

– Reals 

– Tuples 

– Lists 

– Records 

• Patterns 

• Declarations 

• Functions 

• Polymorphism 

• Type declarations 

• Type Classes 

• Monads 

• Exceptions 

 



Functional Programming Languages 

PL types evaluation Side-effect 

Scheme 
Racket 

Dynamically typed Eager yes 

ML 
OCAML 
F# 

Polymorphic  
strongly typed 

Eager References 

Haskell Polymorphic  
strongly typed 

Lazy None 



Types and Type Inference 

Mooly Sagiv 
Slides by  Kathleen Fisher and John Mitchell 

Reading: “Concepts in Programming Languages”,  
Revised Chapter 6 - handout on the course homepage             



Expressiveness 

• In JavaScript, we can write a function like 

 

Some uses will produce type error, some will not 

• Static typing always conservative  

 

 
  Cannot decide at compile time if run-time error will occur! 

function f(x) { return x < 10 ? x : x(); } 

if  (complicated-boolean-expression) 

then  f(5); 

 else  f(15); 



Type Safety 

• Type safe programming languages protect its 
own abstractions 

• Type safe programs cannot go wrong 

• No run-time errors 

• But exceptions are fine 

• The small step semantics cannot get stuck 

• Type safety is proven at language design time 

 



Relative Type-Safety of Languages  

• Not safe: BCPL family, including C and C++ 
– Casts, unions, pointer arithmetic 

• Almost safe: Algol family, Pascal, Ada 
– Dangling pointers 

• Allocate a pointer p to an integer, deallocate the memory 
referenced by p, then later use the value pointed to by p  

• Hard to make languages with explicit deallocation of 
memory fully type-safe 

• Safe: Lisp, Smalltalk, ML, Haskell, Java, JavaScript 
– Dynamically typed: Lisp, Smalltalk, JavaScript 
– Statically typed: ML, Haskell, Java 

If code accesses data, it is handled with the type associated with the 
creation and previous manipulation of that data 



• Standard type checking: 
       

 
– Examine body of each function                            
– Use declared types to check agreement 

• Type inference: 
 
 

– Examine code without type information 
– Infer the most general types that could have been 

declared 

 

int f(int x) { return x+1; }; 

int g(int y) { return f(y+1)*2; }; 

Type Checking vs Type Inference 

int f(int x) { return x+1; }; 

int g(int y) { return f(y+1)*2; }; 

ML and Haskell are designed to make type inference feasible 



Step 1: Parse Program 

• Parse program text to construct parse tree 

 
f x = 2 + x 

Infix operators are converted 

to Curied function application 

during parsing: 
       2 + x      (+) 2 x 



Step 2: Assign type variables to nodes  

Variables are given same type 
as binding occurrence 

f x = 2 + x 



Step 3: Add Constraints 

t_0 = t_1 -> t_6 

t_4 = t_1 -> t_6 

t_2 = t_3 -> t_4 

t_2 = Int -> Int -> Int 

t_3 = Int 

f x = 2 + x 



Step 4: Solve Constraints 
t_0 = t_1 -> t_6 

t_4 = t_1 -> t_6 

t_2 = t_3 -> t_4 

t_2 = Int -> Int -> Int 

t_3 = Int 

t_3 -> t_4 = Int -> (Int -> Int) 

t_3 = Int 

t_4 = Int -> Int t_0 = t_1 -> t_6 

t_4 = t_1 -> t_6 

t_4 = Int -> Int 

t_2 = Int -> Int -> Int 

t_3 = Int 

t_1 -> t_6 = Int -> Int 

t_1 = Int 

t_6 = Int 
t_0 = Int -> Int 

t_1 = Int 

t_6 = Int 

t_4 = Int -> Int 

t_2 = Int -> Int -> Int 

t_3 = Int 



Step 5: 
Determine type of declaration 

f x = 2 + x 

> f :: Int -> Int 

t_0 = Int -> Int 

t_1 = Int 

t_6 = Int -> Int 

t_4 = Int -> Int 

t_2 = Int -> Int -> Int 

t_3 = Int 



Unification 

• Given two type terms t1, t2 

• Compute the most general unifier of t1 and t2 

– A mapping m from type variables to typed terms 
such that  

• t1 {m } ==  t2 {m}  

• Every other unifier is a refinement of m 

• Example  
mgu(t_3 -> t_4, Int -> (Int -> Int)= 
[t_3  Int, t_4 Int -> Int]= 

 



Type Inference Algorithm 

• Parse program to build parse tree 

• Assign type variables to nodes in tree 

• Generate constraints: 
– From environment: literals (2), built-in operators 

(+), known functions (tail) 

– From form of parse tree: e.g., application and 
abstraction nodes 

• Solve constraints using unification 

• Determine types of top-level declarations 

 



Constraints from Application Nodes 

• Function application (apply f to x)  

– Type of f  (t_0 in figure) must be domain  range 

– Domain of f must be type of argument x  (t_1 in fig)  

– Range of f must be result of application    (t_2 in fig) 

– Constraint:  t_0 = t_1 -> t_2 

 

f x  

t_0 = t_1 -> t_2 



Constraints from Abstractions 

 

 

 

• Function declaration: 

– Type of f (t_0 in figure) must domain  range 

– Domain is type of abstracted variable x (t_1 in fig) 

– Range is type of function body e             (t_2 in fig) 

– Constraint: t_0 = t_1 -> t_2 

f x = e 

t_0 = t_1 -> t_2 



Inferring Polymorphic Types 

f g = g 2 

> f :: (Int -> t_4) -> t_4 
• Example: 

• Step 1:                                                               
Build Parse Tree 



Inferring Polymorphic Types 

f g = g 2 

> f :: (Int -> t_4) -> t_4 
• Example: 

• Step 2:                                                            
Assign type variables 



Inferring Polymorphic Types 

• Example: 

• Step 3:                                                       
Generate constraints 

t_0 = t_1 -> t_4 

t_1 = t_3 -> t_4 

t_3 = Int 

f g = g 2 

> f :: (Int -> t_4) -> t_4 



Inferring Polymorphic Types 

• Example: 

• Step 4:                                                              
Solve constraints 

t_0 = t_1 -> t_4 

t_1 = t_3 -> t_4 

t_3 = Int 

t_0 = (Int -> t_4) -> t_4 

t_1 =  Int -> t_4 

t_3 =  Int 

f g = g 2 

> f :: (Int -> t_4) -> t_4 



Inferring Polymorphic Types 

• Example: 

• Step 5:                                                     
Determine type of top-level declaration 

t_0 = (Int -> t_4) -> t_4 

t_1 =  Int -> t_4 

t_3 =  Int 

Unconstrained type 

variables become 

polymorphic types 

f g = g 2 

> f :: (Int -> t_4) -> t_4 



Using Polymorphic Functions 

• Function: 

 

• Possible applications: 

add x = 2 + x 

> add :: Int -> Int 

 

f add 

> 4 :: Int 

isEven x = mod (x, 2) == 0 

> isEven:: Int -> Bool 

 

f isEven 

> True :: Bool 

f g = g 2 

> f :: (Int -> t_4) -> t_4 



Recognizing Type Errors 

• Function: 
 

• Incorrect use 

 

 

 

 

 

• Type error:                                                          
cannot unify Bool  Bool and  Int  t 

 

not x = if x then True else False  

> not :: Bool -> Bool 

f not 

> Error: operator and operand don’t agree 

  operator domain: Int -> a 

  operand:         Bool -> Bool 

f g = g 2 

> f :: (Int -> t_4) -> t_4 



Multiple Clauses 

• Function with multiple clauses 
 

 

• Infer type of each clause 
– First clause:          

 

– Second clause:      

 

• Combine by equating types of two clauses                
  

append ([],r) = r 

append (x:xs, r) = x : append (xs, r) 

> append :: ([t_1], t_2) -> t_2 

> append :: ([t_3], t_4) -> [t_3] 

> append :: ([t_1], [t_1]) -> [t_1] 



Most General Type 

• Type inference produces the most general type 

 

 

 

• Functions may have many less general types 

 

 

 

• Less general types are all instances of most general 
type, also called the principal type 

map (f, []  ) = [] 

map (f, x:xs) = f x : map (f, xs) 

> map :: (t_1 -> t_2, [t_1]) -> [t_2] 

> map :: (t_1  -> Int, [t_1])  -> [Int] 

> map :: (Bool -> t_2, [Bool]) -> [t_2] 

> map :: (Char -> Int, [Char]) -> [Int] 



Type Inference Algorithm 

• When Hindley/Milner type inference 
algorithm was developed, its complexity was 
unknown 

• In 1989, Kanellakis, Mairson, and Mitchell 
proved that the problem was exponential-
time complete 

• Usually linear in practice though… 
– Running time is exponential in the depth of 

polymorphic declarations 



Information from Type Inference 

• Consider this function… 
 

 

   … and its most general type: 
 

 

• What does this type mean?  

reverse [] = [] 

reverse (x:xs) = reverse xs 

> reverse :: [t_1] -> [t_2] 

Reversing a list should not change its type, so 

there must be an error in the definition of reverse! 



Type Inference: Key Points 

• Type inference computes the types of expressions 
– Does not require type declarations for variables 
– Finds the most general type by solving constraints 
– Leads to polymorphism 

• Sometimes better error detection than type checking 
– Type may indicate a programming error even if no type error 

• Some costs 
– More difficult to identify program line that causes error 
– Natural implementation requires uniform representation sizes 
– Complications regarding assignment took years to work out 

• Idea can be applied to other program properties 
– Discover properties of program using same kind of analysis 



JavaScript 

John Mitchell 

Adapted by Mooly Sagiv 

Spring 2014 



Closures 

• Return a function from function call 

      function f(x) { 
          var y = x; 
          return function (z){y += z; return y;} 
      } 
      var h = f(5); 
      h(3); 

• Can use this idea to define objects with “private” fields 
 
 

 
 
 
 
 

– Can implement breakpoints 

uniqueId function () { 
   if (!argument.calle.id) arguments.calee.id=0; 
   return arguments.callee.id++; 
}; 



Implementing Closures 
function f(x) {  
   function g(y) { return x + y; }; 
   return g ; 
 } 
var h = f(3); 
var j  = f(4); 
var z = h(5); 
var w = j(7); 

global 
h 

undefined 

undefined 

undefined undefined 

j 
z 

w 



Implementing Closures(1) 
function f(x) {  
   function g(y) { return x + y; }; 
   return g ; 
 } 
var h = f(3); 
var j  = f(4); 
var z = h(5); 
var w = j(7); 

global 
h 

undefined 

undefined undefined 

j 
z 

w 

f 

3 

… 

x 

g 



Implementing Closures(2) 
function f(x) {  
   function g(y) { return x + y; }; 
   return g ; 
 } 
var h = f(3); 
var j  = f(4); 
var z = h(5); 
var w = j(7); 

global 
h 

undefined 

undefined 
j z 

w 

f 

3 

… 

x 

g 

f 

4 

… 

x 

g 



Implementing Closures(3) 
function f(x) {  
   function g(y) { return x + y; }; 
   return g ; 
 } 
var h = f(3); 
var j  = f(4); 
var z = h(5); 
var w = j(7); 

global 
h 

8 

undefined 
j z 

w 

f 

3 

… 

x 

g 

f 

4 

… 

x 

g 



Implementing Closures(4) 
function f(x) {  
   function g(y) { return x + y; }; 
   return g ; 
 } 
var h = f(3); 
var j  = f(4); 
var z = h(5); 
var w = j(7); 
h= null; 

global 
h 

8 

11 
j z 

w 

f 

3 

… 

x 

g 

f 

4 

… 

x 

g 



Garbage collection 

• Automatic reclamation of unused memory 
– Navigator 2: per page memory management 

• Reclaim memory when browser changes page 

– Navigator 3: reference counting 
• Each memory region has associated count 

• Count modified when pointers are changed 

• Reclaim memory when count reaches zero 

– Navigator 4: mark-and-sweep, or equivalent 
• Garbage collector marks reachable memory 

• Sweep and reclaim unreachable memory 

Reference http://www.unix.org.ua/orelly/web/jscript/ch11_07.html 
Discuss garbage collection in connection with memory management 


