
Introduction to ML 

Mooly Sagiv 

Cornell CS 3110 Data Structures and Functional Programming 



The ML Programming Language 

• General purpose programming language 
designed by Robin Milner in 1970 
– Meta Language for verification 

• Impure Functional Programming Language 
– Eager call by value evaluation 

• Static strongly typed (like Java unlike C) 
– Protect its abstraction via type checking and runtime 

checking 

• Polymorphic Type Inference 
• Dialects:  OCaml, Standard ML, F# 



C is not Type Safe 

int j; 

union { int  i, int * p  } x; 

x.i = 17 ; 

j = *(x.p); 

int i, *p; 

i =17 

p = (int *)  i; 



Factorial in ML 

let rec fac n = if n = 0 then 1 else n * fac (n - 1) 

let rec fac  n : int = if n = 0 then 1 else n * fac (n - 1) 

let fac n =  

     let rec ifac n acc =  

          if n=0 then acc else ifac n-1, n * acc 

   in ifac n, 1 

// val fac : int -> int = <fun> 

let rec fac = function  

    | 0 -> 1 

    | n -> n * fac(n - 1) 



Why Study  ML? 

• Functional programming will make you think differently 
about programming 
– Mainstream languages are all about state 
– Functional programming is all about values 

• ML is “cutting edge”   
– Polymorphic Type inference 
– References 
– Module system 

• Practical (small) Programming Language 
• New ideas can help make you a better programmer, in 

any language 
 

 



Plan 

• Basic Programming in ML  

• Type Inference for ML 

• ML Modules & References  



Simple Types 

0, 1, 2,… -: int =0, 1, … 

+, * ,    -: int * int  -> int 

• Booleans 

 

• Integers 

 
 

• Strings 
 “I am a string” -: string =“I am a string” 

• Floats 
1.0, 2., 3.14159, … :- float = 1, 2, 3.14159   

true -: bool = true 

false -: bool = false 

if …  then … else … types must match  



Scope Rules 

• ML enforces static nesting on identifiers 

– To be explained lets 

• let x = e1 in e2  (x.e2) e1 



Tuples 
4, 5, “abc” :- (int*int*string)=(4, 5, “abc”) 

let max1 (r1, r2) : float =  

  if r1 < r2 then r2 else r1 

val max1: float * float -> float = fun  

let args = (3.5, 4.5) 

val args: float * float = (3.5, 4.5)  

max1 args 
:-  float = 4.5  

let y(x1: t1, x2: t2, …, xn : tn )= e  



Pattern-Matching Tuples 

let x1: t1, x2: t2, …, xn :tn = e  

let max1 (pair : float * float) : float = 

  let (r1, r2) = pair in 

    if r1 < r2 then r2 else r1 

val max1: float * float -> float = fun  

let minmax (a, b) : float * float = 

  if a < b then (a, b) else (b, a) 

val minmax: float * float -> float *float= fun  

let (mn, mx) = minmax (2.0, 1.0) 

val mn float 1 

val mx float 2 

The compiler guarantees the absence of runtime errors 



User-Defined Types 

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat 

let int_to_day (i : int) : day = 

   match i mod 7 with 

     0 -> Sun 

   | 1 -> Mon 

   | 2 -> Tue 

   | 3 -> Wed 

   | 4 -> Thu 

   | 5 -> Fri 

   | _ -> Sat 



Records 

type person = {first:string; last:string; age:int} 

{first=“John”; last=”Amstrong”; age=77} 

:- person ={first=“John; last=“Amstrong”; age=77} 

{first=“John”; last=”Amstrong”; age=77}.age  

 :- int = 77 

let ja = {first=“John”; last=”Amstrong”; age=77}  

 val ja : person = {first=“John”; last=”Amstrong”; age=77}  

let = {first=first; last=last}  = ja  

 val first:string=“John” 

 val last:string =”Amstrong”  



Variant Records 

• Provides a way to declare Algebraic data types 

type expression = Number of  int | Plus of expression * expression 

let rec eval_exp (e : expression) : int = 

  match e with 

     Number(n) -> n 

   | Plus (left, right) -> eval_exp(left) + eval_exp(right) 

val eval_exp : expression -> int = <fun>  

 eval_exp (Plus(Plus(Number(2), Number(3)), Number(5))) 

:- int = 10 



Variant Records in C 

struct exp { 

    int tag ; /* Select between cases */ 

    union { 

        struct  number { int : number; } 

        struct  plus { struct exp *left, *right; } 

            } 

   } 

     



Scope 

• Local nested scopes 

• Let constructs introduce a scope 

let f x = e1 in e2 

let x = 2 

and y = 3 

in   x + y 

let rec even x = x = 0 || odd (x-1) 

    and odd x = not (x = 0 || not (even (x-1))) 

in 

  odd 3110 



Polymorphism 
• A Polymorphic expression may have many types 
• There is a “most general type” 
• The compiler infers types automatically 
• Programmers can restrict the types 
• Pros: 

– Code reuse 
– Guarantee consistency 

• Cons: 
– Compile-time 
– Some limits on programming 

 
let max1 (r1, r2)  =  

  if r1 < r2 then r2 else r1 

val max1: ‘a * ‘a -> ‘a = fun  

max1 (5, 7) 

: - int = 7 

max1 (5, 7.5) 



Polymorphic Lists 
[ ] 

 - : 'a list = [] 

[2; 7; 8 ] 

 - : int list = [2; 7; 8] 

2 :: (7 ::  (8 ::[ ])) 

 - : int list = [2; 7; 8] 

[(2, 7) ; (4, 9) ; 5] 

                        Error: This expression has type int but an expression 

was expected of type 

         int * int 



Functions on Lists 

let rec length l = 

    match l with 

   [] -> 0 

  | hd :: tl  -> 1 + length tl 

val length : 'a list -> int = <fun> 

length [1; 2; 3] + length [“red”; “yellow”; “green”] 

:- int = 6 

length [“red”; “yellow”; 3] 



Higher Order Functions 

• Functions are first class objects 

– Passed as parameters 

– Returned as results 

• Practical examples 

– Google map/reduce 



Map Function on Lists 
• Apply function to every element of list 

  

 

 

 

 

 

 

• Compare to Lisp 

  

 

let rec map f arg = function 

  [] -> []  

 | hd :: tl -> f hd :: (map f tl) 

val map : ('a -> 'b) -> 'a list -> 'b list = <fun> 

(define map  

    (lambda (f  xs) 

      (if   (eq? xs ())  () 

      (cons (f  (car xs))  (map f  (cdr xs))) 

   ))) 

map (fun x -> x+1) [1;2;3]              [2,3,4] 



More Functions on Lists  

• Append lists 

  

 

• Reverse a list  

 

 

• Questions 
– How efficient is reverse? 

– Can it be done with only one pass through list? 

let rec append l1 l2 =  

 match l1 with   

 | []  -> l2 

 | hd :: tl -> hd :: append (tl l2) 

let rec reverse l = function 

  | [] -> [] 

  | hd :: tl -> append (reverse tl)   [hd] 



More Efficient Reverse 

1 

2 

3 1 

2 

3 1 

2 

3 1 

2 

3 

let rev list = 

    let rec aux acc = function 

      | [] -> acc 

      | h::t -> aux (h::acc) t in 

    aux [] list 

val rev : 'a list -> 'a list = <fun> 



Currying 

let plus (x, y) = x + y 

val plus : int * int -> int = fun 

let plus (z : int * int) = match z with (x, y) -> x + y 

let plus = fun (z : int * int) -> match z with (x, y) -> x + y 

let plus x y = x + y 

val plus : int -> int -> int 

let  p1 = plus 5  

val p1 :  int -> int = fun 

let  p2 = p1 7  

val p2 :   int = 12 



Functional Programming Languages 

PL types evaluation Side-effect 

scheme Weakly typed Eager yes 

ML 
OCAML 
F# 

Polymorphic  
strongly typed 

Eager References 

Haskell Polymorphic  
strongly typed 

Lazy None 



Things to Notice 

• Pure functions are easy to test 

 

• In an imperative or OO language, you have to 

– set up the state of the object and the external state it 
reads or writes 

– make the call 

– inspect the state of the object and the external state 

– perhaps copy part of the object or global state, so that 
you can use it in the post condition 

prop_RevRev l = reverse(reverse l) == l 



Things to Notice 

Types are everywhere. 
 

• Usual static-typing panegyric omitted... 

• In ML, types express high-level design, in the 
same way that UML diagrams do, with the 
advantage that the type signatures are 
machine-checked 

• Types are (almost always) optional: type 
inference fills them in if you leave them out 

reverse:: [w] -> [w] 



Recommended ML Textbooks 

• L. C. PAULSON: ML for the Working 
Programmer 

• J. Ullman: Elements of ML Programming 

• R. Harper: Programming in Standard ML 

 

 



Recommended Ocaml Textbooks 

• Xavier Leroy: The OCaml system  
release 4.02 

– Part I: Introduction 

• Jason Hickey: Introduction to Objective Caml 

• Yaron Minsky, Anil Madhavapeddy, Jason 
Hickey: Real World Ocaml 

 



Summary 

• Functional programs provide concise coding 

• Compiled code compares with C code 

• Successfully used in some commercial 
applications  

– F#, ERLANG, Jane Street 

• Ideas used in imperative programs 

• Good conceptual tool 

• Less popular than imperative programs 

 


