
 מושגים בשפות תכנות
 תרגיל 5

 להגשה עד 29/06/2018

1. Functions ​map and ​reduce are standard functions from traditional functional
programming that achieved broader recognition as a result of Google's MapReduce
method for processing and generating large data sets. While ​map​, ​reduce​, and a
number of related functions are provided in many JavaScript implementations, ​map
and ​reduce​ can also be defined relatively simply in JavaScript as follows:

function map (f, inarray) {

 var out = [];

 for(var i = 0; i < inarray.length; i++) {

 out.push(f(inarray[i]))

 }

 return out;

}

function reduce (f, inarray) {

 if (inarray.length <= 1) return;

 if (inarray.length == 2) return f(inarray[0], inarray[1]);

 var r = inarray[0];

 for(var li = 1 ; li < inarray.length ; li++) {

 r = f(r, inarray[li]);

 }

 return r;

}

Function ​map(f, inarray) returns an array constructed by applying ​f to every
element in ​inarray​. Function ​reduce(f, inarray) applies the function ​f of two
arguments to elements in the list, from left to right, until it reduces the list to a single
element. For example:

js> map(function(x){return x+1}, [1,2,3,4,5])

2,3,4,5,6

js> reduce(function(x,y){return x+y}, [1,2,3,4,5])

15

js> reduce(function(x,y){return x*y}, [1,2,3,4,5])

120

These functions can be combined in various ways. For each of the following
questions, you may use a JavaScript implementation to test your answer yourself, but
turn your solution in as part of a written description for manual grading.

1

a. Explain how to use ​map and ​reduce to compute the sum of the first five
squares, in one line. (The sum of the first three squares is 1​2​ + 2​2​ + 3​2​)

b. Explain how to use ​map and ​reduce to count the number of positive numbers

in an array of numbers.

c. Explain how to use ​map and/or ​reduce to "flatten" an array of arrays of
numbers, such as [[1,2],[3,4],[5,6],[7,8,9]], to an array of numbers. (Hint: Look
for built-in JavaScript concatenation functions.)

2. This problem asks you to compare two sections of code. The first one has three

declarations and a fourth statement that consists of an assignment and a function call
inside curly braces:

var x = 5;

function f(y) { return (x + y) - 2 };

function g(h) { var x = 7; return h(x) };

{ var x = 10; z = g(f) };

The second section of code is derived from the first by placing each line in a separate
function, and then calling all the functions with empty argument lists. In effect, each
"​(function () {" begins a new block because the body of each JavaScript
function is in a separate block. Each "​})();" closes the function body and calls the
function immediately so that the function body is executed.

(function () {

 var x = 5;

 (function () {

 function f(y) {return (x + y) - 2};

 (function () {

 function g(h) {var x = 7; return h(x)};

 (function () {

 var x = 10; z = g(f);

 })();

 })();

 })();

})();

a. What is the value of ​g(f)​ in the first code example?

b. The call ​g(f) ​in the first code example causes the expression ​(x+y)-2 to be
evaluated. What are the values of ​x and ​y that are used to produce the value
you gave in (a)?

c. Explain how the value of ​y is set in the sequence of calls that occur before

(x+y)-2​ is evaluated.

2

d. Explain why ​x​ has the value you gave in (b) when ​(x+y)-2​ is evaluated.

e. What is the value of ​g(f)​ in the second code example?

f. The call ​g(f) in the second code example causes the expression ​(x+y)-2 to
be evaluated. What are the values of ​x and ​y that are used to produce the
value you gave in (e)?

g. Explain how the value of ​y is set in the sequence of calls that occur before

(x+y)-2​ is evaluated.

h. Explain why ​x​ has the value you gave in (f) when ​(x+y)-2​ is evaluated.

3. Examine following JavaScript code, that contains two implementations of a function
calculating the Fibonacci sequence, also available at:
 ​http://www.cs.tau.ac.il/~msagiv/courses/pl18/fibonacci.js

var naive_fibonacci = function f (n) {

 return (n===0 || n === 1) ? n : f(n-1) + f(n-2);

}

var fibonacci = (function () {

 var memo = [0, 1];

 var fib = function f (n) {

 var result = memo[n];

 if (typeof(result) === "undefined") {

 result = f(n-1) + f(n-2);

 memo[n] = result;

 }

 return result;

 };

 return fib;

})();

a. Try to compute the 100​th Fibonacci number with both versions and see what

happens. What is the time complexity to calculate the n​th Fibonacci number in
each implementation? Explain the differences.

b. Explain the purpose of the variable ​memo​.

c. Where is the variable ​memo​ in scope?

d. When during the run-time is the variable ​memo​ live in memory?

e. Why was the variable ​memo defined like that, and what's the purpose of the

anonymous function without parameters?

3

http://www.cs.tau.ac.il/~msagiv/courses/pl18/fibonacci.js

f. Use a similar technique to create a function ​memoize​, that takes a function as
an argument, and returns a new function which implements the given function
with memoization (assume the given function takes a single numeric
argument). Your implementation should allow the following code:

var cool_fibonacci = memoize(function(n) {

 return (n===0 ||n === 1) ? n : cool_fibonacci(n-1) +

cool_fibonacci(n-2);

});

console.log(cool_fibonacci(100) + " wow, this was fast!");

Note​: For this question, sections (a)-(e) should be submitted in the PDF, and
section (f) should be solved in the ​fibonacci.js file, which should be
submitted.

4. The following files contain a JavaScript implementation of the famous Minesweeper

game:
http://www.cs.tau.ac.il/~msagiv/courses/pl18/mineswex.html
http://www.cs.tau.ac.il/~msagiv/courses/pl18/mineswex.js
When loaded in a web browser, the files present a 2-dimensional board of cells. Each
cell may or may not contain a mine (mines are placed randomly). When the user
clicks a cell that contains a mine, the cell is painted red (and the user lost the game).
When the user clicks a cell that does not contain a mine, the number of mines ​around
that cell is revealed (i.e., the number of mines in the 8 adjacent cells).

Your task is to modify the code such that when the user reveals a 0 cell (a cell with
no mines around it), the cells surrounding it are also revealed automatically. If any of
them is also a 0 cell, automatic revealing continues. Use high-order functions to
intercept the event of a cell being fully revealed. Notice the fade-in effect, which must
also be preserved by automatic revealing.

Hint: refer to the functions ​get_cell and ​is_cell_hidden which are already
implemented in the code, and use them. Their functionality and synopsis are
described in the documentation block above them. These functions are implemented
using the ​jQuery​ library.

4

http://www.cs.tau.ac.il/~msagiv/courses/pl18/mineswex.html
http://www.cs.tau.ac.il/~msagiv/courses/pl18/mineswex.js

5.
a. Give a step-by-step explanation of the type inference of the following OCaml

function by the Hindley-Milner type inference algorithm:

let rec append x y =

 match x with

 | [] -> [y]

 | hd::tl -> append tl y

b. Is there something in the inferred type that indicates an error in the code?

c. Fix the error in the code (submit the fixed code in the PDF).

d. Explain the type of the fixed function, and the difference in the run of the

Hindley-Milner algorithm on it compared to the run you described in (a).

6. Global Bonus (25 points)
Implement the Hindley-Milner algorithm in JavaScript, and create a working
web-page that allows the user to write an expression in "Baby ML", and interactively
see the inferred type of the expression. Your implementation should include a lexer,
a parser, and an implementation of Hindley-Milner type inference.

"Baby ML" is defined by the following grammar:

e ::= integer_literal integer literals such as 0,1,2,...
 | true | false Boolean literals
 | id identifier
 | (e) parenthesized expression
 | (fun id -> e) lambda expression
 | (e e) function application
 | let id=e in e let expression
 | letrec id=e in e recursive let expression

The built-in primitive types of "Baby ML" are integer and boolean, and it also contains
function types of the form ​'a -> 'b and pair types of the form ​'a * 'b​. The user's
code can also use the following built in functions:
plus : int -> int -> int

ite : bool -> 'a -> 'a -> 'a

pair : 'a -> 'b -> ('a * 'b)

Submit your solution in ​hindley_milner.html and ​hindley_milner.js (you may
split the code to multiple ​.js​ files as long as you submit all of them).

 בהצלחה!

5

