
Languages for Software-Defined
Networks

Nate Foster, Michael J. Freedman, Arjun
Guha, Rob Harrison, Naga Praveen Katta,

Christopher Monsanto, Joshua Reich, Mark
Reitblatt, Jennifer Rexford, Cole Schlesinger,

Alec Stor and David Walker

Programming the Network

• SDN gives
programmers control

• Control does not
imply easy to use

• Bottom line: using
OpenFlow is hard

Example: repeater/monitor

• We want to create a repeater that also
provides counter data on network traffic

• Using OpenFlow we need to take into account
the way these rules will be installed

• And how they impact each other

Repeater and monitor

• Task 1: forward port 1 to port 2 and port 2 to
port 1

• Task 2: count http packets from port 2

In port 1: forward to port 2

In port 2 and port 80: take statistics, forward to port 1

In port 2: forward to port 1

Repeater/monitor in OpenFlow

def switch_join(s):

pat1 = finport:1g

pat2web = finport:2, srcport:80g

pat2 = finport:2g

install(s, pat1, DEFAULT, [fwd(2)])

install(s, pat2web, HIGH, [fwd(1)])

install(s, pat2, DEFAULT, [fwd(1)])

query_stats(s, pat2web)

Making changes must be fun…

What we need is…

• An abstraction!

• The Frenetic family:

– Pyretic (python)

– Frenetic-OCaml

• Write modular programs

• Get statistics without polling for them
explicitly

Operations needed

1. Querying network state

2. Expressing Policies

3. Reconfiguring the network

(All these will need to be supported by the
runtime)

Operations: Querying

• A desired query might require a series of switch
rules:
– Statistics by source IP or by flow (install on the go)
– Compound rules

• No polling for the data:
– Turning queries into event-driven programming
– “Every” keyword

• Packets might collect at the controller while the
rules are being installed
– Any identical packet arriving while processing should

wait

Select(bytes) *

Where(inport=2 & srcport=80) *

GroupBy([srcip]) *

Every(60)

Limit(1)

Aggregate type: what type of counter to install

Header: one counter each by this field

Event instead of polling: when to raise the event

Limit packets to the controller: only show this many packets

A Query Language: Design

• High-level predicates

• Dynamic unfolding

• Limiting traffic

• Polling and combining statistics

High level predicates

• Something as simple as negation requires an
elaborate hierarchy of rules:

• Some complex rules can be optimized in the
switch table, the programmer doesn’t have to
worry about that

• GroupBy predicates: one rule per item

srcip=192.168.1.253

srcport=80

Higher priority

Catches leftovers

Dynamic unfolding

• Limited space for rules on the switch

• Some counters require many rules to be
installed on the fly

– Counters by source IP require 232 counters…

• GroupBy in Frenetic: rules will be installed on
the fly without the programmer spelling it out

Limiting traffic

• The controller and the switch do not
communicate instantly

• Packets can queue up to the controller before
the first one is handled

• Instead of having to code the controller
ignoring the second packet:

– Limit(1)

Polling and combining

• Statistics are often checked periodically

• Stats are also spread on many switches

• Better event-driven than polled

• Every (60):

– Every 60 seconds

– Collect info from all the switches

– And raise a program event

Operations: Network Policies

• Different network policies might have rules that
interfere with queries
– Or with each other

• We already saw our repeater/monitor would
need three rules:
– Inport1

– Inport2web

– Inport2

• Priorities matter!

• It gets worse the more complex the functionality

Modularity: back to our example

• Write different rules and queries side by side

• Don’t have to take them into account

• Put them together:

def repeater():

 …

def monitor():

 …

def main():

 repeater()

 monitor()

Putting it together

• Composing different rules is delegated to the
runtime system

• We trust it to compose them “correctly”

• Composition types:

– Parallel composition: both sets of rules on the
same stream of packets

– Sequential composition: one module acts on the
output of the other

Parallel Composition

• Two modules that work on the same packets

• For instance: the repeater and the monitor, or
replication

• If both modules produce forwarding rules, the
resulting rule is the union

def main():

 return p1() | p2()

Example: replicate all ftp traffic

inport: 1 fwd to 2 inport: 1 and
destport: 21 fwd to 3

1 2

3

inport: 2 fwd to 1

Example: replicate all ftp traffic

inport: 1 fwd to 2 inport: 1 and
destport: 21 fwd to 3

1 2

3

inport: 2 fwd to 1

srcip:1.2.3.4
srcport:23

dstip:1.2.3.6
dstport:6006

Example: replicate all ftp traffic

inport: 1 fwd to 2 inport: 1 and
destport: 21 fwd to 3

1 2

3

inport: 2 fwd to 1

srcip:1.2.3.5
srcport:6005
dstip:1.2.3.4
dstport: 21

srcip:1.2.3.5
srcport:6005
dstip:1.2.3.4
dstport: 21

Sequential Composition

• Rules run one after the other: packets left
after running the first go on to the next, etc.

• Example: when creating a firewall

def main():

 return p1() >> p2()

Example: firewall

inport: 1 fwd to 2

1 2

inport: 2 fwd to 1

srcip: 1.2.3.8 drop dstport: 8080 drop

Example: firewall

inport: 1 fwd to 2

1 2

inport: 2 fwd to 1

srcip: 1.2.3.8 drop dstport: 8080 drop

srcip:1.2.3.4
srcport:23

dstip:1.2.3.6
dstport:6006

Example: firewall

inport: 1 fwd to 2

1 2

inport: 2 fwd to 1

srcip: 1.2.3.8 drop dstport: 8080 drop

srcip:1.2.3.8
srcport:6008
dstip:1.2.3.4
dstport:23

What the runtime system does

• The runtime system is the code that runs
behind the programmer’s code

• Something that implements the complex
functionalities that the user code uses

• In the case of Frenetic: a python/Ocaml library
whose code runs behind the abstract ops

• Like JVM: provides the implementation for
“system” functionality

The Runtime System: Suggested Impl
(microflow)

• When a packet comes in:
– Test all queries and registered forwarding policies

– Collect actions for the switch

• If no queries need packets like this:
– Install forwarding rules

• If other queries might need packets like this
– Manually forward the packet, but install no rule

– Future packets will be forwarded to the controller
again

Runtime System: An Efficient Impl

• Instead of dynamically unfolding all the rules

• Generate rules (with wildcards) before packets
are ever seen

• Proactive, not reactive

• Frenetic uses NetCore: another abstraction
over OpenFlow

• When can’t be generated ahead of time:
reactive specialization (a form of unfolding)

Operations: Consistency of updates

• Per packet consistency: every packet will be
processed with exactly one set of rules
throughout the network

– Two phase update of the network

– Packets are stamped with a version number for
the rule set in the header

Consistency of updates

• Per flow consistency:

– Sometimes whole streams need to be handled
consistently (e.g. load balancing)

– Rules expire only when all flows matching an old
configuration are finished

Back to repeater/monitor

def repeater():

 rules=[Rule(inport:1, [fwd(2)]),

 Rule(inport:2, [fwd(1)])]

 register(rules)

def web monitor():

 q = (Select(bytes) *

 Where(inport=2 & srcport=80) *

 Every(30))

 q >> Print()

def main():

 repeater()

 monitor()

1 2

inport: 1 fwd to 2

1 2

src:1.2.3.4
srcport: 80
dst: 1.2.3.5

dstport: 6009

inport: 1 fwd to 2

1 2

src:1.2.3.5
srcport: 80
dst: 1.2.3.4

dstport: 6009

inport: 1 fwd to 2

inport: 2 and ip=1.2.3.5
count bytes

inport: 2 and ip=1.2.3.5
fwd to 1

1 2

src:1.2.3.5
srcport: 80
dst: 1.2.3.4

dstport: 6009

inport: 1 fwd to 2

inport: 2 and ip=1.2.3.5
count bytes

inport: 2 and ip=1.2.3.5
fwd to 1

Additional Refernces

• Frenetic: A Network Programming Language
(Foster et. al, 2011)

• Composing Software-Defined Network
(Monsanto et. al, 2013)

• A Compiler and Run-time System for

• Network Programming Languages (Monsanto
et. al, 2012)

• http://frenetic-lang.org

http://frenetic-lang.org/
http://frenetic-lang.org/
http://frenetic-lang.org/

