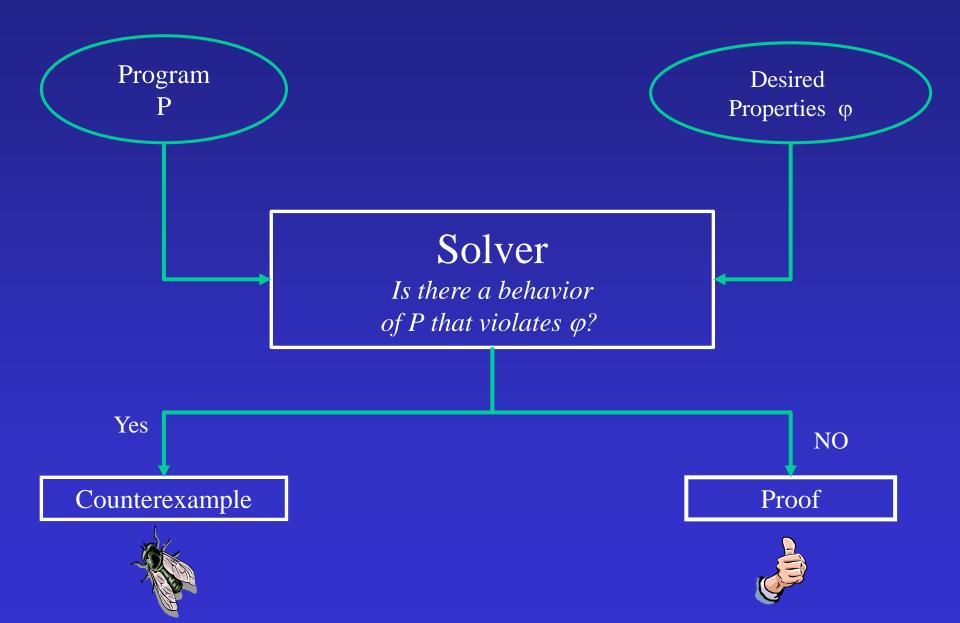
Bounded Model Checking

Mooly Sagiv

Slides from Arie Gurfinkel & Sagar Chaki, Daniel Jackson, Shahar Maoz

Automatic Program Verification



Simple Bug

```
scanf("%d", &n);
for (c = 0; c < n; c++)
 scanf("%d", &array[c]);
for (c = 0; c < (n - 1); c++)
 for (d = 1; d < n - c - 1; d++)
  if (array[d] > array[d+1])
   swap = array[d];
   array[d] = array[d+1];
   array[d+1] = swap;
```

Program Properties

- User defined assertions
- General cleanliness properties
 - Absence of buffer overruns
 - No null dereference
 - No double free
 - No overflow

Jackson's Thesis

- If a program has a bug ⇒ it also occurs on small input k
 - True in many cases

Model Checking

- Does a given model M satisfy a property P, M⊨P
 - M is usually a finite directed graph
 - P is usually a formula in temporal logic
- Examples:
 - Is every request to this bus arbiter eventually acknowledged?
 - Does this program every dereference a null pointer?

Bounded Model Checking

- Given
 - A finite transition system M
 - A property P
- Determine
 - Does M allow a counterexample to P of k transitions of fewer?

This problem can be translated to a SAT problem

Bounded Model Checking of Loops

- Does the program reach an error within at most k unfolding of the loop
- Special kind of symbolic evaluation

Bounded Model Checking Tools

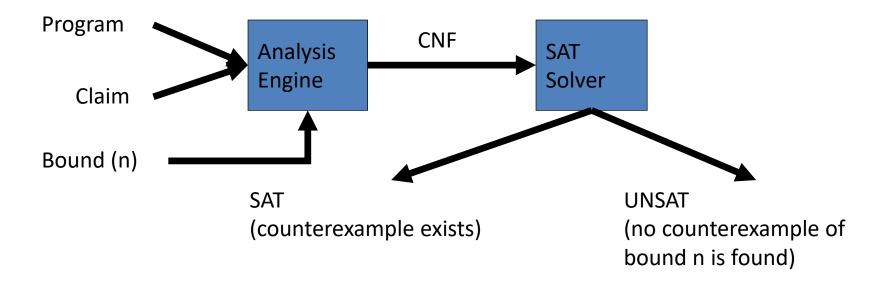
- CBMC: Bounded Model Checker for C and C++
 - Developed at CMU/Oxford
 - Supports C89, C99, most of C11
 - Verifies array bounds (buffer overflows), absence of null dereferences, assertions
- Alloy: Bounded model checking for program designs
 - Developed at MIT
 - Rich specification language
 - First order logic, transitive closure, arithmetics

CBMC: C Bounded Model Checker

- Developed at CMU by Daniel Kroening et al.
- Available at: <u>http://www.cs.cmu.edu/~modelcheck/cbmc/</u>
- Supported platafoms: Windows (requires VisualStudio's`CL), Linux
- Provides a command line and Eclipse-based interfaces
- Known to scale to programs with over 30K LOC
- Was used to find previously unknown bugs in MS Windows device drivers

What about loops?!

- SAT Solver can only explore finite length executions!
- Loops must be bounded (i.e., the analysis is incomplete)



How does it work?

- Transform a programs into a set of equations
- 1. Simplify control flow
- 2. Unwind all of the loops
- 3. Convert into Single Static Assignment (SSA)
- 4. Convert into equations
- 5. Bit-blast
- 6. Solve with a SAT/SMT Solver
- 7. Convert SAT assignment into a counterexample

Control Flow Simplifications

- All side effect are removal
 - e.g., j=i++ becomes j=i;i=i+1

- Control Flow is made explicit
 - continue, break replaced by goto

- All loops are simplified into one form
 - for, do while replaced by while

- All loops are unwound
 - can use different unwinding bounds for different loops
 - to check whether unwinding is sufficient special "unwinding assertion" claims are added

• If a program satisfies all of its claims and all unwinding assertions then it is correct!

• Same for backward goto jumps and recursive functions

```
void f(...) {
  while(cond) {
    Body;
  Remainder;
}
```

while() loops are unwound iteratively

Break / continue replaced by goto

```
void f(...) {
  if(cond) {
    Body;
while(cond) {
       Body;
  Ŕemainder;
```

while() loops are unwound iteratively

Break / continue replaced by goto

```
void f(...) {
  if(cond) {
    Body;
       (cond) {
     if
       Body;
while(cond) {
         Body;
  Ŕemainder;
```

while() loops are unwound iteratively

Break / continue replaced by goto

Unwinding assertion

```
void f(...) {
  if(cond) {
       cond)
         (cond) {
        while(cond) {
           Body;
  Remainder:
```

while() loops are unwound iteratively

Break / continue replaced by goto

Assertion inserted after last iteration: violated if program runs longer than bound permits

Unwinding assertion

```
void f(...) {
  if(cond) {
       cond)
         (cond) {
         Body;
         assert(!cond);
  Remainder:
                   Unwinding
                   assertion
```

while() loops are unwound iteratively

Break / continue replaced by goto

Assertion inserted after last iteration: violated if program runs longer than bound permits

Positive correctness result!

Example: Sufficient Loop Unwinding

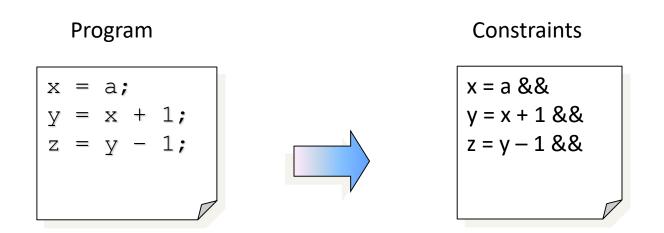
unwind = 3

Example: Insufficient Loop Unwinding

unwind = 3

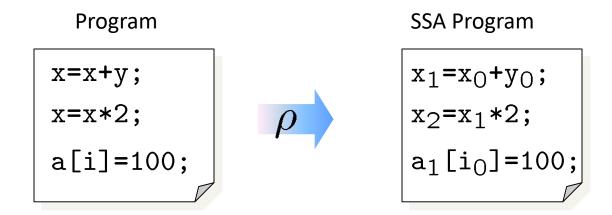
Transforming Loop-Free Programs Into Equations (1)

• Easy to transform when every variable is only assigned once!



Transforming Loop-Free Programs Into Equations (2)

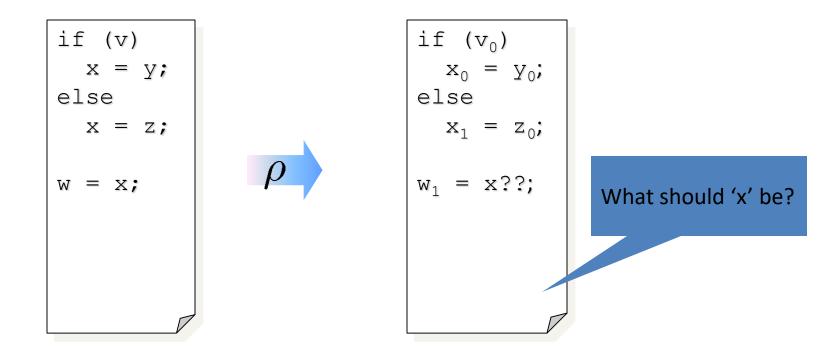
- When a variable is assigned multiple times,
- use a new variable for the RHS of each assignment



What about conditionals?

Program

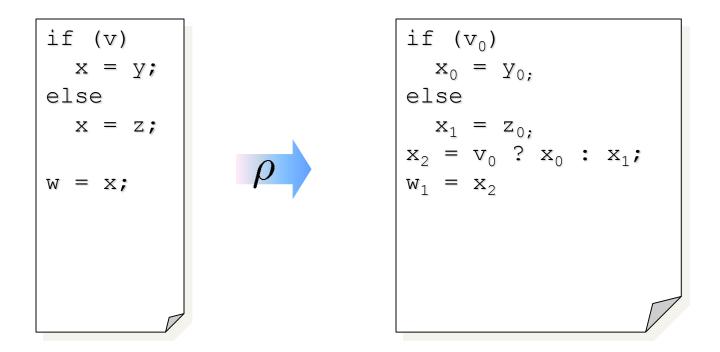
SSA Program



What about conditionals?

Program

SSA Program



• For each join point, add new variables with selectors

Adding Unbounded Arrays
$$v_{\alpha}[a] = e$$
 ρ $v_{\alpha} = \lambda i : \begin{cases} \rho(e) & : i = \rho(a) \\ v_{\alpha-1}[i] & : otherwise \end{cases}$

• Arrays are updated "whole array" at a time

A[1] = 5;	$A_1 = \lambda i : i = 1 ? 5 : A_0[i]$
A[2] = 10;	$A_2 = \lambda i : i = 2 ? 10 : A_1[i]$

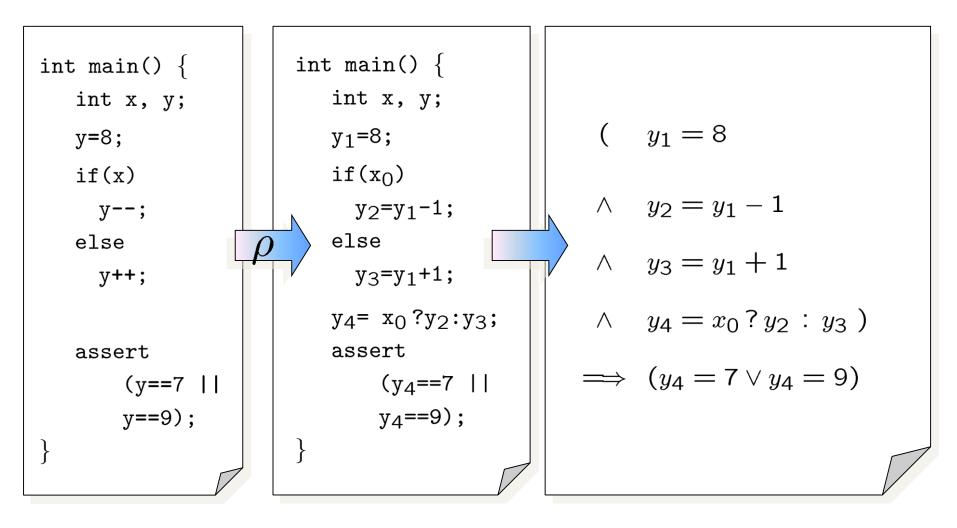
A[k] = 20; $A_3 = \lambda i : i = k ? 20 : A_2[i]$

Examples:

$$A_2[2] == 10$$
 $A_2[1] == 5$ $A_2[3] == A_0[3]$
 $A_3[2] == (k == 2 ? 20 : 10)$

Uses only as much space as there are uses of the array!

Example



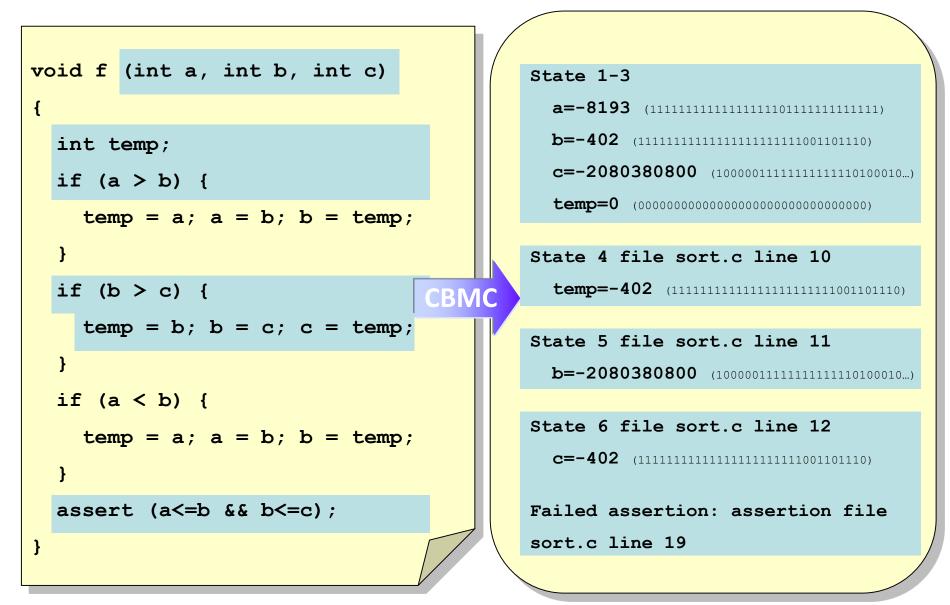
Pointers

- While unwinding, record right hand side of assignments to pointers
- This results in very precise points-to information
 - Separate for each pointer
 - Separate for each <u>instance</u> of each program location
- Dereferencing operations are expanded into case-split on pointer object (not: offset)
 - Generate assertions on offset and on type

Deciding Bit-Vector Logic with SAT

- Pro: all operators modeled with their precise semantics
- Arithmetic operators are flattened into circuits
 - Not efficient for multiplication, division
 - Fixed-point for float/double
- Unbounded arrays
 - Use uninterpreted functions to reduce to equality logic
 - Similar implementation in UCLID
 - But: <u>Contents</u> of array are interpreted
- Problem: SAT solver happy with first satisfying assignment that is found. <u>Might not look nice</u>.

Example



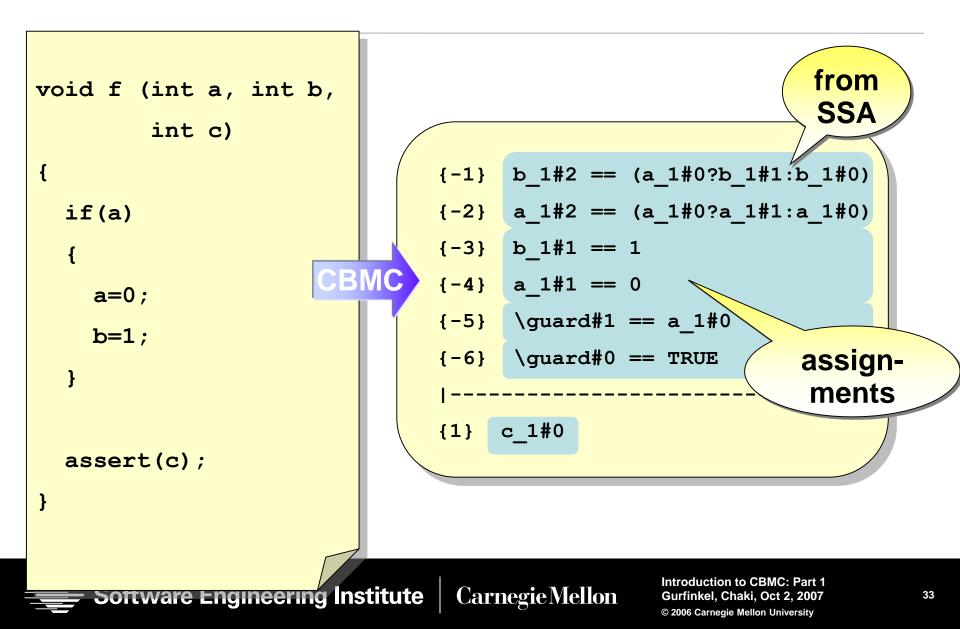
Problem (I)

- Reason: SAT solver performs DPLL backtracking search
- Very first satisfying assignment that is found is reported
- Strange values artifact from bit-level encoding
- Hard to read
- Would like nicer values

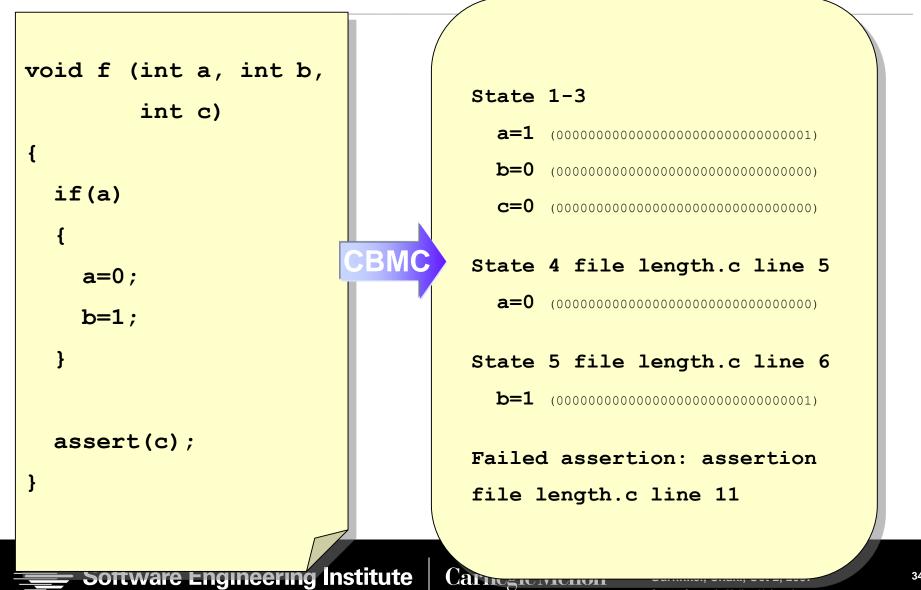
Problem (II)

- Might not get shortest counterexample!
- Not all statements that are in the formula actually get executed
- There is a variable for each statement that decides if it is executed or not (conjunction of if-guards)
- Counterexample trace only contains assignments that are actually executed
- The SAT solver picks some...

Example



Example



Software Engineering Institute

Basic Solution

- Counterexample length typically considered to be most important
 - e.g., SPIN iteratively searches for shorter counterexamples
- Phase one: Minimize length

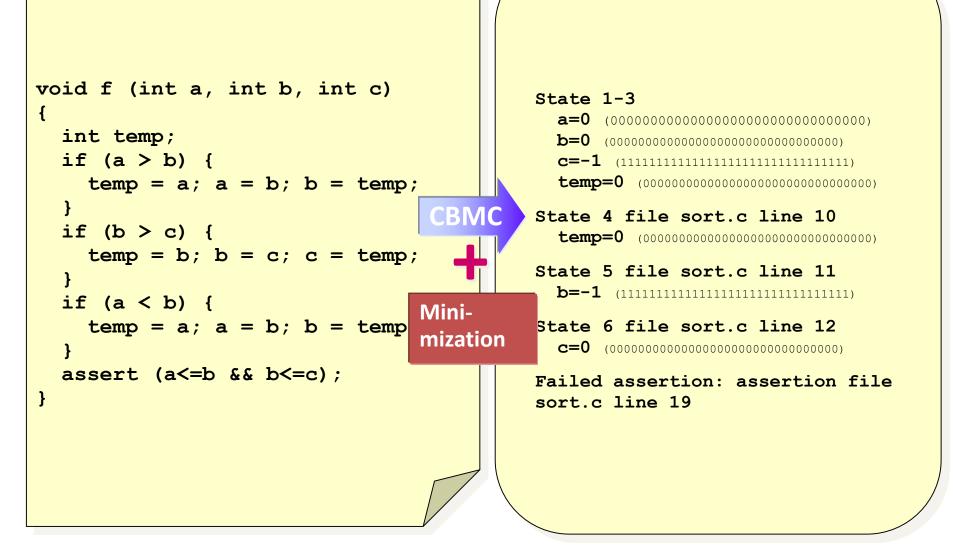
$$\min\sum_{g\in G} l_g \cdot l_w$$

- I_g: Truth value (0/1) of guard,
 I_w: Weight = number of assignments
- Phase two: Minimize values

Pseudo Boolean Solver (PBS)

- Input:
 - CNF constraints
 - Pseudo Boolean constraints
 - 2x + 3y + 6z <= 7, where x, y, z are Boolean variables
 - Pseudo Boolean objective function
- Output:
 - Decision (SAT/UNSAT)
 - Optimizatioin (Minimize/Maximize an objective function)
- Some implementations:
 - PBS <u>http://www.eecs.umich.edu/~faloul/Tools/pbs</u>
 - MiniSat+ (from MiniSat web page)

Example



Modeling with CBMC (1)

- CBMC provides 2 modeling (not in ANSI-C) primitives
- xxx nondet_xxx ()
- Returns a non-deterministic value of type xxx
- int nondet_int (); char nondet_char ();
- Useful for modeling external input, unknown environment, library functions, etc.

Using nondet for modeling

- Library spec:
- "foo is given non-deterministically, but is taken until returned"
- CMBC stub:

```
int nondet_int ();
int is_foo_taken = 0;
int grab_foo () {
    if (!is_foo_taken)
        is_foo_taken = nondet_int ();
    return is_foo_taken; }
```

```
int return_foo ()
{ is_foo_taken = 0; }
```

Assume-Guarantee Reasoning (1)

• Is foo correct?

Check by splitting on the argument of $f \circ \circ$

```
int foo (int* p) { ... }
void main(void) {
  ...
  foo(x);
  ...
  foo(y);
  ...
}
```

Assume-Guarantee Reasoning (2)

• (A) Is foo correct assuming p is not NULL?

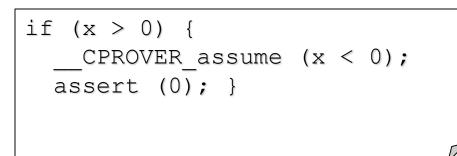
int foo (int* p) { ___CPROVER_assume(p!=NULL); ... }

(G)Is foo guaranteed to be called with a non-NULL argument?

```
void main(void) {
...
assert (x!=NULL);// foo(x);
...
assert (y!=NULL); //foo(y);
...}
```

Dangers of unrestricted assumptions

• Assumptions can lead to vacuous satisfaction



This program is passed by CMBMC!

Assume must either be checked with assert or used as an idiom:

```
x = nondet_int ();
y = nondet_int ();
__CPROVER_assume (x < y);</pre>
```

Summary CBMC

- Bounded model checking is effective for bug finding
- Tricky points
 - PL semantics
 - Procedure Summaries
 - Pointers
 - Loops

Alloy Analyzers

Alloy in one slide

- Invented at MIT by Daniel Jackson (starting around 2000)
- Textual, object-oriented modeling language based on first-order relational logic
- "Light-weight formal methods" approach, fully automated bounded analysis using SAT
- Hundreds of case studies, taught in many universities

Alloy Goals

- Apply bounded model checking to software designs
 - UML
 - Z
- A user friendly modeling language
 - First order logic + transitive closure + many syntactical extensions
 - Graphical user interface
 - Displays counterexamples in a user friendly way

First Order Logic

- Vocabulary V=<R, F, C>
 - Set of relation symbols R each with a fixed arity
 - Set of function symbols F each with a fixed arity
 - Set of constant symbols C
- F ::= $\exists X. F \mid \forall X. F \mid F \lor F \mid \neg F \mid r(\underline{t}) \mid \underline{t}_1 = \underline{t}_2$
- t ::= f(<u>t</u>) | c | X
- Example:
 - $\forall u: \neg edge(u, u)$
 - \forall u: node(u) → \exists cl: color(cl) \land cl(u,cl)
 - $\begin{array}{l} \ \forall u_1, u_2, c: node(u_1) \land node(u_2) \land edge(u_1, u_2) \land cl(u_1, c) \rightarrow \neg cl(u_2, c) \end{array}$

Model M = $\langle U, \iota \rangle$

- A set of elements (universe) U
- For each constant $c \in C$, $\iota(c) \in U$
- For each function $f \in F$ of arity k $\iota(f) \subseteq U^k \rightarrow U$
- For each relation $r \in R$ of arity k, $\iota(r) \subseteq U^k$

Formula Satisfaction

- A first order formula over vocabulary V
- A model M=<U, ι > for V
- An assignment A: $Var \rightarrow U$
- [A] : Term \rightarrow U is inductively defined

$$-$$
 [A](X) = A(X)

$$- [A](c) = \iota(c)$$

 $- [A](f(t_1, t_2, ..., t_k) = \iota(f)([A](t_1), [A](t_2), ..., [A](t_k))$

Formula Satisfaction

- A first order formula over vocabulary V
- A model M=<U, ι > for V
- An assignment A: $Var \rightarrow U$
- A formula ϕ over V
- M, $A \vDash \phi$ is defined inductively
 - M, A \models r(t₁, t₂, ..., t_k) if <[A](t₁), [A](t₂), ..., [A](t_k)> $\in \iota(r)$
 - M, $A \models t_1 = t_2$ if $[A](t_1)=[A](t_2)$
 - M, A $\vDash \neg \phi$ if not M, A $\vDash \phi$
 - M, A \vDash $\phi_1 \lor \phi_2$ if M, A \vDash ϕ_1 or M, A \vDash ϕ_2
 - M, A $\vDash \exists X. \phi$ if there exists $u \in U$ such that M, A[X \mapsto u] $\vDash \exists X. \phi$

The SAT problem for first order logic

- Given a first order formula ϕ do there exist a model M and assignment such that M, A $\models \phi$
- Example 1:
 - $\forall u: node(u) \rightarrow \exists cl: color(cl) \land cl(u,cl)$
 - $\begin{array}{l} \forall u_1, u_2, c: node(u_1) \land node(u_2) \land edge(u_1, u_2) \\ \land cl(u_1, c) \rightarrow \neg cl(u_2, c) \end{array}$

The SAT problem for first order logic

- Given a first order formula ϕ do there exist a model M and assignment such that M, A $\vDash \phi$
- Example 2:
 - ∀X. r(X, X)
 - $\forall X, Y. r(X, Y) \land r(Y, X) \rightarrow X = Y$
 - − \forall X, Y, Z. r(X, Y) \land r(Y, Z) \rightarrow r(X, Z)
 - − \forall X. ∃Y. r(X, Y) ∧ X \neq Y

The SAT problem for first order logic

- Given a first order formula ϕ do there exist a model M and assignment such that M, A $\models \phi$
- Undecidable in general
- Decidable cases
 - Unary relations
 - EPR formulas
 - Presburger formulas
 - The size of M is known (Alloy)

A Tour of Alloy

Shahar Maoz

- module tour/addressBook1
- sig Name, Addr {}
- sig Book {

addr: Name->lone Addr }

```
Name(*), Addr(*), Book(*)
disjoint Name, Addr, Book
addr(*, *, *)
\forall X, Y, Z: X.addr(Y, Z) \rightarrow Book(X) / Name(Y) / Addr(Z)
\forall X, Y, Z1, Z2: X.addr(Y, Z1) / X.addr(Y, Z2) \rightarrow Z1 = Z2
```

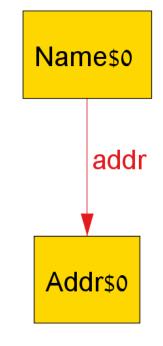
module tour/addressBook1

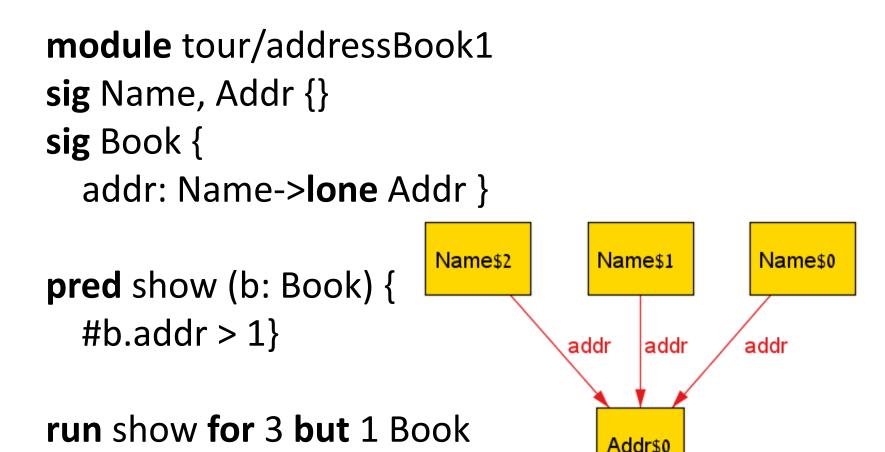
sig Name, Addr {}

sig Book {

addr: Name->lone Addr }

pred show () {}
run show for 3 but 1 Book

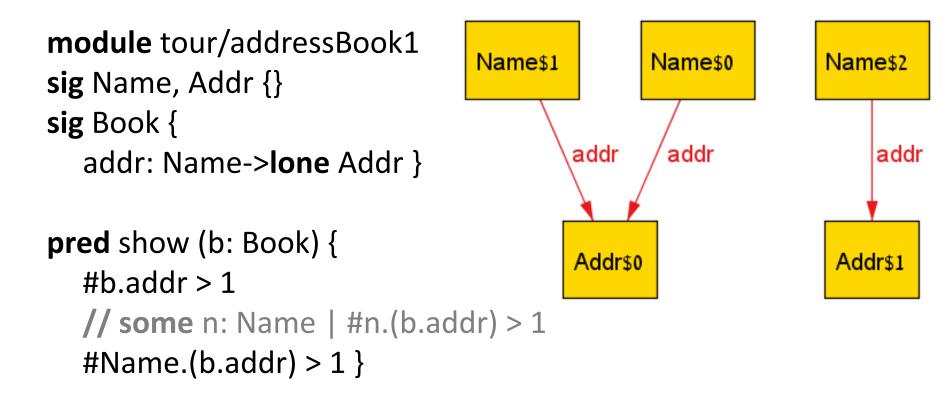




```
module tour/addressBook1
sig Name, Addr {}
sig Book {
   addr: Name->lone Addr }
```

```
pred show (b: Book) {
    #b.addr > 1
    some n: Name | #n.(b.addr) > 1 }
```

run show for 3 but 1 Book



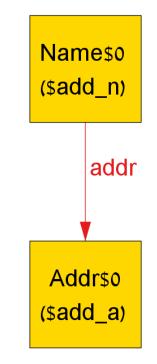
run show for 3 but 1 Book

Dynamics: adding operations

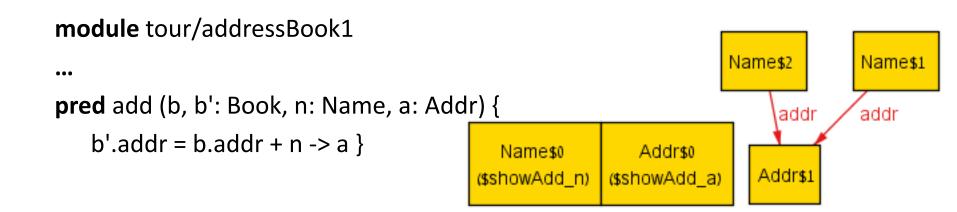
module tour/addressBook1
sig Name, Addr {}
sig Book {
 addr: Name->lone Addr }

pred add (b, b': Book, n: Name, a: Addr) {
 b'.addr = b.addr + n -> a }

run add for 3 but 2 Book



Dynamics: adding operations



pred showAdd (b, b': Book, n: Name, a: Addr) {
 add (b, b', n, a)
 #Name.(b'.addr) > 1 }
 run showAdd for 3 but 2 Book
 Addrso
 Addrso
 Addrso
 Addrso
 Addrs1

(showAdd a)

Dynamics: adding some more operations

module tour/addressBook1

```
pred add (b, b': Book, n: Name, a: Addr) {
    b'.addr = b.addr + n -> a }
```

```
pred del (b, b': Book, n: Name) {
    b'.addr = b.addr - n ->Addr }
```

fun lookup (b: Book, n: Name): set Addr {
 n. (b.addr) }

Adding an assertion

module tour/addressBook1

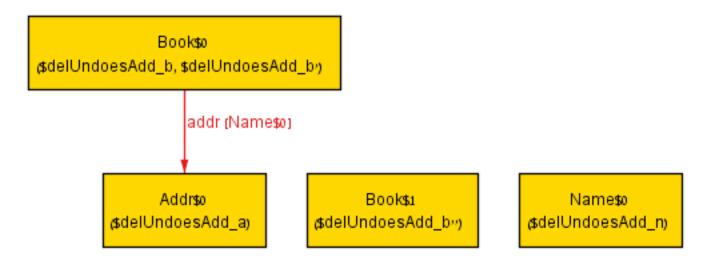
```
pred add (b, b': Book, n: Name, a: Addr) {
    b'.addr = b.addr + n -> a }
```

```
pred del (b, b': Book, n: Name) {
    b'.addr = b.addr - n ->Addr }
```

```
assert delUndoesAdd {
    all b,b',b": Book, n: Name, a: Addr |
        add (b,b',n,a) and del (b',b",n) implies b.addr = b".addr }
```

```
check delUndoesAdd for 3
```

Counterexample found



assert delUndoesAdd {

```
all b,b',b": Book, n: Name, a: Addr |
add (b,b',n,a) and del (b',b",n) implies b.addr = b".addr }
```

check delUndoesAdd for 3

Assertion fixed

```
assert delUndoesAdd {
    all b,b',b": Book, n: Name, a: Addr |
    no n.(b.addr) and
    add (b,b',n,a) and del (b',b",n) implies b.addr = b".addr }
```

check delUndoesAdd for 3

Checking the assertion in a larger scope

assert delUndoesAdd {

all b,b',b": Book, n: Name, a: Addr |
no n.(b.addr) and
add (b,b',n,a) and del (b',b",n) implies b.addr = b".addr }

check delUndoesAdd for 10 but 3 Book

check delUndoesAdd for 40 but 3 Book

Small scope hypothesis

- We still haven't proved the assertion to be valid, but intuitively it seems unlikely that, if there is a problem, it can't be shown in a counterexample with 40 names and addresses
- Small scope hypothesis: Most flaws in models can be illustrated by small instances, since they arise from some shape being handled incorrectly, and whether the shape belongs to a large or a small instance makes no difference. So if the analysis considers all small instances, most flaws will be revealed.
- This hypothesis is a fundamental premise that underlies Alloy's analysis

Some additional assertions

assert addldempotent { all b,b',b": Book, n: Name, a: Addr | add (b,b',n,a) and add (b',b",n,a) implies b'.addr = b".addr }

```
assert addLocal {
  all b,b': Book, n,n': Name, a: Addr |
   add (b,b',n,a) and n != n'
   implies lookup (b,n') = lookup (b',n') }
```

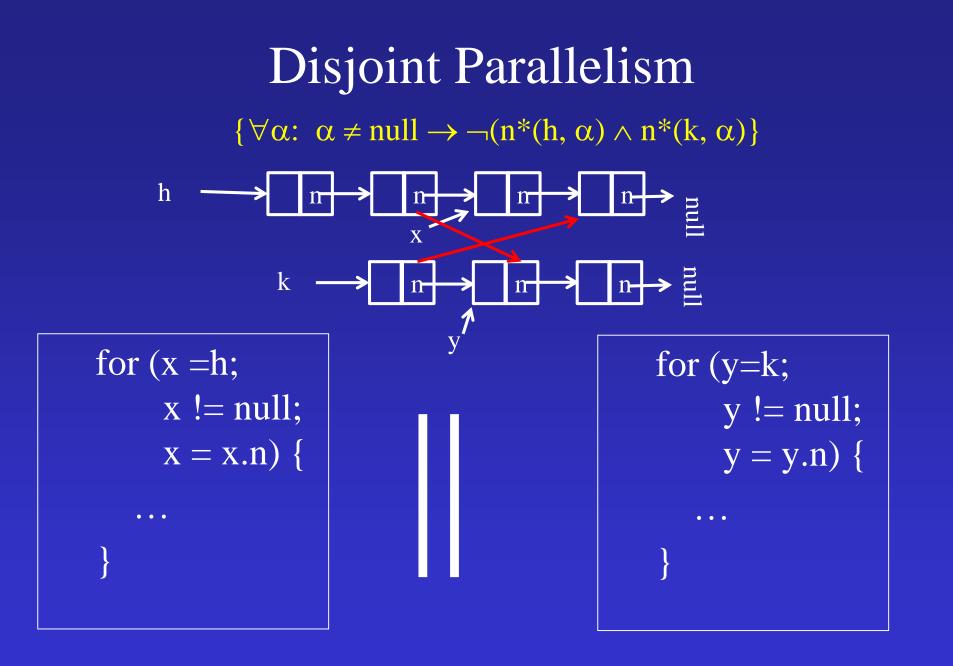
Summary

- So far we have seen
 - Signatures, fields
 - Predicates, assertions, functions
 - Run and check commands
 - The small scope hypothesis
- Missing Alloy features
 - Object-oriented inheritance
 - Transitive closure
 - Facts

First Order Logic +TC

- Vocabulary V=<R, F, C>
 - Set of relation symbols R each with a fixed arity
 - Set of function symbols F each with a fixed arity
 - Set of constant symbols C
- F ::= TC(X, Y)(W, Z). F | $\exists X. F$ | F \lor F | \neg F | r(<u>t</u>) | t₁ = t₂
- t ::= f(<u>t</u>) | c | X
- Example:

- ∀X, Y. edge*(X, Y) ↔ TC(X,Y)(W, Z).edge(W,Z)



Selected references Alloy

• D. Jackson. "Software Abstractions: Logic, Language, and Analysis", MIT Press, 2006.

• D. Jackson. "Automating First-Order Relational Logic", FSE 2000, ACM, pp. 130-139.

Some Suggested Projects

- BMC for a cool language (Python)
- Apply Alloy to an interesting domain
 - Simple distributed protocols
 - Leader election

• ..

• Apply Rosette

Summary Bounded Model Checking

- Effective technique
- Deployed by some companies
- Scaling is an issue