
Bounded Model Checking

Mooly Sagiv

Slides from ArieGurfinkel& Sagar
Chaki, Daniel Jackson, ShaharMaoz

Automatic Program Verification

Desired

Properties j

Solver
Is there a behavior

of P that violates j?

Counterexample Proof

Program

P

Yes
NO

Simple Bug
scanf("%d", &n);

for (c = 0; c < n; c++)

scanf("%d", &array[c]);

for (c = 0 ; c < (n - 1); c++)

{

for (d = 1 ; d < n - c - 1; d++)

{

if (array[d] > array[d+1])

{

swap = array[d];

array[d] = array[d+1];

array[d+1] = swap;

}

}

}

Program Properties

ÅUser defined assertions

ÅGeneral cleanliness properties

ïAbsence of buffer overruns

ïNo null dereference

ïNo double free

ïNo overflow

JacksonΩs Thesis

ÅIf a program has a bug Ýit also occurs on
small input k

ïTrue in many cases

Model Checking

ÅDoes a given model M satisfy a property P,
M~P
ïM is usually a finite directed graph

ïP is usually a formula in temporal logic

ÅExamples:
ïIs every request to this bus arbiter eventually

acknowledged?

ïDoes this program every dereference a null
pointer?

Bounded Model Checking
ÅGiven
ïA finite transition system M

ïA property P

ÅDetermine
ïDoes M allow a counterexample to P of k transitions of

fewer?

This problem can be translated to a SAT problem

Bounded Model Checking of Loops

ÅDoes the program reach an error within at
most k unfolding of the loop

ÅSpecial kind of symbolic evaluation

Bounded Model Checking Tools

ÅCBMC: Bounded Model Checker for C and C++
ïDeveloped at CMU/Oxford

ïSupports C89, C99, most of C11

ïVerifies array bounds (buffer overflows), absence of
null dereferences, assertions

ÅAlloy: Bounded model checking for program
designs
ïDeveloped at MIT

ïRich specification language
ÅFirst order logic, transitive closure, arithmetics

CBMC: C Bounded Model Checker

ωDeveloped at CMU by Daniel Kroeninget al.

ωAvailable at:
http://www.cs.cmu.edu/~modelcheck/cbmc/

ωSupported platafoms: Windows (requires
VisualStudioΩs̀ CL), Linux

ωProvides a command line and Eclipse-based interfaces

ωKnown to scale to programs with over 30K LOC

ωWas used to find previously unknown bugs in MS
Windows device drivers

http://www.cs.cmu.edu/~modelcheck/cbmc/

What about loops?!
ωSAT Solver can only explore finite length executions!
ωLoops must be bounded (i.e., the analysis is incomplete)

Program

Claim

Analysis
Engine

SAT
Solver

UNSAT
(no counterexample of
bound n is found)

SAT
(counterexample exists)

CNF

Bound (n)

How does it work?

ÅTransform a programs into a set of equations

1. Simplify control flow

2. Unwind all of the loops

3. Convert into Single Static Assignment (SSA)

4. Convert into equations

5. Bit-blast

6. Solve with a SAT/SMT Solver

7. Convert SAT assignment into a counterexample

Control Flow Simplifications
¸ All side effect are removal

Å e.g., j=i++ becomes j=i;i=i+ 1

ω Control Flow is made explicit

Å continue , break replaced by goto

ω All loops are simplified into one form

Å for , do while replaced by while

Loop Unwinding
ω All loops are unwound

Å can use different unwinding bounds for different loops

Å to check whether unwinding is sufficient special άunwinding assertionέ
claims are added

ω If a program satisfies all of its claims and all unwinding
assertions then it is correct!

ω Same for backward goto jumps and recursive functions

Loop Unwinding
while() loops are unwound

iteratively

Break / continue replaced by
goto

void f(...) {
...
while(cond) {

Body;
}
Remainder;

}

Loop Unwinding
while() loops are unwound

iteratively

Break / continue replaced by
goto

void f(...) {
...
if(cond) {

Body;
while(cond) {

Body;
}

}
Remainder;

}

Loop Unwinding
while() loops are unwound

iteratively

Break / continue replaced by
goto

void f(...) {
...
if(cond) {

Body;
if(cond) {

Body;
while(cond) {

Body;
}

}
}
Remainder;

}

Unwinding assertion
while() loops are unwound

iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if program
runs longer than bound
permits

void f(...) {
...
if(cond) {

Body;
if(cond) {

Body;
if(cond) {

Body;
while(cond) {

Body;
}

}
}

}
Remainder;

}

Unwinding assertion
while() loops are unwound

iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if program
runs longer than bound
permits

Positive correctness result!

void f(...) {
...
if(cond) {

Body;
if(cond) {

Body;
if(cond) {

Body;
assert(! cond);

}
}

}
}
Remainder;

}

Unwinding
assertion

Example: Sufficient Loop Unwinding
void f(...) {

j = 1
if(j <= 2) {

j = j + 1;
if(j <= 2) {

j = j + 1;
if(j <= 2) {

j = j + 1;
assert(! (j <= 2));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 2)

j = j + 1;
Remainder;

}

unwind = 3

Example: Insufficient Loop Unwinding
void f(...) {

j = 1
if(j <= 10) {

j = j + 1;
if(j <= 10) {

j = j + 1;
if(j <= 10) {

j = j + 1;
assert(! (j <= 10));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 10)

j = j + 1;
Remainder;

}

unwind = 3

Transforming Loop-Free Programs Into Equations (1)

Å Easy to transform when every variable is only assigned once!

x = a;

y = x + 1;

z = y ï 1;

Program Constraints

x = a &&
y = x + 1 &&
z = y ς1 &&

Transforming Loop-Free Programs Into Equations (2)

ÅWhen a variable is assigned multiple times,
Åuse a new variable for the RHS of each assignment

Program SSA Program

What about conditionals?
Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v 0)

x0 = y 0;
else

x1 = z 0;

w1 = x?? ;
What should ΨxΩ be?

What about conditionals?

Å For each join point, add new variables with selectors

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v 0)

x0 = y 0;

else

x1 = z 0;

x2 = v 0 ? x 0 : x 1;

w1 = x 2

Adding Unbounded Arrays

ÅArrays are updated άwhole arrayέ at a time

A[1] = 5;
A[2] = 10;
A[k] = 20;

A1= i˂ : i == 1 ? 5 : A0[i]
A2= i˂ : i == 2 ? 10 : A1[i]
A3= i˂ : i == k ? 20 : A2[i]

Examples:
A2[2] == 10 A2[1]==5 A2[3] == A0[3]
A3[2] == (k==2 ? 20 : 10)

Uses only as much space as there are uses of the array!

Example

Pointers

ÅWhile unwinding, record right hand side of
assignments to pointers

ÅThis results in very precise points-to information

ïSeparate for each pointer

ïSeparate for each instanceof each program location

ÅDereferencing operations are expanded into
case-split on pointer object (not: offset)

ïGenerate assertions on offset and on type

Deciding Bit-Vector Logic with SAT

ÅPro: all operators modeled with their precise
semantics

ÅArithmetic operators are flattened into circuits
ïNot efficient for multiplication, division

ïFixed-point for float /double

ÅUnbounded arrays
ïUse uninterpretedfunctions to reduce to equality logic

ïSimilar implementation in UCLID

ïBut: Contentsof array are interpreted

ÅProblem: SAT solver happy with first satisfying
assignment that is found. Might not look nice.

Example

CBMC

void f (int a, int b, int c)

{

int temp;

if (a > b) {

temp = a; a = b; b = temp;

}

if (b > c) {

temp = b; b = c; c = temp;

}

if (a < b) {

temp = a; a = b; b = temp;

}

assert (a<=b && b<=c);

}

State 1- 3

a=- 8193 (11111111111111111101111111111111)

b=- 402 (11111111111111111111111001101110)

c=- 2080380800 (10000011111111111110100010 é)

temp= 0 (00000000000000000000000000000000)

State 4 file sort.c line 10

temp= - 402 (11111111111111111111111001101110)

State 5 file sort.c line 11

b=- 2080380800 (10000011111111111110100010 é)

State 6 file sort.c line 12

c=- 402 (11111111111111111111111001101110)

Failed assertion: assertion file

sort.c line 19

