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Automatic Program Verification
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Simple Bug
scanf("%d", &n);

for (c = 0; c < n; c++)

scanf("%d", &array[c]);

for (c = 0 ; c < ( n - 1 ); c++)

{

for (d = 1 ; d < n - c - 1; d++)

{

if (array[d] > array[d+1])

{

swap       = array[d];

array[d]   = array[d+1];

array[d+1] = swap;

}

}

}



Program Properties

ÅUser defined assertions

ÅGeneral cleanliness properties

ïAbsence of buffer overruns

ïNo null dereference

ïNo double free

ïNo overflow



JacksonΩs Thesis

ÅIf a program has a bug  Ýit also occurs on 
small input k

ïTrue in many cases



Model Checking

ÅDoes a given model M satisfy a property P, 
M~P
ïM is usually a finite directed graph

ïP is usually a formula in temporal logic

ÅExamples:
ïIs every request to this bus arbiter eventually 

acknowledged?

ïDoes this program every dereference a null 
pointer?



Bounded Model Checking
ÅGiven
ïA finite transition system M

ïA property P

ÅDetermine
ïDoes M allow a counterexample to P of k transitions of 

fewer?

This problem can be translated to a SAT problem



Bounded Model Checking of Loops

ÅDoes the program reach an error within at 
most k unfolding of the loop

ÅSpecial kind of symbolic evaluation



Bounded Model Checking Tools

ÅCBMC: Bounded Model Checker for C and C++
ïDeveloped at CMU/Oxford 

ïSupports C89, C99, most of C11

ïVerifies array bounds (buffer overflows), absence of 
null dereferences, assertions

ÅAlloy: Bounded model checking for program 
designs
ïDeveloped at MIT

ïRich specification language
ÅFirst order logic, transitive closure, arithmetics



CBMC: C Bounded Model Checker

ωDeveloped at CMU by Daniel Kroeninget al.

ωAvailable at: 
http://www.cs.cmu.edu/~modelcheck/cbmc/

ωSupported platafoms: Windows (requires 
VisualStudioΩs̀  CL), Linux

ωProvides a command line and Eclipse-based interfaces

ωKnown to scale to programs with over 30K LOC

ωWas used to find previously unknown bugs in MS 
Windows device drivers

http://www.cs.cmu.edu/~modelcheck/cbmc/


What about loops?!
ωSAT Solver can only explore finite length executions!
ωLoops must be bounded (i.e., the analysis is incomplete)
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How does it work?

ÅTransform a programs into a set of equations

1. Simplify control flow 

2. Unwind all of the loops

3. Convert into Single Static Assignment (SSA)

4. Convert into equations

5. Bit-blast

6. Solve with a SAT/SMT Solver

7. Convert SAT assignment into a counterexample



Control Flow Simplifications
¸ All side effect are removal

Å e.g., j=i++ becomes j=i;i=i+ 1

ω Control Flow is made explicit

Å continue , break replaced by goto

ω All loops are simplified into one form

Å for , do while replaced by while



Loop Unwinding
ω All loops are unwound

Å can use different unwinding bounds for different loops

Å to check whether unwinding is sufficient special άunwinding assertionέ 
claims are added

ω If a program satisfies all of its claims and all unwinding 
assertions then it is correct!

ω Same for backward goto jumps and recursive functions



Loop Unwinding 
while() loops are unwound 

iteratively

Break / continue replaced by 
goto

void f(...) {
...
while( cond ) {

Body;
}
Remainder;

}



Loop Unwinding
while() loops are unwound 

iteratively

Break / continue replaced by 
goto

void f(...) {
...
if( cond ) {

Body;
while( cond ) {

Body;
}

}
Remainder;

}



Loop Unwinding
while() loops are unwound 

iteratively

Break / continue replaced by 
goto

void f(...) {
...
if( cond ) {

Body;
if( cond ) {

Body;
while( cond ) {

Body;
}

}
}
Remainder;

}



Unwinding assertion
while() loops are unwound 

iteratively

Break / continue replaced by 
goto

Assertion inserted after last 
iteration: violated if program 
runs longer than bound 
permits

void f(...) {
...
if( cond ) {

Body;
if( cond ) {

Body;
if( cond ) {

Body;
while( cond ) {

Body;
}

}
}

}
Remainder;

}



Unwinding assertion
while() loops are unwound 

iteratively

Break / continue replaced by 
goto

Assertion inserted after last 
iteration: violated if program 
runs longer than bound 
permits

Positive correctness result!

void f(...) {
...
if( cond ) {

Body;
if( cond ) {

Body;
if( cond ) {

Body;
assert(! cond );

}
}

}
}
Remainder;

}

Unwinding
assertion



Example: Sufficient Loop Unwinding
void f(...) {

j = 1
if( j <= 2) {

j = j + 1;
if( j <= 2) {

j = j + 1;
if( j <= 2) {

j = j + 1;
assert(! (j <= 2) );
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while ( j <= 2)

j = j + 1;
Remainder;

}

unwind = 3



Example: Insufficient Loop Unwinding
void f(...) {

j = 1
if( j <= 10) {

j = j + 1;
if( j <= 10) {

j = j + 1;
if( j <= 10) {

j = j + 1;
assert(! (j <= 10) );
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while ( j <= 10)

j = j + 1;
Remainder;

}

unwind = 3



Transforming Loop-Free Programs Into Equations (1)

Å Easy to transform when every variable is only assigned once!

x = a;

y = x + 1;

z = y ï 1;

Program Constraints

x = a &&
y = x + 1 &&
z = y ς1 &&



Transforming Loop-Free Programs Into Equations (2)

ÅWhen a variable is assigned multiple times, 
Åuse a new variable for the RHS of each assignment

Program SSA Program



What about conditionals?
Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v 0)

x0 = y 0;
else

x1 = z 0;

w1 = x?? ;
What should ΨxΩ be?



What about conditionals?

Å For each join point, add new variables with selectors

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v 0)

x0 = y 0;

else

x1 = z 0;

x2 = v 0 ? x 0 : x 1;

w1 = x 2



Adding Unbounded Arrays

ÅArrays are updated άwhole arrayέ at a time

A[1] = 5;
A[2] = 10;
A[k] = 20;

A1= i˂ : i == 1 ? 5 : A0[i]
A2= i˂ : i == 2 ? 10 : A1[i]
A3= i˂ : i == k ? 20 : A2[i]

Examples:
A2[2] == 10 A2[1]==5 A2[3] == A0[3]
A3[2] == (k==2 ? 20 : 10)

Uses only as much space as there are uses of the array!



Example



Pointers

ÅWhile unwinding, record right hand side of 
assignments to pointers

ÅThis results in very precise points-to information

ïSeparate for each pointer

ïSeparate for each instanceof each program location

ÅDereferencing operations are expanded into
case-split on pointer object (not: offset)

ïGenerate assertions on offset and on type



Deciding Bit-Vector Logic with SAT

ÅPro: all operators modeled with their precise 
semantics

ÅArithmetic operators are flattened into circuits
ïNot efficient for multiplication, division

ïFixed-point for float /double

ÅUnbounded arrays
ïUse uninterpretedfunctions to reduce to equality logic

ïSimilar implementation in UCLID

ïBut: Contentsof array are interpreted

ÅProblem: SAT solver happy with first satisfying 
assignment that is found. Might not look nice.



Example

CBMC

void f (int a, int b, int c)

{

int temp;

if (a > b) {

temp = a; a = b; b = temp;

}

if (b > c) {

temp = b; b = c; c = temp;

}

if (a < b) {

temp = a; a = b; b = temp;

}

assert (a<=b && b<=c);

}

State 1- 3

a=- 8193 ( 11111111111111111101111111111111 )

b=- 402 ( 11111111111111111111111001101110 )

c=- 2080380800 ( 10000011111111111110100010 é)

temp= 0 ( 00000000000000000000000000000000 )

State 4 file sort.c line 10

temp= - 402 ( 11111111111111111111111001101110 )

State 5 file sort.c line 11

b=- 2080380800 ( 10000011111111111110100010 é)

State 6 file sort.c line 12

c=- 402 ( 11111111111111111111111001101110 )

Failed assertion: assertion file

sort.c line 19


