Bounded Model Checking

Mooly Sagiv

Slides fromArie Gurfinkel& Sagar
Chakj Daniel Jackso’shahaMaoz

Automatic Program Verification

Program Desired
P Propertiesj

Solver

|s there a behavior
of P that violateg ?

Yes

Counterexample | Proof

7 Sj/ .

Simple Bug

scanf("%d", &n);
for (c =0; ¢ < n;c++)
scanf("%d", &array[c]);
for(c=0;c<(n-1);c+d
{
for(d=1;d<n-c-1; d++)

{
If (array[d] > array[d])

{
swap = array[d];
array[d] = array[d4];
array[d+l] = swap;

}

}
}

Program Properties

A User defined assertions

A General cleanliness properties
I Absence of buffer overruns
I No null dereference

I No double free

I No overflow

Jackso@ Thesis

[N
A If a program has a bug Yit also occurs on
small input k

I True In many cases

Model Checking

A Does a given model M satisfy a property P,
M~P
I M iIs usually a finite directed graph
I P is usually a formula in temporal logic

A Examples:

I Is every request to this bus arbiter eventually
acknowledged?

I Does this program every dereference a null
pointer?

Bounded Model Checking

A Given
I A finite transition system M
I A property P

A Determine

I Does M allow a counterexample to Pkafransitions of
fewer?

This problem can be translated to a SAT problem

Bounded Model Checking of Loop:

A Does the program reach an error within at
most k unfolding of the loop

A Special kind of symbolic evaluation

Bounded Model Checking Tools

A CBMCBounded Model Checker for C aneHC
I Developed at CMU/Oxford
I Supports 89, P9, most ofCl1

I Verifiesarray bounds (buffer overflowysabsence of
null dereferences, assertions

A Alloy: Bounded model checking for program
designs
I Developed at MIT
I Richspecification language
A First order logic, transitive closuratithmetics

CBMC: C Bounded Model Checke

w Developed at CMU by Danketoeninget al.

w Avallable at:
http://www.cs.cmu.edu/~modelcheck/cbmc/

w Supportedblatafoms Windows (requires
VisualStudi@ CL), Linux

w Provides a command line and Ecliimsesed interfaces

w Known to scale to programs with ov@oK LOC

w Was used to find previously unknown bugs in MS
Windows device drivers

http://www.cs.cmu.edu/~modelcheck/cbmc/

What about loops?!

w SAT Solver can only explore finite length executions!
w Loops must be bounded (i.e., the analysis is incomplete)

Program
Claim
Bound (n)
SAT UNSAT
(counterexample exists) (no counterexample of

bound n is found)

How does 1twork?

A Transform a programs into a set of equations

1. Simplify control flow

2. Unwind all of the loops

3. Convert into Single Static Assignment (SSA)

4. Convert into equations

5. Bit-blast

6. Solve with e5AT/SMBolver

/. Convert SAT assignment into a counterexample

Control Flow Simplifications

All side effect are removal

A e.q.,j=i++ becomeg=i;i=i+ 1

» Control Flow is made explicit

A continue ,break replaced bygoto

» All loops are simplified into one form

A for ,dowhile replaced bywhile

Loop Unwinding

All loops are unwound

A can use different unwinding bounds for different loops

A to check whether unwinding is sufficient speciahwinding assertioé
claims are added

If a program satisfies all of its claims and all unwinding
assertions then it is correct!

Same for backwardoto jumps and recursive functions

Loop Unwinding

void f(...) {

Whl|e([cond) {
Body;

Ilgiemalnder

while() loops are unwound
iteratively

Break / continue replaced by
goto

Loop Unwinding

void f(...) { while() loops are unwound
if(Q@fﬂ-dj) { iteratively
Wﬁ]eﬂ(: eondi) { Break / continue replaced by
! Body:; goto
IlE{emainder;

Loop Unwinding

void f(...) {

}

IlEQemainder;

while() loops are unwound
iteratively

Break / continue replaced by
goto

Unwinding assertion

void f(...) {
if(eend) {

i &)
ﬁ(‘“c@mm) {

whﬂe(condi) {
oty

—

} }

Ilgiemainder;

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if program
runs longer than bound
permits

Unwinding assertion

void f(..) {
i _cand){
- Edng) {
i nab) {

—.

Boay,

5§ser{(!
}
| }

Ilgiemainder;

cond);

Unwinding
assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if program
runs longer than bound
permits

Positive correctness result!

Example: Sufficient Loop Unwinding

void f(..){ void f(..){

{Nhl|e(D<z 2) JIf(Jj<z 2){

Remalnc?er &(D<z 2){
&(D<z 2){

assertj(' (ijf—< 2));
} }
}
_ kemainder;
unwind =3

Example: Insufficient Loop Unwinding

void f(..){ void f(..){

Lohile (fe=s 10) It D<z 10){

Remalnc?er &(D<z 1@){
&(D<z 10){

assertj(' (_|13<—< 10));
} }
}
_ %—'{emainder;
unwind =3

Transforming Loofpree Programs Into Equatiors (

A Easy to transform when every variable is only assigned once!

Program Constraints
X = a; X=a&&
y=x+ 1, y=x+&&
z=y i 1; jl> z=yc1&&

Transforming Loofpree Programs Into Equatioryy (

A When a variable is assigned multiple times,
A use a new variable for the RHS of each assignment

Program SSA Program
X=X4y; X15X0%Y05
X=X*2; Ie, Xo=X1%*2;
ali]=100; ai1lipgl=100;

4 4

What about conditionals?

Program

if (v)

X =Y;
else
X =Z;

W = X;

P

SSA Program

if(v o)

Xo =Y o
else
X, =Z o

Wl h ;’

4

What about conditionals?

Program SSA Program
if (V) if(v o)
X=Y, Xo =Y o
else else
X =2 Xy =2
Xy, =V ?2X g X q;
W = X; IO W, =X,

% 4

A For each join point, add new variables with selectors

Adding Unbounded Arrays

_ I 1 2) 1= p(a)
vala] =e P Va = AL { va—1[i] : otherwise

A Arrays are updatedwhole array at a time

A[l] =5; A=<i:1==17?5: Aji]

A[2] =10; A=<i:1==27?10: A]i]

A[k] =20; A=<i:i1==Kk 20: AJi]
Examples:

A[2] ==10 AJ1]==5 A)[3] == A[3]
AJ[2] == (k=2720: 10)

Uses only as much space as there are uses of the array!

Example

int main() { int main() {
int x, y; int x, V;
y=8; y1=8; (y1=28
if(x) if (xg)
y=-s y2=y1-1; AN oya=y1—1
else p > else > o
yH+; ' y3=y1+1; Aoyz =il
V4= X0 7y2:V3; AN yYya=2x07Y2 . Y3)
assert assert
(y==7 || (y4==7 1| = (Wa=7Vys=9)
y==9) ; y4==9) ;
| 7 7

Pointers

A While unwinding, record right hand side of
assignments to pointers
A This results in very precise poifitsinformation
I Separate for each pointer
I Separate for eachmstanceof each program location
A Dereferencing operations are expanded into
casesplit on pointer object (not: offset)
I Generate assertions on offset and on type

Deciding BHVector Logic with SAT

A Pro: all operators modeled with their precise
semantics
A Arithmetic operators are flattened into circuits

I Not efficient for multiplication, division
I Fixedpoint forfloat /double

A Unbounded arrays
I Useuninterpretedfunctions to reduce to equality logic

I Similar implementation in UCLID
I But: Contentsof array are interpreted

A Problem: SAT solver happy with first satisfying
assignment that is foundvight not look nice

Example

void f (int a, int b, int c) State 1-3
{ a=- 8193 (11111111111111111101111111111111)
int temp; b=- 402 (11111111111111111111111001101110)
if (2> b) { c=- 2080380800 (10000011111111111110100010 §)

temp=0 (00000000000000000000000000000000
temp =a; a=Db; b =temp; >)

} State 4 file sort.c line 10
if (b >c){ temp=- 402 (11111111111111111111111001101110)
temp = Db; b =c; c = temp; ' :
State 5 file sort.c line 11
} b=- 2080380800 (10000011111111111110100010 §&)
if (a<b) {
State 6 file sort.c line 12

temp =a;a="b; b=temp;
c=-402 (11111111111111111111111001101110)

}

assert (a<=b && b<=c); Failed assertion: assertion file

} 7 sort.c line 19

Problem (I)

w Reason: SAT solver performs DPLL backtracking search
w Very first satisfying assignment that is found is reported
w Strange values artifact from Hevel encoding

w Hard to read

w Would like nicer values

Problem (I1)

w Might not get shortest counterexample!

w Not all statements that are in the formula actually get
executed

w There is a variable for each statement that decides if it is
executed or not (conjunction af -guards)

w Counterexample trace only contains assignments that are
actually executed

w The SAT solver picks saxhe

