Satisfiability of Propositional Formulas

Mooly Sagiv

Slides by Sharad Malik, Ohad Shacham, Daniel Kroening and Ofer Strichman
The SAT Problem

• Given a propositional formula (Boolean function)
 \[\varphi = (a \lor b) \land (\neg a \lor \neg b \lor c) \]

• Determine if \(\varphi \) is valid
 true in all assignments

• Determine if \(\varphi \) is satisfiable
 – Find a satisfying assignment or report that such does not exist

• For \(n \) variables, there are \(2^n \) possible truth assignments to be checked
Why Bother?

• Core computational engine for major applications
 – Artificial Intelligence
 • Knowledge base deduction
 • Automatic theorem proving
 – Electronic Design Automaton
 • Testing and Verification
 • Logic synthesis
 • FPGA routing
 • Path delay analysis
 • And more…
 – Software Verification
Problem Representation

• Represent the formulas in Conjunctive Normal Form (CNF)

• Conversion to CNF is straightforward
 – \(a \lor (b \land \neg(c \lor \neg d)) \equiv (a \lor (b \land \neg c \land \neg d)) \equiv (a \lor (b \land \neg c \land d)) \equiv (a \lor b) \land (a \lor \neg c) \land (a \lor d) \)
 – May need to add variables

• Notations
 – Literals
 • Variable or its negation
 – Clauses
 • Disjunction of literals
 – \(\varphi = (a \lor b) \land (\neg a \lor \neg b \lor c) \equiv (a + b)(a’ + b’ + c) \)

• Advantages of CNF
 – Simple data structure
 – Compact
 – Compositional
 – All the clauses need to be satisfied
Complexity Results

• First established NP-Complete problem
 – Even when at most 3 literals per clause (3-SAT)
 – No polynomial algorithm for all instances unless P = NP

• Becomes polynomial when
 – At most two literals per clause (2-SAT)
 – At most one positive literal in every clause (Horn)
Goals

• Develop algorithms which solve all SAT instances
• Exponential worst case complexity
• But works well on many instances
 – Interesting Heuristics
 – Annual SAT conferences
 – SAT competitions
 • Randomly, Handmade, Industrial, AI
 – 10 Millions variables!
SAT made some progress…
Naïve SAT solving (DFS)

- Enumerate all truth assignments X_1, X_2, \ldots, X_n

Pseudo code

```plaintext
main=
  if sat(0, $\varphi$)
    then return SAT(X)
  else return UNSAT

boolean sat(i, $\varphi$)=
  if i = n then return false
  else
    j := i+1
    $x[j] := 0; \varphi' := \text{simp}(\varphi, j, 0)$
    if sat(j, $\varphi'$) then return true
    else
      $x[j] := 1; \varphi' := \text{simp}(\varphi, j, 1)$
      return sat(j, $\varphi'$)
```
The intuition behind resolution

\[
\begin{align*}
A \rightarrow B & \\
B \rightarrow C \\
A \rightarrow C
\end{align*}
\]

\[
\begin{align*}
\neg A \lor B & \\
\neg B \lor C \\
\neg A \lor C
\end{align*}
\]

\[
\begin{align*}
A \rightarrow B & \\
B \rightarrow C \\
A \rightarrow C
\end{align*}
\]
Clause Resolution

- Resolution of a pair of clauses with exactly ONE incompatible variable

- What if more than one incompatible variables?
Davis Putnam Algorithm

dp(\mathcal{C}L)=
 \text{for } i = 1 \text{ to } n \text{ do }
 \quad \mathcal{C}L := \text{eliminate}(X_i, \mathcal{C}L) ;

 \text{if } () \in \mathcal{C}L \text{ then return UNSAT; }
 \quad \text{else return SAT;}

\text{eliminate}(x, \mathcal{C}L)=
 \quad \text{new} := \{\}
 \quad \text{for each } c_1, c_2 \in \mathcal{C}L
 \quad \text{such that } x \in c_1 \text{ and } \neg x \in c_2
 \quad \quad \text{new} := \text{new} \cup (c_1 \cdot x \cup c_2 \cdot \neg x)
 \quad \text{return } \mathcal{C}L \setminus x \cup \text{new}
Davis Putnam Algorithm

- Iteratively select a variable for resolution till no more variables are left
- Report UNSAT when the empty clause occurs
- Can discard resolved clauses after each iteration

Potential memory explosion problem!
Can we avoid using exponential space?
DLL Algorithm

- Davis, Logemann and Loveland

- Basic framework for many modern SAT solvers
- Also known as DPLL for historical reasons
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)
Basic DLL Procedure - DFS

(a’ + b + c)
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)
Basic DLL Procedure - DFS

(a’ + b + c)
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

0 ← Decision
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Decision
Basic DLL Procedure - DFS

\[(a' + b + c)\]
\[(a + c + d)\]
\[(a + c + d')\]
\[(a + c' + d)\]
\[(a + c' + d')\]
\[(b' + c' + d)\]
\[(a' + b + c')\]
\[(a' + b' + c)\]

Implication Graph

Conflict!
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Implication Graph

Conflict!
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Backtrack
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a' + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Confident!

Forced Decision
Basic DLL Procedure - DFS

\[(a' + b + c)\]
\[(a + c + d)\]
\[(a + c + d')\]
\[(a + c' + d)\]
\[(a + c' + d')\]
\[(b' + c' + d)\]
\[(a' + b + c')\]
\[(a' + b' + c)\]
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Forced Decision
Basic DLL Procedure - DFS

\[(a' + b + c)\]
\[(a + c + d)\]
\[(a + c + d')\]
\[(a + c' + d)\]
\[(a + c' + d')\]
\[(a' + b + c')\]
\[(a' + b' + c)\]

\[b\]
\[c\]
\[a\]

\[\text{Conflict!}\]
\[\leftrightarrow \text{Decision}\]

\[\text{Conflict!}\]
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a' + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Backtrack
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a' + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Conflict!

Forced Decision

Conflict!
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Diagram:

```
  a
   /
  / 0
b 1
  /
 c 0
   /
   0 1
   /
   0 1
```

Backtrack
Basic DLL Procedure - DFS

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d) \\
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a + c + d) \\
(a + c + d') \\
(a + c' + d) \\
(a + c' + d')
\end{align*}
\]

\[
\begin{align*}
(b' + c' + d) \\
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c' + d') \\
(b' + c' + d)
\end{align*}
\]

\[
\begin{align*}
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c + d)
(a' + b + c')
(a' + b' + c)

(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c + d)
(a' + b + c')
(a' + b' + c)
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Conflict!
Basic DLL Procedure - DFS

- (a’ + b + c)
- (a + c + d)
- (a + c + d’)
- (a + c’ + d)
- (a + c’ + d’)
- (b’ + c’ + d)
- (a’ + b + c’)
- (a’ + b’ + c)

\[(a + c + d) \]
\[(a + c + d') \]
\[(a + c' + d) \]
\[(a + c' + d') \]

\[(b' + c' + d) \]
\[(a' + b + c') \]
\[(a' + b' + c) \]

\[\Rightarrow \text{Backtrack} \]
Basic DLL Procedure - DFS

\[(a' + b + c)\]
\[(a + c + d)\]
\[(a + c + d')\]
\[(a + c' + d)\]
\[(a + c' + d')\]
\[(b' + c' + d)\]
\[(a' + b + c')\]
\[(a' + b' + c)\]

\[\Rightarrow \text{Forced Decision}\]
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

(a' + b' + c)
(b' + c' + d)
(a + b + c)
(a + c + d)
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

a=1
b=1
c=1
d=1
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

\[(a' + b + c) (a + c + d) (a + c + d') (a + c' + d) (b' + c' + d) (a' + b + c') (a' + b' + c)\]
Implications and Boolean Constraint Propagation

• Implication
 – A variable is forced to be assigned to be True or False based on previous assignments

• **Unit** clause rule (rule for elimination of one literal clauses)
 – An **unsatisfied** clause is a **unit** clause if it has exactly one unassigned literal

\[(a + b' + c)(b + c')(a' + c')\]

\[a = T, \ b = T, \ c \ is \ unassigned\]

 – The unassigned literal is implied because of the unit clause

• Boolean Constraint Propagation (BCP)
 – Iteratively apply the unit clause rule until there is no unit clause available

• **Workhorse of DLL based algorithms**
A Basic SAT algorithm

While (true) {
 if (!Decide()) return (SAT)
 while (!BCP())
 if (!Resolve_Conflict()) return (UNSAT)
}

Choose the next variable and value. Return False if all variables are assigned.

Apply repeatedly the unit clause rule. Return False if reached a conflict.

Backtrack until no conflict. Return False if impossible.
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_{7'} + x_3' + x_9 \]
\[x_{7'} + x_8 + x_9' \]
\[x_7 + x_8 + x_{10'} \]
\[x_7 + x_{10} + x_{12'} \]

\[x_1 = 0 \]

\[x_1 = 0 \]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10'} \]
\[x_7 + x_{10} + x_{12'} \]

[Diagram with nodes and arrows indicating the values of \(x_1 = 0 \) and \(x_4 = 1 \)]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10'} \]
\[x_7 + x_{10} + x_{12'} \]

\[x_1 = 0, \ x_4 = 1 \]
\[x_3 = 1 \]

\[x_4 = 1 \]
\[x_1 = 0 \]
\[x_3 = 1 \]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10'} \]
\[x_7 + x_{10} + x_{12'} \]

\[x_{10} + x_{12} = 0, \quad x_4 = 1 \]
\[x_3' + x_8 = 1 \]
\[x_3 = 1, \quad x_8 = 0 \]
\[x_1 = 0, \quad x_4 = 1 \]
\[x_3 = 1, \quad x_8 = 0 \]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10}' \]
\[x_7 + x_{10} + x_{12}' \]

\[x_4 = 1 \]
\[x_1 = 0 \]
\[x_3 = 1 \]
\[x_8 = 0 \]
\[x_{12} = 1 \]

\[x_1 = 0, \ x_4 = 1 \]
\[x_3 = 1, \ x_8 = 0, \ x_{12} = 1 \]
Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3' + x8'
x1 + x8 + x12
x2 + x11
x7' + x3' + x9
x7' + x8 + x9'
x7 + x8 + x10'
x7 + x10 + x12'

x4=1
x1=0
x3=1
x8=0
x12=1
x2=0

x1=0, x4=1
x3=1, x8=0, x12=1
x2=0
Conflict Driven Learning and Non-chronological Backtracking

\[\begin{align*}
x_1 + x_4 \\
x_1 + x_3' + x_8' \\
x_1 + x_8 + x_{12} \\
x_2 + x_{11} \\
x_7' + x_3' + x_9 \\
x_7' + x_8 + x_9' \\
x_7 + x_8 + x_{10'} \\
x_7 + x_{10} + x_{12'} \\
\end{align*} \]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10'} \]
\[x_7 + x_{10} + x_{12'} \]

\[x_4 = 1 \]
\[x_1 = 0 \]
\[x_3 = 1 \]
\[x_7 = 1 \]
\[x_{11} = 1 \]
\[x_8 = 0 \]
\[x_{12} = 1 \]

\[x_3 = 1, x_8 = 0, x_{12} = 1 \]
\[x_2 = 0, x_{11} = 1 \]
\[x_7 = 1 \]
\[x_1 = 0, x_4 = 1 \]
Conflict Driven Learning and Non-chronological Backtracking

\[
\begin{align*}
x_1 + x_4 \\
x_1 + x_3' + x_8' \\
x_1 + x_8 + x_{12} \\
x_2 + x_{11} \\
x_7' + x_3' + x_9 \\
x_7' + x_8 + x_9' \\
x_7 + x_8 + x_{10'} \\
x_7 + x_{10} + x_{12'} \\
\end{align*}
\]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10'} \]
\[x_7 + x_{10} + x_{12'} \]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10}' \]
\[x_7 + x_{10} + x_{12}' \]

Add conflict clause: \(x_3' + x_7' + x_8 \)
Conflict Driven Learning and Non-chronological Backtracking

\[
x_1 + x_4
\]
\[
x_1 + x_3' + x_8'
\]
\[
x_1 + x_8 + x_12
\]
\[
x_2 + x_11
\]
\[
x_7' + x_3' + x_9
\]
\[
x_7' + x_8 + x_9'
\]
\[
x_7 + x_8 + x_{10'}
\]
\[
x_7 + x_{10} + x_{12'}
\]

Add conflict clause: \[x_3' + x_7' + x_8\]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10'} \]
\[x_7 + x_{10} + x_{12'} \]
\[x_3' + x_7' + x_8 \]

Backtrack to the decision level of \(x_3 = 1 \)
\(x_7 = 0 \)
Conflict Driven Learning and Non-chronological Backtracking

\[
x_1 + x_4 \\
x_1 + x_3' + x_8' \\
x_1 + x_8 + x_{12} \\
x_2 + x_{11} \\
x_7' + x_3' + x_9 \\
x_7' + x_8 + x_9' \\
x_7 + x_8 + x_{10}' \\
x_7 + x_{10} + x_{12}' \\
x_3' + x_7 + x_8'
\]
What’s the big deal?

Conflict clause: $x_1' + x_3 + x_5'$

Significantly prune the search space – learned clause is useful forever!

Useful in generating future conflict Clauses

No longer polynomial space
Restart

- Abandon the current search tree and reconstruct a new one
- The clauses learned prior to the restart are *still there* after the restart and can help pruning the search space
- Adds to robustness in the solver

Conflict clause: $x_1' + x_3 + x_5'$
BCP Algorithm

- What “causes” an implication? When can it occur?
 - All literals in a clause but one are assigned to F
 - \((v_1 + v_2 + v_3):\) implied cases: \((0 + 0 + v_3)\) or \((0 + v_2 + 0)\) or \((v_1 + 0 + 0)\)
 - For an N-literal clause, this can only occur after N-1 of the literals have been assigned to F
 - So, (theoretically) we could completely ignore the first N-2 assignments to this clause
 - In reality, we pick two literals in each clause to “watch” and thus can ignore any assignments to the other literals in the clause
 - Example: \((v_1 + v_2 + v_3 + v_4 + v_5)\)
 - \((v_1=X + v_2=X + v_3=? \text{ i.e. } X \text{ or } 0 \text{ or } 1) + v_4=? + v_5=?\)
Chaff Decision Heuristic - VSIDS

• Variable State Independent Decaying Sum
 – Rank variables by literal count in the initial clause database
 – Periodically, divide all counts by a constant
 – Only increment counts as new clauses are added

• Quasi-static:
 – Static because it doesn’t depend on var state
 – Not static because it gradually changes as new clauses are added
 • Decay causes bias toward *recent* conflicts
Finding a Solution to a SAT problem is can be viewed as a 2 player game

- Player 1: tries to find satisfying assignment
- Player 2: tries to show that such assignment does not exist

Let A be an arbitrary assignment
while true:
 if A \models C then return SAT
 if (\emptyset) \in C then return UNSAT
 let c \in C such that not A \models c and let A' such that A' \models c
 A := A'
 \|
 let c' \notin C such that C \models c' and not A \models c'
 C := C \cup \{c'\}
Example Game 1

\[(a + b) (a + b') (a' + c)(a' + c')\]
Example Game 2

\[(a + b + c)(b + c' + f')(b' + e)\]
Some Bibliography

- **Chaff: Engineering an Efficient SAT Solver**
 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik (DAC'01)

- **Efficient Conflict Driven Learning in a Boolean Satisfiability Solver**
 Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz (IJCAD’01)

- **A New Method for Solving Hard Satisfiability Problems**
 Bart Selman, Hector Levesque, David Mitchell (AAI’92)
• Post Chaff SAT solvers
 – BerkMin
 – Seige
 – miniSat
 – HaifaSAT
 – JeruSAT (Alex Nadel)

• The Stålmarck’s algorithm

• Hyperresolution

• Local Search
Open Question

• Is there a subset of a useful propositional logic beyond Horn clauses which:
 – Allows polynomial SAT
 – Includes many of the practical instances
 – Some recent ideas in
Summary

• Rich history of emphasis on practical efficiency
• Need to account for computation cost in search space pruning
• Need to match algorithms with underlying processing system architectures
• Specific problem classes can benefit from specialized algorithms
 – Identification of problem classes?
 – Dynamically adapting heuristics?
• We barely understand the tip of the iceberg here
 – much room to learn and improve