
Boolean Satisfiability (SAT)

⋁

⋀


⋁

⋀

⋁

.

.

.



p2

p1

pn

Is there an assignment to the p1, p2, …, pn variables

such that  evaluates to 1?

Satisfiability Modulo Theories

⋁

⋀


⋁

⋀

⋁

.

.

.



p2

p1

pn

Is there an assignment to the x,y,z,w variables

s.t.  evaluates to 1?

x + 2 * z ≥ 1

x % 26 = v

w & 0xFFFF = x

x = y

Motivation

• We have seen that efficient SAT solvers exit

– DPLL is the most successful complete solver

• Can we generalize the results?

– Is “p q (a = f(b –c))  (g(g(b)) ≠c)  a-c≤7” satisfiable?

• Improve our understanding of DPLL

From Propositional to First Order Logic

• F ::= X. F | X. F | F  F | F | r(t)

• t ::= f(t) | c

• Examples:

– X. vote(X, trump)   Y. vote(Y, klinton) 

Y= parent(X)

– X.  Y. Y * Y = X

5

Satisfiability Modulo Theories

• Given a formula in first-order logic, with

associated background theories, is the formula

satisfiable?

– Yes: return a satisfying solution

– No [generate a proof of unsatisfiability]

Satisfiability Modulo Theories

• Any SAT solver can be used to decide the satisfiability of
ground first-order formulas

• Often, however, one is interested in the satisfiability of
certain ground formulas in a given first-order theory:
– Pipelined microprocessors: theory of equality, atoms

• f(g(a, b), c) = g(c, a)

– Timed automata: planning: theory of integers/reals,

– atoms

• x − y < 2

– Software verification: combination of theories, atoms

• 5 + car(a + 2) = cdr(a[j] + 1)

• We refer to this general problems as (ground)
Satisfiability Modulo Theories, or SMT

Example Difference constraints

• Boolean combinations of `a ≤ b + k’

– a and b are free constants

– k  Z

Uninterpreted Functions

read(write(X, Y, Z), Y) = Z

W  Y ⇒ read(write(X, Y, Z), W) = read(X, W)

x+2 = y ⇒ f(read(write(a, x, 3), y−2)) = f(y−x+1)

A Simple Example(BMC)

Program

int x;

int y=8,z=0,w=0;

if (x)

z = y – 1;

else

w = y + 1;

assert (z == 5 ||

w == 9)

constraints

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 5,

w != 9

SMT

counterexample

found!

y = 8, x = 1, w = 0, z = 7

Motivating Example

Skolem-Lowenheim Formulas

• Prenex Normal Form 

• x, y z, w : P(x, y)  P(z, w)

Lifting SAT to SMT

• Eager approach [UCLID]:

– translate into an equisatisfiable propositional formula,

– feed it to any SAT solver

• Lazy approach [CVC, ICS, MathSAT, Verifun, Zap]:

– abstract the input formula into a propositional one

– feed it to a DPLL-based SAT solver

– use a theory decision procedure to refine the formula

• DPLL(T) [DPLLT, Z3, Sammy]:

– use the decision procedure to guide the search of a DPLL solver

(Very) Lazy Approach for SMT – Example

g(a) = c  f(g(a)) ≠ f(c)  g(a) = d  c ≠ d

1 2 43

Send {1, 2  3, 4} to the SAT solver

SAT solver returns {1,  2, 4}

Theory solver finds that {1, 2} is E-unsatisfiable

Send {1, 2  3, 4, 12} to the SAT solver

SAT solver returns {1, 2, 3 , 4}

Theory solver finds that {1, 3, 4} is E-unsatisfiable

Send {1, 2  3, 4, 12, 134} to the SAT solver

Return UNSAT

Decision Procedures

• Complete (terminating) algorithms for

determining the validity (satisfiability) of a

formula in a given logic

– Cost is an issue

• Decidable logic a logic with a decision

procedure for every formula

• Decidable (computation problem) there exists an

a terminating algorithm which solves every

instance of the problem

Obtaining a decision procedure

• Limit the logic

• Limit the class of intended models

• Answer validity (satisfiabilty) w.r.t. a given theory

T  F

Proving Decidability

• Small model theorem

– Every satisfiable formula has a model whose size if

proportional to the size of the formula

• Direct decision procedure

• Reduction to another decidable logic

Quantifier Free First Order Logic

• Universal formulas only

• Allow a fixed scheme of first order formulas T

• Determine if

T  F

• Decidable for interesting theories

– Uninterpreted functions

• a, b: f(a, b) = a  f(f(a, b), b) = a

– Theory of lists

– Arrays

• Different theories can be combined

Theory of Uninterpreted Functions (EUF)

• Theory T X, Y: X = Y  f (X) = f(Y)

• Determine the validity of universal formulas

• Decidability Ackerman 1954

• Downey, Sethi, Tarjan, Kozen, Nelson& Openn

Efficient Algorithms

• Bryant, German, Velev Improvements for

positive terms

Small model property of EUF formulas

• Ackerman 1954

• Every satisfiable formula has a model of size k

where k is the number of distinct function

application terms

• Example

– x = y  f(g(x)) = f (g(y))

– {x, y, g(x), g(y), f(g(x)), f(g(y))}

• Impractical algorithm

Proof by Refutation

• Determine the validity of a formula by checking

the satifiability of its negation

• For quantifier free it is enough to consider

Conjunction of literals

• Example “A, B: f(A, B) = Af(f(A, B), B) =A”

– Proof that

“f(a, b) = a   f((f(a, b), b) = a” is not satisfiable

An efficient EUF algorithm (intuition)

• Goal prove satisfiability of

t1=u1  … tp=up r1 s1 ... rq sq

• Represent terms using DAGs

• Unify equal terms and their consequences

• Report UNSAT when contradicts inequalities

• Otherwise report SAT

The Congruent Closure Problem

• Given
– A finite labeled directed graph G

• Nodes are labeled by function symbols

• Edges are labeled

– A binary relation R on the nodes

• Two nodes are congruent under R if
– They have the same label

– Their arguments (outgoing neigbours) are in R (respectively)

• R is closed under congruences if all congruent nodes
according to R are in R

• Compute the a minimal extension of R which is an
equivalence relation and closed under congruences

Example 1

f(a, b) = a  f((f(a, b), b)  a

Example 2

f(f(f(A))) = A  f(f(f(f(f(A)))))=A  f(A) = A

f(f(f(a))) = a  f(f(f(f(f(a)))))=a  f(a)  a

Computing Congruence Closure

• Let R be a relation which is congruence closed

• Compute the congruence closure of R {(u, v)} by

MERGE(u, v)

MERGE(u, v)

1. If FIND(u) = FIND(v) then return

2. Let Pu be the predecessors of vertices equivalent to u and Pv be the

predecessors of vertices equivalent to to v

3. UNION(u, v)

4. For each pair (x, y) such that x Pu, y Pv, CONGRUENT(x, y) and

FIND(x)  FIND(y) do MERGE(x, y)

CONGRUENT(u, v) = label(u) = label(v) i: FIND(u[i]) = FIND(v[i])

Properties of the Congruence Closure

Algorithm

• Partial Correctness

• Complexity O(m2)

• Downey, Sethi, and Tarjan achieves O(m log n)

by storing the vertices in a hash table keyed by

the list of equivalence classes of their

successors

Application 1: EUF

• construct a graph G which corresponds to the set of all

terms appearing in the conjunction

t1=u1  … tp=up r1 s1 ... rq sq

• For each term i appearing in the conjunction let (i)

denote the node of the term

• Let R be the identity relation on vertices

• For every 1  i  p, MERGE((ti), (ui))

• If for some 1  j  q, (rj) is equivalent to (sj)) report

UNSAT

• Otherwise report SAT

Improvements and Extensions

• Lahiri, Bryant, Goel, Talupur TACAS 2004

• Explicit Representation

ITE(e1, e2, e3) = (e1 e2) (e1e2)

P(T1, T2, …, Tk)

• Treat `positive’ terms differently

Simple Theory of Lisp Lists

• car, cdr, cons without nil values

• Theory (axioms):

• Goal:

• Use congruence closure with special equalities

car(cons(X, Y)) =X

cdr(cons(X, Y)) = Y

 atom(X)  cons(car(X), cdr(X)) =X

atom(cons(X,Y))

car(X)=car(Y)  cdr(X) = cdr(Y) atom(X) atom(Y) f(X) = f(Y)

Application 2: Lisp

• v1=w1  … br=wr x1 y1 ... xsys  atom(u1) … atom(uq)

• Construct a graph G which corresponds to the set of all terms appearing in
the conjunction

• For each term i appearing in the conjunction let (i) denote the node of the
term

• Let R be the identity relation on vertices

• For every 1  i  r, MERGE((vi), (wi))

• For every vertex u labeled by cons add a vertex v labeled by car and a
vertex w labeled by cdr with out degree one s.t. v[1]=w[1]=u and MERGE(v,
u[1]) and MERGE(v, u[2])

• If for some 1  j  s, (xj) is equivalent to (yj)) report UNSAT

• If for some 1  j  q, (uj) is equivalent to a cons node report UNSAT

• Otherwise report SAT

Integrating Values

• Becomes NP-Hard

car(cons(X,Y)) = X

cdr(cons(X,Y)) = Y

X nil  cons(car(X), cdr(X)) = X

cons(X,Y)  nil

car)nil(= cdr(nil)=nil

Theory of Arrays (Stores)

• read(write(v, i, e), j) =

if i=j then e else read(v, j)

• write)v, i, read(v, i)) = v

• write)write)v, i, e), i, f) = write(v, i, f)

• i j  write (write (v, i, e), j, f) =

write (write (v, j, f), I, e)

• Eliminate write and use EUF

Combining Decision Procedures

• Programming languages combine different
features
– Arithmetic

– Data types

– Arrays

– …

• Is there a way to compose decision procedures
of different theories?

• Given two decidable logics is there a way to
combine the logics into a decidable logic?

Bibliography

• Nelson & Oppen

Fast Decision Procedures Based on

Congruence Closure

JACM 1979

• Stump, Dill, Barrett, Levitt

A Decision Procedure for an Extensional

Theory of Arrays

LICS’01

Combining Decision Procedures

• Programming languages combine different
features
– Arithmetic

– Data types

– Arrays

– …

• Is there a way to compose decision procedures
of different theories?

• Given two decidable logics is there a way to
combine the logics into a decidable logic?

Cooperating Decision Procedures

Nelson & Oppen

• Quantifier free

• Proof be refutation

• Separate the conjunct into separate conjuncts

A  B

such that

– A and B use different theories

– Only constants are shared

• If either A or B is UNSAT report UNSAT

• When A and B are SAT propagate equalities between A

and B and repeat

Example Theories

car(cons(X, Y)) = X

cdr(cons(X, Y)) = Y

atom(X)  cons(car(X), cdr(X)) = X

atom(cons(X, Y))

X = Y  f (X) = f(Y)EUF

X+0 =0

X +-X = 0 0 1

(X+Y)+Z = X + (Y+Z) 0 1

X+Y = Y +X

XX

XY  Y X

XYY X X=Y

XYY Z XZ

XY X+Z  Y+Z

R

A Simple Example

xy

yx+g1

g2=g3-g4

g5=0

x  y  y  x + car(cons(0, x)) P(h(x)-h(y)) P(0)

P(g2)=true

P(g5)=false

g3=h(x)

g4=h(y)

g1=car(cons(g5, x))

g1 g5

g2

g3 g4 g5

Equality Propagation Procedure

1. Assign conjunctions to FL and FF s.t.,
• FF contains only F-literals

• FL contains only L-literals

• FL  FF is satisfiable iff F is satisfiable

2. If either FL or FF is UNSAT report UNSAT

3. If either FL or FF entails equality not entailed by other
add this equality and go to step 2

4. If either FL or FF entails u1=v2 u2=v2 … uk=vk without
entailing any equality alone then apply the procedure
recursively to the k-formulas
FL  FF  vi = ui
If any of these formulas is SAT return SAT

5. Return UNSAT

Notes

• Only equalities are propagated

• Requires that the theories can find all

consequent equalities

• Completeness is non-obvious

• The original paper also performs simplification

Convexity

• A formula F is non-convex F entails
u1=v2 u2=v2 … uk=vk
without entailing any equality alone
– Otherwise it is convex

• A theory is convex

• Convex theories
– EUF

– Relational linear algebra

• Non-convex theories
– Theory of arrays

– Theory of reals under multiplications
xy =0z=0 R x=z  y=z

– Theory of integers under + and 

Hints about Completeness
• The residues of formula

– The strongest Boolean combinations of equalities between

constants entailed by the formula

x=f(a)y=f(b) a=b  x=y

x+y-a-b>0 (x=ay=b)  (x=by=a)

x=write(v, u, e)[j] i=j x=e

x=write(v, u, e)[j]

y=v[j]

if i=j then x=e else x=y

Lemma 4: If A and B are formulas whose only

common parameters are constant symbols then

RES(AB) = RES(A)RES(B)

More correct account of completeness

• A theory T is stably infinite if every quantifier-free

formula is T-satisable if and only if it is satisfied

by a T-model A whose domain A is infinite

• For lemma 4 we require

– The theories are disjoint

– Both theories are stably infinite

– Read more in Manna 2003

The residues in the simple example

xy

yx+g1

g2=g3-g4

g5=0

g1=g5x=y 

g5=g2g3=g4

x  y  y  x + car(cons(0, x)) P(h(x)-h(y)) P(0)

P(g2)=true

P(g5)=false

g3=h(x)

g4=h(y)

g2g5 

x=y g3=g4

g1=car(cons(g5, x))

g1=g5

Handling Quantifiers

• The problem becomes undecidable

• Refutationally resolution based complete

procedures exist and implemented

(e.g., SPASS, Vampiere)

– Not guaranteed to terminate

– Do not handle theories

• Z3 employs incomplete heuristics

– Instantiate universal quantifiers with relevant terms

– Can be tuned by the user

Conclusion

• Handling specialized theories yields significant

improvements

– Efficiency

– Termination

– Predictability

• Combination procedures are useful

• But resolution based theorem provers can still br

superior in several cases

Partial Bibliography
• Nelson & Oppen

Simplification by Cooperating Decision Procedures
TOPLAS 1980

• Tinelli & Zarba
Combining non-stably infinite theories
Journal of Automated Reasoning, 2006

• Simplify: A Theorem Prover for Program Checking
David Detlefs, Greg Nelson, James B. Saxe
JACM 2005

• Combining Decision Procedures (2003)
Zohar Manna, Calogero G. Zarba

• Verifun: An Explicating Theorem Prover for Quantified Formulas

Cormac Flanagan, Rajeev Joshi, James B. Saxe

HPL-2004-199

• Leonardo Mendonça de Moura, Nikolaj Bjørner:

Satisfiability modulo theories: introduction and applications. Commun. ACM

54(9): 69-77 (2011)

• Leonardo Mendonça de Moura, Nikolaj Bjørner:

Engineering DPLL(T) + Saturation. IJCAR 2008: 475-490

