Is there an assignment to the p_1, p_2, \ldots, p_n variables such that ϕ evaluates to 1?
Is there an assignment to the x,y,z,w variables s.t. ϕ evaluates to 1?
Motivation

• We have seen that efficient SAT solvers exit
 – DPLL is the most successful complete solver

• Can we generalize the results?
 – Is “p \lor \neg q \lor (a = f(b - c)) \lor (g(g(b)) \neq c) \lor a-c \leq 7” satisfiable?

• Improve our understanding of DPLL
From Propositional to First Order Logic

- F ::= ∃X. F | ∀X. F | F ∨ F | ¬F | r(t)

- t ::= f(t) | c

- Examples:
 - ∀X. vote(X, trump) ⇒ ∃ Y. vote(Y, klinton) ∧ Y = parent(X)
 - ∀X. ∃ Y. Y * Y = X
Satisfiability Modulo Theories

• Given a formula in first-order logic, with associated background theories, is the formula satisfiable?
 – Yes: return a satisfying solution
 – No [generate a proof of unsatisfiability]
• Any SAT solver can be used to decide the satisfiability of **ground** first-order formulas

• Often, however, one is interested in the satisfiability of certain ground formulas in a given first-order theory:
 – **Pipelined microprocessors**: theory of equality, atoms
 • \(f(g(a, b), c) = g(c, a) \)
 – **Timed automata**: planning: theory of integers/reals,
 – **atoms**
 • \(x - y < 2 \)
 – **Software verification**: combination of theories, atoms
 • \(5 + \text{car}(a + 2) = \text{cdr}(a[j] + 1) \)

• We refer to this general problems as (ground) **Satisfiability Modulo Theories**, or **SMT**
Example Difference constraints

• Boolean combinations of `a ≤ b + k’
 – a and b are free constants
 – k ∈ Z
Uninterpreted Functions

\[
\text{read(write}(X, Y, Z), Y) = Z \\
W \neq Y \Rightarrow \text{read(write}(X, Y, Z), W) = \text{read}(X, W)
\]

\[
x + 2 = y \Rightarrow f(\text{read(write}(a, x, 3), y \!-\! 2)) = f(y \!-\! x + 1)
\]
A Simple Example (BMC)

Program

```c
int x;
int y=8, z=0, w=0;
if (x)
    z = y - 1;
else
    w = y + 1;
assert (z == 5 || w == 9)
```

Constraints

- \(y = 8 \)
- \(z = x ? y - 1 : 0 \)
- \(w = x ? 0 : y + 1 \)
- \(z != 5 \)
- \(w != 9 \)

SMT counterexample found!

- \(y = 8, x = 1, w = 0, z = 7 \)
Motivating Example

Skolem-Lowenheim Formulas

- Prenex Normal Form $\exists \forall$
- $\exists x, y \ \forall z, w : P(x, y) \land \neg P(z, w)$
Lifting SAT to SMT

• Eager approach [UCLID]:
 – translate into an equisatisfiable propositional formula,
 – feed it to any SAT solver

• Lazy approach [CVC, ICS, MathSAT, Verifun, Zap]:
 – abstract the input formula into a propositional one
 – feed it to a DPLL-based SAT solver
 – use a theory decision procedure to refine the formula

• DPLL(T) [DPLLTT, Z3, Sammy]:
 – use the decision procedure to guide the search of a DPLL solver
(Very) Lazy Approach for SMT – Example

\[g(a) = c \land f(g(a)) \neq f(c) \lor g(a) = d \land c \neq d \]

1 \quad \neg 2 \quad 3 \quad \neg 4

Send \(\{1, \neg 2 \vee 3, \neg 4\} \) to the SAT solver

SAT solver returns \(\{1, \neg 2, \neg 4\} \)

Theory solver finds that \(\{1, \neg 2\} \) is E-unsatisfiable

Send \(\{1, \neg 2 \vee 3, \neg 4, \neg 1 \lor 2\} \) to the SAT solver

SAT solver returns \(\{1, 2, 3, \neg 4\} \)

Theory solver finds that \(\{1, 3, \neg 4\} \) is E-unsatisfiable

Send \(\{1, \neg 2 \vee 3, \neg 4, \neg 1 \lor 2, \neg 1 \lor \neg 3 \lor 4\} \) to the SAT solver

Return UNSAT
Decision Procedures

• Complete (terminating) algorithms for determining the validity (satisfiability) of a formula in a given logic
 – Cost is an issue

• Decidable logic a logic with a decision procedure for every formula

• Decidable (computation problem) there exists an a terminating algorithm which solves every instance of the problem
Obtaining a decision procedure

- Limit the logic
- Limit the class of intended models
- Answer validity (satisfiability) w.r.t. a given theory $T \models F$
Proving Decidability

• Small model theorem
 – Every satisfiable formula has a model whose size is proportional to the size of the formula

• Direct decision procedure

• Reduction to another decidable logic
Quantifier Free First Order Logic

• Universal formulas only
• Allow a fixed scheme of first order formulas T
• Determine if $T \models F$
• Decidable for interesting theories
 – Uninterpreted functions
 • $\forall a, b: f(a, b) = a \Rightarrow f(f(a, b), b) = a$
 – Theory of lists
 – Arrays
• Different theories can be combined
Theory of Uninterpreted Functions (EUF)

• Theory $T \forall X, Y: X = Y \implies f(X) = f(Y)$

• Determine the validity of universal formulas

• Decidability Ackerman 1954

• Downey, Sethi, Tarjan, Kozen, Nelson & Openn Efficient Algorithms

• Bryant, German, Velev Improvements for positive terms
Small model property of EUF formulas

• Ackerman 1954

• Every satisfiable formula has a model of size \(k \) where \(k \) is the number of distinct function application terms

• Example

 – \(x = y \lor f(g(x)) = f(g(y)) \)

 – \{x, y, g(x), g(y), f(g(x)), f(g(y))\}

• Impractical algorithm
Proof by Refutation

- Determine the validity of a formula by checking the satisfiability of its negation
- For quantifier free it is enough to consider Conjunction of literals
- Example “∀A, B: f(A, B) = A → f(f(A, B), B) = A”
 - Proof that “f(a, b) = a ∧ ¬ f((f(a, b), b) = a” is not satisfiable
An efficient EUF algorithm (intuition)

- Goal prove satisfiability of
 \[t_1 = u_1 \land \ldots \land t_p = u_p \land r_1 \neq s_1 \land \ldots \land r_q \neq s_q \]
- Represent terms using DAGs
- Unify equal terms and their consequences
- Report UNSAT when contradicts inequalities
- Otherwise report SAT
The Congruent Closure Problem

• Given
 – A finite labeled directed graph G
 • Nodes are labeled by function symbols
 • Edges are labeled
 – A binary relation R on the nodes

• Two nodes are congruent under R if
 – They have the same label
 – Their arguments (outgoing neighbours) are in R (respectively)

• R is closed under congruences if all congruent nodes according to R are in R

• Compute the a minimal extension of R which is an equivalence relation and closed under congruences
Example 1

\[f(a, b) = a \land f((f(a, b), b) \neq a \]
Example 2

\[f(f(f(A))) = A \land f(f(f(f(A)))) = A \Rightarrow f(A) = A \]

\[f(f(f(a))) = a \land f(f(f(f(a)))) = a \land f(a) \neq a \]
Computing Congruence Closure

- Let R be a relation which is congruence closed
- Compute the congruence closure of $R \cup \{(u, v)\}$ by $\text{MERGE}(u, v)$

\[
\text{MERGE}(u, v)
\]

1. If $\text{FIND}(u) = \text{FIND}(v)$ then return

2. Let P_u be the predecessors of vertices equivalent to u and P_v be the predecessors of vertices equivalent to v

3. $\text{UNION}(u, v)$

4. For each pair (x, y) such that $x \in P_u$, $y \in P_v$, $\text{CONGRUENT}(x, y)$ and $\text{FIND}(x) \neq \text{FIND}(y)$ do $\text{MERGE}(x, y)$

$\text{CONGRUENT}(u, v) = \text{label}(u) = \text{label}(v) \land \forall i: \text{FIND}(u[i]) = \text{FIND}(v[i])$
Properties of the Congruence Closure Algorithm

- Partial Correctness
- Complexity $O(m^2)$
- Downey, Sethi, and Tarjan achieves $O(m \log n)$ by storing the vertices in a hash table keyed by the list of equivalence classes of their successors
Application 1: EUF

- construct a graph G which corresponds to the set of all terms appearing in the conjunction $t_1 = u_1 \land ... \land t_p = u_p \land r_1 \neq s_1 \land ... \land r_q \neq s_q$

- For each term i appearing in the conjunction let $\tau(i)$ denote the node of the term

- Let R be the identity relation on vertices

- For every $1 \leq i \leq p$, $\text{MERGE}(\tau(t_i), \tau(u_i))$

- If for some $1 \leq j \leq q$, $\tau(r_j)$ is equivalent to $\tau(s_j)$ report UNSAT

- Otherwise report SAT
Improvements and Extensions

• Lahiri, Bryant, Goel, Talupur TACAS 2004

• Explicit Representation
 \[\text{ITE}(e_1, e_2, e_3) = (e_1 \land e_2) \lor (\neg e_1 \land e_2) \]
 \[P(T_1, T_2, \ldots, T_k) \]

• Treat `positive’ terms differently
Simple Theory of Lisp Lists

• car, cdr, cons without nil values

• Theory (axioms):

 car(cons(X, Y)) = X
 cdr(cons(X, Y)) = Y
 ¬ atom(X) ⇒ cons(car(X), cdr(X)) = X
 ¬ atom(cons(X,Y))

• Goal:

 car(X)=car(Y) ∧ cdr(X) = cdr(Y) ∧ ¬ atom(X) ∧ ¬ atom(Y) ⇒ f(X) = f(Y)

• Use congruence closure with special equalities
Application 2: Lisp

- \(v_1 = w_1 \land \ldots \land b_r = w_r \land x_1 \neq y_1 \land \ldots \land x_s \neq y_s \land \text{atom}(u_1) \land \ldots \land \text{atom}(u_q) \)

- Construct a graph \(G \) which corresponds to the set of all terms appearing in the conjunction

- For each term \(i \) appearing in the conjunction let \(\tau(i) \) denote the node of the term

- Let \(R \) be the identity relation on vertices

- For every \(1 \leq i \leq r \), \(\text{MERGE}(\tau(v_i), \tau(w_i)) \)

- For every vertex \(u \) labeled by \(\text{cons} \) add a vertex \(v \) labeled by \(\text{car} \) and a vertex \(w \) labeled by \(\text{cdr} \) with out degree one s.t. \(v[1] = w[1] = u \) and \(\text{MERGE}(v, u[1]) \) and \(\text{MERGE}(v, u[2]) \)

- If for some \(1 \leq j \leq s \), \(\tau(x_j) \) is equivalent to \(\tau(y_j) \) report UNSAT

- If for some \(1 \leq j \leq q \), \(\tau(u_j) \) is equivalent to a \(\text{cons} \) node report UNSAT

- Otherwise report SAT
Integrating Values

\[
\begin{align*}
\text{car}(\text{cons}(X,Y)) &= X \\
\text{cdr}(\text{cons}(X,Y)) &= Y \\
X \neq \text{nil} \Rightarrow \text{cons}(\text{car}(X), \text{cdr}(X)) &= X \\
\text{cons}(X,Y) &\neq \text{nil} \\
\text{car}(\text{nil}) &= \text{cdr}(\text{nil}) = \text{nil}
\end{align*}
\]

- Becomes NP-Hard
Theory of Arrays (Stores)

- \(\text{read}(\text{write}(v, i, e), j) = \)
 \[\text{if } i = j \text{ then } e \text{ else } \text{read}(v, j) \]
- \(\text{write}(v, i, \text{read}(v, i)) = v \)
- \(\text{write}(\text{write}(v, i, e), i, f) = \text{write}(v, i, f) \)
- \(i \neq j \Rightarrow \text{write} (\text{write} (v, i, e), j, f) = \)
 \[\text{write} (\text{write} (v, j, f), i, e) \]
- Eliminate write and use EUF
Combining Decision Procedures

- Programming languages combine different features
 - Arithmetic
 - Data types
 - Arrays
 - ...

- Is there a way to compose decision procedures of different theories?

- Given two decidable logics is there a way to combine the logics into a decidable logic?
Bibliography

• Nelson & Oppen
 Fast Decision Procedures Based on Congruence Closure
 JACM 1979

• Stump, Dill, Barrett, Levitt
 A Decision Procedure for an Extensional Theory of Arrays
 LICS’01
Combining Decision Procedures

• Programming languages combine different features
 – Arithmetic
 – Data types
 – Arrays
 – ...

• Is there a way to compose decision procedures of different theories?

• Given two decidable logics is there a way to combine the logics into a decidable logic?
Cooperating Decision Procedures
Nelson & Oppen

• Quantifier free
• Proof be refutation
• Separate the conjunct into separate conjuncts
 \(A \land B \)
 such that
 – A and B use different theories
 – Only constants are shared
• If either A or B is UNSAT report UNSAT
• When A and B are SAT propagate equalities between A and B and repeat
Example Theories

- $\text{car}(\text{cons}(X, Y)) = X$
- $\text{cdr}(\text{cons}(X, Y)) = Y$
- $\neg \text{atom}(X) \Rightarrow \text{cons}(\text{car}(X), \text{cdr}(X)) = X$
- $\neg \text{atom}(\text{cons}(X, Y))$

EUF

$X = Y \Rightarrow f(X) = f(Y)$

$X + 0 = 0$
$X + -X = 0$
$(X + Y) + Z = X + (Y + Z)$
$X + Y = Y + X$
$X \leq X$
$X \leq Y \lor Y \leq X$
$X \leq Y \land Y \leq X \Rightarrow X = Y$
$X \leq Y \land Y \leq Z \Rightarrow X \leq Z$
$X \leq Y \Rightarrow X + Z \leq Y + Z$
A Simple Example

\[x \leq y \land y \leq x + \text{car} (\text{cons}(0, x)) \land P(h(x) - h(y)) \land \neg P(0) \]

\[g_1 = h(x) \]

\[g_4 = h(y) \]

\[g_3 = 0 \]

\[g_2 = \text{car} (\text{cons}(g_5, x)) \]

\[g_5 = 0 \]
Equality Propagation Procedure

1. Assign conjunctions to F_L and F_F s.t.,
 • F_F contains only F-literals
 • F_L contains only L-literals
 • $F_L \land F_F$ is satisfiable iff F is satisfiable

2. If either F_L or F_F is UNSAT report UNSAT

3. If either F_L or F_F entails equality not entailed by other
 add this equality and go to step 2

4. If either F_L or F_F entails $u_1=v_2 \lor u_2=v_2 \lor \ldots \lor u_k=v_k$ without
 entailing any equality alone then apply the procedure
 recursively to the k-formulas

 $F_L \land F_F \land v_i = u_i$

 If any of these formulas is SAT return SAT

5. Return UNSAT
Notes

• Only equalities are propagated
• Requires that the theories can find all consequent equalities
• Completeness is non-obvious
• The original paper also performs simplification
Convexity

• A formula F is **non-convex** F entails $u_1 = v_2 \lor u_2 = v_2 \lor \ldots u_k = v_k$ without entailing any equality alone
 – Otherwise it is **convex**

• A theory is **convex**

• Convex theories
 – EUF
 – Relational linear algebra

• Non-convex theories
 – Theory of arrays
 – Theory of reals under multiplications $xy = 0 \land z = 0 \models_R x = z \lor y = z$
 – Theory of integers under + and \leq
Hints about Completeness

- The **residues** of formula
 - The strongest Boolean combinations of equalities between constants entailed by the formula

<table>
<thead>
<tr>
<th>x=f(a) & y=f(b)</th>
<th>a=b \rightarrow x=y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x+y-a-b>0</td>
<td>\neg(x=a & y=b) & \neg(x=b & y=a)</td>
</tr>
<tr>
<td>x=write(v, u, e)[j]</td>
<td>i=j \rightarrow x=e</td>
</tr>
<tr>
<td>x=write(v, u, e)[j] & y=v[j]</td>
<td>if i=j then x=e else x=y</td>
</tr>
</tbody>
</table>

Lemma 4: If A and B are formulas whose only common parameters are constant symbols then \(\text{RES}(A \& B) = \text{RES}(A) \& \text{RES}(B)\)
More correct account of completeness

- A theory T is **stably infinite** if every quantifier-free formula is T-satisable if and only if it is satisfied by a T-model A whose domain A is infinite.

- For lemma 4 we require
 - The theories are disjoint
 - Both theories are stably infinite
 - Read more in Manna 2003
The residues in the simple example

\[
x \leq y \land y \leq x + \text{car}(\text{cons}(0, x)) \land \text{P}(h(x) - h(y)) \land \neg \text{P}(0)
\]

<table>
<thead>
<tr>
<th>(x \leq y)</th>
<th>(y \leq x + g_1)</th>
<th>(g_2 = g_3 - g_4)</th>
<th>(g_5 = 0)</th>
<th>(g_1 = g_5 \rightarrow x = y) (\land)</th>
<th>(g_5 = g_2 \leftrightarrow g_3 = g_4)</th>
</tr>
</thead>
</table>

| \(\text{P}(g_2) = \text{true}\) | \(\text{P}(g_5) = \text{false}\) | \(g_3 = h(x)\) | \(g_4 = h(y)\) | \(g_2 \neq g_5 \land\) | \(x = y \rightarrow g_3 = g_4\) |

\(g_1 = \text{car}(\text{cons}(g_5, x))\)

\(g_1 = g_5\)
Handling Quantifiers

• The problem becomes undecidable

• Refutationally resolution based complete procedures exist and implemented (e.g., SPASS, Vampiere)
 – Not guaranteed to terminate
 – Do not handle theories

• Z3 employs incomplete heuristics
 – Instantiate universal quantifiers with relevant terms
 – Can be tuned by the user
Conclusion

• Handling specialized theories yields significant improvements
 – Efficiency
 – Termination
 – Predictability

• Combination procedures are useful

• But resolution based theorem provers can still be superior in several cases
Partial Bibliography

• Nelson & Oppen
 Simplification by Cooperating Decision Procedures
 TOPLAS 1980

• Tinelli & Zarba
 Combining non-stably infinite theories
 Journal of Automated Reasoning, 2006

• Simplify: A Theorem Prover for Program Checking
 David Detlefs, Greg Nelson, James B. Saxe
 JACM 2005

• Combining Decision Procedures (2003)
 Zohar Manna, Calogero G. Zarba

• Verifun: An Explicating Theorem Prover for Quantified Formulas
 Cormac Flanagan, Rajeev Joshi, James B. Saxe
 HPL-2004-199

• Leonardo Mendonça de Moura, Nikolaj Bjørner:
 Satisfiability modulo theories: introduction and applications. Commun. ACM
 54(9): 69-77 (2011)

• Leonardo Mendonça de Moura, Nikolaj Bjørner:
 Engineering DPLL(T) + Saturation. IJCAR 2008: 475-490