Modularity for decidability of deductive verification with applications to distributed systems

Mooly Sagiv
Contributors

Marcelo Taube, Giuliano Losa, Kenneth McMillan, Oded Padon, Sharon Shoham

http://microsoft.github.io/ivy/

James R. Wilcox, Doug Woos
Deductive Verification of Distributed Protocols in First-Order Logic

[CAV’13] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, MS: Effectively-Propositional Reasoning about Reachability in Linked Data Structures

[PLDI’16] Oded Padon, Kenneth McMillan, Aurojit Panda, MS, Sharon Shoham Ivy: Safety Verification by Interactive Generalization

[POPL’16] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Sharon Shoham, MS Decidability of Inferring Inductive Invariants

[OOPSLA’17] Oded Padon, Giuliano Losa, MS, Sharon Shoham Paxos made EPR: Decidable Reasoning about Distributed Protocols

[PLDI’18] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, MS, Sharon Shoham, James R. Wilcox, Doug Woos: Modularity for Decidability of Deductive Verification with Applications to Distributed Systems
Why verify distributed protocols?

• Distributed systems are everywhere
 • Safety-critical systems
 • Cloud infrastructure
 • Blockchain

• Distributed systems are notoriously hard to get right
 • Even small protocols can be tricky
 • Bugs occur on rare scenarios
 • Testing is costly and not sufficient
Why verify distributed protocols?

- Distributed systems are everywhere
 - Safety-critical systems
 - Cloud infrastructure
 - Blockchain

- Distributed systems are notoriously hard to get right

SIGCOMM’01

Chord: A Scalable Peer-to-Peer
for Internet Applications

Jon Stoica, Robert Morris, David Cohen, Nowell, David R. Karp
Har Balakrishnan

[Image: Chord diagram]

CCR’12

Using Lightweight Modeling To Understand Chord

Pamela Zave
AT&T Laboratories—Research
Florham Park, New Jersey USA
pamela@research.att.com

[Image: Using Lightweight Modeling diagram]
What about correctness of the low level implementation?
Verification
Is there a behavior of S that violates φ?

Counterexample
Unknown / Diverge
Proof

Automatic verification of infinite-state systems

System S
Property φ

Rice’s Theorem
I can’t decide!

“Formal methods are the future of computer science. Always have been, always will be.” William E. Aitken
Deductive verification

- **System S**
- **Inductive argument Inv**
- **Property \(\varphi \)**

Deductive Verification

1) Is \(\text{Inv} \) an inductive invariant for \(S \)?
2) Does Inv enatil \(\varphi \) ?

Counterexample to Induction
Unknown / Diverge
Proof
Inductive invariants

System S is safe if all the reachable states satisfy the property $\varphi = \neg \text{Bad}$.
Inductive invariants

System S is safe if all the reachable states satisfy the property $\varphi = \neg \text{Bad}$

System S is safe iff there exists an inductive invariant Inv:

- $\text{Init} \subseteq \text{Inv}$ (Initiation)
- if $\sigma \in \text{Inv}$ and $\sigma \rightarrow \sigma'$ then $\sigma' \in \text{Inv}$ (Consecution)
- $\text{Inv} \cap \text{Bad} = \emptyset$ (Safety)
Logic-based deductive verification

• Represent Init, \rightarrow, Bad, Inv by logical formulas
 • Formula \Leftrightarrow Set of states

• Automated solvers for logical satisfiability made huge progress
 • Propositional logic (SAT) – industrial impact for hardware verification
 • First-order theorem provers
 • Satisfiability modulo theories (SMT) – major trend in software verification
Deductive verification by reductions to First Order Logic

Protocol \(\text{Init}(V), \text{Tr}(V, V') \)

Loop Invariant \(\text{Inv}(V) \)

Safety Property \(\neg \text{Bad}(V) \)

Front-End

1) \(\text{SAT}(\text{Init}(V) \land \neg \text{Inv}(V)) \)\
2) \(\text{SAT}(\text{Inv}(V) \land \text{Tr}(V, V') \land \neg \text{Inv}(V')) \)\
3) \(\text{SAT}(\text{Inv}(X) \land \text{Bad}(V)) \)\

First Order SAT Solver

Y

N

Counterexample to Induction (CTI)

Proof
Challenges in deductive verification

- Formal specification
 - Modeling the system and property in a logical formalism
- Checking inductiveness
 - Undecidability of satisfiability checking (unbounded state, arithmetic)
- Inference: finding inductive invariants [PLDI’16, POPL’16, JACM’17]

[PLDI’16] Oded Padon, Kenneth McMillan, Aurojit Panda, MS, Sharon Shoham
Ivy: Safety Verification by Interactive Generalization

[POPL’16] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Sharon Shoham, MS
Decidability of Inferring Inductive Invariants

[JACM’17] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky, Sharon Shoham:
Property-Directed Inference of Universal Invariants or Proving Their Absence
Proving distributed systems is hard

Verdi
Verification of Raft in Coq
50,000 lines of manual proof

IronFleet
Verification of Multi-Paxos
12,000 lines and 3.7 person-years
Uses solver for undecidable SMT checks

SAT Modulo Theory (SMT)

- Extend first order logic with theories
 - Linear arithmetic: $\exists x \in \mathbb{Z}. 3x + 2 = 0$
 - Bitvectors
 - Theory of arrays
 - ...

- Hides complexity from the user
 - Works in many cases

- Great tools: Yices, Z3, CVC, Boolector, ...

- Essential in Dafny, Sage, Klee, Rossete, F*,

- But unpredictable!
 - Can fail on tiny inputs
 - Tuning requires knowledge in the heuristics
 - The butterfly effect

Used Sparingly in Ivy

"YOU MUST UNLEARN WHAT YOU HAVE LEARNED"
Ivy’s 1st Principle: First Order Abstraction

• Abstracts states as finite (uninterpreted) first order structures
 • Unbounded relations
 • No other data structures
 • Abstract integers, sets, cardinalities, ...

• Arbitrary loops and procedures

• Express program meaning as first order transition systems:
 • $r(X, Y) := \exists Z. p(X, Z) \land q(Z, Y) \equiv \forall X, Y. r'(X, Y) \iff \exists Z. p(X, Z) \land q(Z, Y)$

• “A step towards decidability”
Example: Leader election in a ring

- Unidirectional ring of nodes, unique numeric ids
- Protocol:
 - Each node sends its id to the next
 - Upon receiving a message, a node passes it (to the next) if the id in the message is higher than the node’s own id
 - A node that receives its own id becomes a leader
- Theorem: The protocol selects at most one leader
 - Inductive?

Example: Leader election in a ring

- Unidirectional ring of nodes, unique numeric ids
- Protocol:
 - Each node sends its id to the next
 - Upon receiving a message, a node passes it (to the next) if the id in the message is higher than the node’s own id
 - A node that receives its own id becomes a leader
- Theorem: The protocol selects at most one leader
 - Inductive? NO
 - Undecidable to check inductiveness
 - Unbounded nodes, messages
 - Arithmetic
 - Transitive closure

Modeling in first-order logic

State: finite first-order structure over vocabulary \(V \):

- \(\preceq (\text{ID}, \text{ID}) \) – total order on node id’s
- \(\text{btw} (\text{Node}, \text{Node}, \text{Node}) \) – the ring topology
- \(\text{id} : \text{Node} \rightarrow \text{ID} \) – relate a node to its unique id
- \(\text{pending}(\text{ID}, \text{Node}) \) – pending messages
- \(\text{leader}(\text{Node}) \) – leader\((n) \) means \(n \) is the leader

Axiomatized in first-order logic

\[
\begin{align*}
\text{id}_1 & \preceq \text{id}_2 & \preceq & \text{id}_3 & \preceq & \text{id}_4 & \preceq & \text{id}_5 & \preceq & \text{id}_6 \\
<\text{id}_5, \text{id}_1, \text{id}_3> & \in I(\text{btw})
\end{align*}
\]
Modeling in first-order logic

State: finite first-order structure over vocabulary V :
- \(\leq (\text{ID}, \text{ID}) \) – total order on node id’s
- \(\text{btw} \) (Node, Node, Node) – the ring topology
- \(\text{id}: \text{Node} \rightarrow \text{ID} \) – relate a node to its unique id
- \(\text{pending} \) (ID, Node) – pending messages
- \(\text{leader} \) (Node) – leader(n) means n is the leader

Specify and verify the protocol for any number of nodes in the ring
Modeling in first-order logic

- **State**: finite first-order structure over vocabulary V (+ axioms)

- **Initial states and safety** property expressed as formulas:
 - $\text{Init}(V)$ – initial states, e.g., $\forall x, y. \neg \text{pending}(x, y)$
 - $\text{Bad}(V)$ – bad states, e.g., $\exists n_1, n_2. \text{leader}(n_1) \land \text{leader}(n_2) \land n_1 \neq n_2$

- **Transition relation** expressed as formula $\text{TR}(V, V')$, e.g.:
 - $\exists n, s. \text{“} s = \text{next}(n) \text{“} \land \forall x, y. \text{pending}'(x, y) \leftrightarrow (\text{pending}(x, y) \lor (x = \text{id}[n] \land y = s))$
 - $\exists n. \text{pending} (\text{id}[n], n) \land \forall x. \text{leader}'(x) \leftrightarrow (\text{leader}(x) \lor x = n)$
General Axioms

module total_order(le) =

axiom le(X,X) # Reflexivity
axiom r(X, Y) & r(Y, Z) -> r(X, Z) # Transitivity
axiom r(X, Y) & r(Y, X) -> X = Y # Anti-symmetry
axiom r(X, Y) | r(Y, X) # Totality
Ring Axioms

module ring_topology(carrier) = {
 individual head:carrier # ring head
 individual tail:carrier # ring tail
 relation le(X:carrier,Y:carrier) # total order describing ring topology
 relation btw(X:carrier,Y:carrier, Z:carrier) # Y is on the acyclic path from X to Z
 instantiate total_order(le) # total order
 axiom le(head, X) # head is minimal
 axiom le(X, tail) # tail is maximal
 # Axiom defining the btw relation
 axiom btw(X, Y, Z) <--> (
 (le(X, Y) & le(Y, Z)) |
 (le(Z, X) & le(X, Y) & X ~ Z) |
 (le(Y, Z) & le(Z, X) & X ~ Z)
)
 action get_next(x:carrier) returns (y:carrier) = {
 assume (x = tail & y = head) | (le(x,y) & x ~ y & ((le(x, Z) & x ~ Z) -> le(y, Z)))
 }
 action get_prev(y:carrier) returns (x:carrier) = {
 assume (x = tail & y = head) | (le(x,y) & x ~ y & ((le(x, Z) & x ~ Z) -> le(y, Z)))
 }
}
Declarations

type node
type id
instantiate ring_topology(node)
relation le(X:id, Y:id)
instantiate total_order(le)
individual idn(X:node) : id
axiom idn(X)=idn(Y) -> X=Y # the idn function is injective
relation leader(N:node)
init ~leader(N)
relation pending(V:id, N:node) # The identity V is pending at node N
init ~pending(V, N)
action send = {
 local n1:node, n2:node {
 # send my own id to the next node
 n2 := ring.get_next(n1);
 pending(idn(n1), n2) := true
 }
}
The Receive Action

```plaintext
action receive = {
    local n1:node, n2:node, m:id {
        # receive a message from the right neighbor
        assume pending(m, n1);
        pending(m, n1) := *; # abstract the number of pending messages
        if m = idn(n1) { # Found a leader
            leader(n1) := true
        } else {
            if le(idn(n1), m) { # pass message to next node
                n2 := ring.get_next(n1);
                pending(m, n2) := true
            } # otherwise drop the message...
        }
    }
}
```
The Protocol

export send
export receive

The safety property:
conjecture leader(X) & leader(Y) -> X = Y # at most one leader
conjecture leader(X) -> le(idn(Y), idn(X)) # leader has highest id

conjectures obtained via CTI's
conjecture ~(le(idn(N1),idn(N0)) & pending(idn(N1),N1) & idn(N1) ~ idn(N0))
conjecture ~(le(idn(N2),idn(N0)) & pending(idn(N2),N1) & ring.btw(N0,N1,N2) & N1 ~ N0)
Deductive verification by reductions to EPR

EPR Protocol
Init(V), Tr(V, V')

EPR Loop Invariant Inv(X)

EPR Safety Property ¬Bad(X)

Front-End

1) SAT(Init(V) ∧ ¬Inv(V))?
2) SAT(Inv(V) ∧ Tr(V, V') ∧ ¬Inv(V'))?
3) SAT(Inv(X) ∧ Bad(V))?

EPR Solver

Y
N

Counterexample to Induction (CTI)

Proof
Leader election protocol – inductive invariant

Inductive invariant: \(Inv = I_0 \land I_1 \land I_2 \)

\[I_0 = \forall n_1, n_2: \text{Node.} \, \text{leader}(n_1) \land \text{leader}(n_2) \rightarrow n_1 = n_2 \]

Unique leader

\[I_1 = \forall n_1, n_2: \text{Node.} \, \text{leader}(n_2) \rightarrow \text{id}[n_1] \leq \text{id}[n_2] \]

The leader has the highest ID

\[I_2 = \forall n_1, n_2: \text{Node.} \, \text{pending}(\text{id}[n_2], n_2) \rightarrow \text{id}[n_1] \leq \text{id}[n_2] \]

Only the leader can be self-pending

- \(\preceq (\text{ID, ID}) \) – total order on node id’s
- \(\text{inv}(\text{Node, Node, Node}) \), the ring topology
- \(\text{id}: \text{Node} \rightarrow \text{ID} \) – relate a node to its unique id
- \(\text{pending}(\text{ID, Node}) \) – pending messages
- \(\text{leader}(\text{Node}) \) – leader(n) means n is the leader

VC Generator:

\[\text{Init}(V) \land \neg \text{Inv}(V) \land \text{inv}(V) \land \text{inv}(V') \land \neg \text{Inv}(V') \land \text{inv}(V) \land \text{add}(V) \]

EPR Solver

Yes/Counterexample
Leader Protocol

$\text{Inv} = I_0 \land I_1 \land I_2$

Check Inductiveness

Ivy: check inductiveness

CTI

$I_0 \land I_1 \land I_2$

EPR

rcv(1, id(2))
Leader election protocol – inductive invariant

Inductive invariant: \(Inv = I_0 \land I_1 \land I_2 \land I_3 \)

- \(I_0 = \forall n_1, n_2: \text{Node. leader}(n_1) \land \text{leader}(n_2) \rightarrow n_1 = n_2 \) – **Unique leader**
- \(I_1 = \forall n_1, n_2: \text{Node. leader}(n_2) \rightarrow id[n_1] \leq id[n_2] \) – **The leader has the highest ID**
- \(I_2 = \forall n_1, n_2: \text{Node. pending}(id[n_2], n_2) \rightarrow id[n_1] \leq id[n_2] \) – **Only the leader can be self-pending**
- \(I_3 = \forall n_1, n_2, n_3: \text{Node. btw}(n_1, n_2, n_3) \land \text{pending}(id[n_2], n_1) \rightarrow id[n_3] \leq id[n_2] \) – **Cannot bypass higher nodes**

- \(\leq (\text{ID, ID}) \) – total order on node id’s
- \(\text{btw} (\text{Node, Node, Node}) \) – the ring topology
- \(\text{id: Node} \rightarrow \text{ID} \) – relate a node to its unique ID
- \(\text{pending} (\text{ID, Node}) \) – pending messages
- \(\text{leader} (\text{Node}) \) – leader(n) means n is the leader

\[\text{Init}(V) \land \neg \text{Inv}(V) \]

\[\text{Inv}(V) \land \text{TR}(V, V') \land \neg \text{Inv}(V') \]

\[\text{EPR Solver} \]

\[\text{Proof} \]

\[\text{I can decide EPR!} \]
Skolemization

• Procedure that transforms a first order formula φ over vocabulary $V=\langle S, C, R, F \rangle$ into a universal formula $Sk(\varphi)$ over vocabulary $V'=\langle S, C \cup C', R, FU F' \rangle$
 • φ is satisfiable $\iff Sk(\varphi)$ is satisfiable

• Example
 • $\forall X: S1. \exists y:S2. r(X, Y) \land q(Y)$
 $$= \text{SAT}$$
 $\forall X: S1. r(X, f(X)) \land q(f(X))$
Why is SMT undecidable?

• Theories
 • $2 \times X^4 + 5 \times X^2 - 3 \times X + 2 = 0$

• Quantifier-alternation and function symbols (cycles)
 • $\forall x : N. \exists y : N. x < y$

 • $\forall x : N. x < f(x)$

 • $\forall x : A. \exists y : B. Q(x, y) \land \forall z : B. \exists w : A. P(z, w)$

Also happens without theories

• $\forall x : A. Q(x, h(x)) \land \forall z : B. P(z, g(z))$

 $h : A \rightarrow B$ and $g : B \rightarrow A$
Infinite Structures

• $\forall x. \text{le}(x, x)$
 Reflexive
• $\forall x, y, z. \text{le}(x, y) \land \text{le}(y, x) \Rightarrow \text{le}(x, z)$
 Transitive
• $\forall x, y. \text{le}(x, y) \land \text{le}(y, x) \Rightarrow x=y$
 Antisymmetric
• $\forall x, y. \text{le}(x, y) \lor \text{le}(y, x)$
 Total
• $\forall x. \text{le}(\text{zero}, x)$
 Non-empty
• $\forall x. \exists y. \text{le}(x, y) \land x \neq y$
 Successor

For finite models validity is co-R.E.
Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

- Limited fragment of first-order logic
 - No function symbols
 - No theories
 - Restricted quantifier prefix: $\exists^* \forall^* \phi_{Q.F.}$
 - No $\forall^* \exists^*$
$\exists x, y. \forall z. r(x, z) \leftrightarrow r(z, y)$

$=_{\text{sat}} \forall z . r(c_1, z) \leftrightarrow r(z, c_2)$

$=_{\text{sat}} (r(c_1, c_1) \leftrightarrow r(c_1, c_2)) \land (r(c_1, c_2) \leftrightarrow r(c_2, c_2))$

$=_{\text{sat}} (P_{11} \leftrightarrow P_{12}) \land (P_{12} \leftrightarrow P_{22})$
SAT becomes undecidable

- \(\forall x. \text{le}(x, x) \) Reflexive
- \(\forall x, y, z. \text{le}(x, y) \land \text{le}(y, z) \Rightarrow \text{le}(x, z) \) Transitive
- \(\forall x, y. \text{le}(x, y) \land \text{le}(y, x) \Rightarrow x = y \) Antisymmetric
- \(\forall x, y. \text{le}(x, y) \lor \text{le}(y, x) \) Total
- \(\forall x. \text{le}(\text{zero}, x) \) Non-empty
- \(\forall x. \exists y. \text{le}(x, y) \land x \neq y \) Successor
Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

• Limited fragment of first-order logic w/o theories
 • No function symbols
 • Restricted quantifier prefix: $\exists^* \forall^* \phi_{Q.F.}$
 • No $\forall^* \exists^*$

• Small model property
 • A formula is satisfiable iff it is holds on models of size (number of constant symbols + existential variables)
Decidable Fragments in Ivy

• EPR
• EPR++ allow acyclic function and quantifier alternations
 • E.g., f:A→B, so cannot have g:B→A
 • Maintains small model property of EPR
 •Finite complete instantiations

• QFLIA – Quantifier Free Linear Integer Arithmetic
• FAU – Finite Almost Uninterpreted [CAV’07]
 • Allow limited arithmetic + acyclic quantifier alternations
 • Maintains finite complete instantiations

[CAV’07] Ge & de Moura: Complete Instantiation for Quantified Formulas in Satisfiability Modulo Theories
EPR++ based verification

Predictiblity
• Decidable inductiveness check
• Finite counterexamples
 • Can be minimized
• Easy to display graphically
• Arbitrary first order updates
• No more butterfly effect

Challenges
• Expressiveness of first order logic
 • Paths
 • Sets & Cardinalities
• Quantifier alternation cycles
• Not closed under conjunction and negation
• Gap to low level implementation
First-order axiomatization of ring paths

\[I_3 = \forall n_1, n_2, n_3: \text{Node. } \text{btw}(n_1, n_2, n_3) \land \text{pending}(id[n_2], n_1) \rightarrow id[n_3] \leq id[n_2] \]

- Cannot express in first-order from “next” relation!
- Key enabler: use btw and not next

 \text{relation} \ \text{btw} \ (\text{Node, Node, Node})

 \text{axiom} \ \forall x, y, z: \text{Node. } \text{btw}(x, y, z) \rightarrow \text{btw}(y, z, x) \ \text{circular}

 \text{axiom} \ \forall x, y, z, w: \text{Node. } \text{btw}(w, x, y) \land \text{btw}(w, y, z) \rightarrow \text{btw}(w, x, z) \ \text{transitive}

 \text{axiom} \ \forall x, y, w: \text{Node. } \text{btw}(w, x, y) \rightarrow \neg \text{btw}(w, y, x) \ \text{anti-symmetric}

 \text{axiom} \ \forall x, y, w: \text{Node. } \neq(w, x, y) \rightarrow \text{btw}(w, x, y) \lor \text{btw}(w, y, x) \ \text{total}

 \text{macro} \ “next(a)=b” \equiv \forall x: \text{Node. } x=a \lor x=b \lor \text{btw}(a,b,x) \ \text{edges}
Key idea: representing deterministic paths

Alternative 1: maintain s
 - \leq defined by transitive closure of s
 - not definable in first-order logic

Alternative 2: maintain \leq
 - s defined by transitive reduction of \leq
 - Unique due to out degree 1
 - Definable in first order logic

$s(x)=y \equiv x < y \land \forall z. x < z \rightarrow y \leq z$

$x < y \equiv x \leq y \land x \neq y$

First order expressible

Not first order expressible
Sound and complete* axiomatization of deterministic paths

For every class C of finite graphs above:

- Axioms for path relation – universally quantified
- Successor formula – 1 universal quantifier
- Update formulas for node / edge addition and removal – universally quantified

• Soundness Theorem: Every graph of class C satisfies the axioms of C
 Edges agree with successor formula

• Completeness Theorem: Every finite structure satisfying the axioms of C is
 isomorphic (paths and edges) to a graph of class C
Sound and complete* axiomatization of deterministic paths

For every class C of finite graphs above:
- **Axioms for path relation** – universally quantified
- **Successor formula** – 1 universal quantifier
- **Update formulas for node / edge addition and removal** – universally quantified

- **Soundness Theorem**

 *Every graph of class C satisfies the axioms of C
 Edges agree with successor formula

- **Completeness Theorem**

 Every finite structure satisfying the axioms of C is isomorphic (paths and edges) to a graph of class C
Parameterized toy leader election

- N processes choose a leader
 - Process may request vote by broadcast
 - Processes vote for a requester
 - Process with majority of votes is leader

Prove: at most one leader
First-order expressiveness issues

• To prove the toy protocol, we need an inductive invariant

• Problem: cardinality reasoning

if \(|\text{votes}(p)| > \frac{|\text{all}|}{2}\) then send leader\((p)\)

cardinality + arithmetic + uninterpreted + quantifiers = second order & undecidable!

• Solution: axiomatize cardinalities in first-order logic

\[\forall s, t. \text{majority}(s) \land \text{majority}(t) \rightarrow \exists p. \text{member}(p, s) \land \text{member}(p, t) \]
An ADT for pid sets

datatype set(pid) = {
 relation member (pid, set)
 relation majority(set)
 procedure empty returns (s:set)
 procedure add(s:set,e:pid) returns (r:set)
}

specification {
 procedure empty ensures ∀p. ¬member(p, s)
 procedure add ensures ∀p. member(p, r) ↔ (member(p, s) \lor p = e)
 property [maj] ∀s, t. majority(s) \land majority(t) → \exists p. member(p, s) \land member(p, t)
}

We have hidden the cardinality and arithmetic

The key is to recognize that the protocol only needs property maj
Paxos

• **Single decree Paxos** – consensus lets nodes make a common decision despite node crashes and packet loss

• **Paxos family of protocols** – state machine replication variants for different tradeoffs, e.g., Fast Paxos is optimized for low contention, Vertical Paxos is reconfigurable, etc.

• **Pervasive approach to fault-tolerant distributed computing**
 • Google Chubby
 • Amazon AWS
 • VMware NSX
 • Many more...
Inductive invariant of Paxos

safety property
\textbf{invariant} decision(N1,R1,V1) & decision(N2,R2,V2) -> V1 = V2

proposals are unique per round
\textbf{invariant} proposal(R,V1) & proposal(R,V2) -> V1 = V2

only vote for proposed values
\textbf{invariant} vote(N,R,V) -> proposal(R,V)

decisions come from quorums of votes:
\textbf{invariant} \forall R, V. (\exists N. decision(N,R,V)) -> \exists Q. \forall N. member(N, Q) -> vote(N,R,V)

properties of one_b_max_vote
\textbf{invariant} one_b_max_vote(N,R2,none,V1) & \neg le(R2,R1) -> \neg vote(N,R1,V2)
\textbf{invariant} one_b_max_vote(N,R,\text{RM},V) & \text{RM} = \text{none} -> \neg le(R,\text{RM}) & vote(N,\text{RM},V)
\textbf{invariant} one_b_max_vote(N,R,\text{RM},V) & \text{RM} = \text{none} & \neg le(R,\text{RO}) & \neg le(\text{RO},\text{RM}) -> \neg vote(N,\text{RO},\text{VO})

property of choosable and proposal
\textbf{invariant} \neg le(R2,R1) & proposal(R2,V2) & V1 = V2 -> \exists N. member(N, Q) & left_rnd(N,R1) & \neg vote(N,R1,V1)

property of one_b, left_rnd
\textbf{invariant} one_b(N,R2) & \neg le(R2,R1) -> left_rnd(N,R1)
Paxos made EPR: Proof size and verification time

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Model [LOC]</th>
<th>Invariants</th>
<th>Verification time [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paxos</td>
<td>85</td>
<td>11</td>
<td>2.2</td>
</tr>
<tr>
<td>Multi-Paxos</td>
<td>98</td>
<td>12</td>
<td>2.6</td>
</tr>
<tr>
<td>Vertical Paxos*</td>
<td>123</td>
<td>18</td>
<td>2.2</td>
</tr>
<tr>
<td>Fast Paxos*</td>
<td>117</td>
<td>17</td>
<td>6.2</td>
</tr>
<tr>
<td>Flexible Paxos</td>
<td>88</td>
<td>11</td>
<td>2.2</td>
</tr>
<tr>
<td>Stoppable Paxos*</td>
<td>132</td>
<td>16</td>
<td>5.4</td>
</tr>
</tbody>
</table>

*first mechanized verification

Abstraction and transformation to EPR reusable across all variants!
have been chosen as the j^{th} command for some $j < i$. Although the basic idea of the algorithm is not complicated, getting the details right was not easy.
(17. NoneChoosableAfter\((i, b, v)\)
PROOF: We assume \(v \in StopCmd, j > i, c < b,\) and \(w\) any command and we prove\(NotChoosable(j, c, w)\). By Lemma 1.7, it suffices to prove\(NotChoosable(j, c, w)\). We split the proof into two cases.

(2) CASE: \(sval2a(i, b, Q) = v\).
PROOF: Assumption (1.1.3) implies \(E4(i, b, Q, v)\), so the assumption \(sval2a(i, b, Q) = v\). The case assumption and the definition of \(sval2a\) then implies \(val2a(i, b, Q) = v\).

(3) CASE: \(c < b\).
PROOF: Case assumption (3.2) and assumption (1.1.1) imply\(NoneChoosableAfter(i, b, Q)\). By the case assumption and the assumption \(v \in StopCmd\) and \(j > i\), this implies\(NotChoosable(j, c, w)\).

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Model [LOC]</th>
<th>Invariants</th>
<th>Verification time [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoppable Paxos*</td>
<td>132</td>
<td>16</td>
<td>5.4</td>
</tr>
</tbody>
</table>
Impact First Order Abstraction

First-Order Logic approach now used at Ethereum Dev UG
From ~1500 LOC to ~150 LOC (Isabelle/HOL proof)
Closing the gap

• Reasoning about abstract protocols (designs)
 • User provides axioms expressed in first order logic
 • Not checked by the system
 • Missing axioms can lead to false alarms

• Reasoning about implementations
 • Abstract total order \rightarrow concreter domain, e.g., integers
 • Abstract sets with majorities \rightarrow some data structure, e.g., arrays

• How can we verify that the user defined “axioms” are satisfied by the low-level implementation?
 • Solution: Modularity – wrap implementations in ADT’s
 • Each module may use a different decidable theory
Ivy 2rd Principle: Scope Verification Conditions

• The \textbf{user} is responsible for breaking quantifier alternation cycles
 • Also in designs

• Leverage \textbf{modularity} (natural for distributed protocols)
 • Prove abstract protocol and use it as a lemma to prove concrete implementation
 • Sometimes functions are abstracted as relations
 • Allow more behaviors
 • Extract executable from the concrete implementation

• Axioms of the design must be fulfilled by the implementation
 • Theories are adds-on
Modularity

Original system

Original inductive argument

Original property
Separate Verification of each module

- subsystem
- Partial argument
- Property

Verification tool

Incorrect
Finds bug

Correct
Finds proof

NO UNDECIDABILITY

😊
An ADT for pid sets

datatype set(pid) = {
 relation member (pid, set)
 relation majority(set)
 procedure empty returns (s:set)
 procedure add(s:set,e:pid) returns (r:set)
}

specification {
 procedure empty ensures ∀p. ¬member(p, s)
 procedure add ensures ∀p. member(p, r) ↔ (member(p, s) ∨ p = e)
 property [maj] ∀s, t. majority(s) ∧ majority(t) → ∃p. member(p, s) ∧ member(p, t)
}

We have hidden the cardinality and arithmetic

The key is to recognize that the protocol only needs property maj
Implementation of the set ADT

• Standard approach
 • Implement operations sets using array representation
 \[\text{member}(p, s) \equiv \exists i. \text{repr}(s)[i] = p\]
 • Define cardinality of sets as a recursive function \(||: \text{set} \rightarrow \text{int}\)
 • \(\text{majority}(s) \equiv |s| + |s| > |\text{all}|\)
 • Prove lemma by induction on |\text{all}|

\[\forall s, t. |s| + |t| > |\text{all}| \rightarrow \exists p. \text{member}(p, s) \land \text{member}(p, t)\]

• The lemma implies property \textit{maj}

• All the verification conditions are in EPR++limited arithmetic (FAU)
Quantifier alternation cycles

• Protocol state
 voters: \textcolor{red}{pid} \rightarrow \textcolor{blue}{set}

• Property \textcolor{red}{maj}
 \forall s, t: \text{set.} \exists p: \text{pid.} \ \text{majority}(s) \land \text{majority}(t) \Rightarrow \text{member}(p, s) \land \text{member}(p, t)

• Solution: Harness modularity
 • Create an abstract protocol model that doesn’t use voters
 • Prove an invariant using \textcolor{red}{maj}, then use this as a lemma to prove the concrete protocol implementation
Abstract protocol model

relation voted(pid, pid)
relation isleader(pid)
var quorum: set

procedure vote(v : pid, n : pid) = {
 require ∀ m. ¬voted(v, m);
 voted(v,n) := true;
}

procedure make_leader(n : pid, s : set) = {
 require majority(s);
 require ∀m. member(m, s) → voted(m, n);
 isleader(n) := true;
 quorum := s;
}

Invariant:
• one leader: ∀n, m.isleader(n) ∧ isleader(m) → n = m
• voted is a partial function: ∀p,n,m. voted(p,n) ∧ voted(p,m) → n = m
• leader has a quorum: ∀n, m.isleader(n) ∧ member(m, quorum) → voted(m, n)

Provable in EPR++
Implementation

• Uses real network vote messages
• Decorated with ghost calls to abstract model
• Uses abstract mode invariant in proof

relation already_voted(pid)

handle req(p:pid, n:pid) {
 if ¬already_voted(p) {
 already_voted(p) := true;
 send vote(p,n);
 ghost abs.vote(p,n); // call to abstract model must satisfy precondition
 }
}

In place of property \textit{maj}, we use the \textit{one leader} invariant of the abstract model

\[\forall p, n. \text{abs. voted}(p, n) \rightarrow \text{already_voted}(p) \]

\[\forall p, n. \text{network.vote}(p, n) \leftrightarrow \text{abs. voted}(p, n) \]

\[\forall n. \text{leader}(n) \leftrightarrow \text{abs. isleader}(n) \]

...
Proof using Ivy/Z3

• For each module, we provide suitable inductive invariants
 • Reduces the verification to EPR++ verification conditions
 • the sub verification problems
• Each module’s VC’s in decidable fragment
 • Support from Z3
 • If not, Ivy gives us an explanation, for example a function cycle
• Z3 can quickly and reliably prove all the VC’s
<table>
<thead>
<tr>
<th>Protocol</th>
<th>System/Project</th>
<th>LOC</th>
<th># manual proof</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAFT</td>
<td>Coq/Verdi</td>
<td>530</td>
<td>50,000</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Ivy</td>
<td>560</td>
<td>200</td>
<td>0.36</td>
</tr>
<tr>
<td>MULTIPAXOS</td>
<td>Dafny/IronFleet</td>
<td>3000</td>
<td>12,000</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ivy</td>
<td>330</td>
<td>266</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Verification Effort

<table>
<thead>
<tr>
<th>Protocol</th>
<th>System/Project</th>
<th>Human Effort</th>
<th>Verification Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAFT</td>
<td>Coq/Verdi</td>
<td>3.7 years</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ivy</td>
<td>3 months (from ground up)</td>
<td>Few min</td>
</tr>
<tr>
<td>MULTIPAXOS</td>
<td>Dafny/IronFleet</td>
<td>Several years</td>
<td>6 hr in cloud</td>
</tr>
<tr>
<td></td>
<td>Ivy</td>
<td>1 month (pre-verified model)</td>
<td>few minutes on laptop</td>
</tr>
</tbody>
</table>
Why do people hate First Order Logic?

<table>
<thead>
<tr>
<th>Rants</th>
<th>Ivy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard to understand and error prone</td>
<td>Finite model property</td>
</tr>
<tr>
<td></td>
<td>Display models graphically</td>
</tr>
<tr>
<td>Too weak: Cannot express</td>
<td>First order interface</td>
</tr>
<tr>
<td>Parity</td>
<td>Total orders</td>
</tr>
<tr>
<td>Numeric</td>
<td>Paths in deterministic graphs</td>
</tr>
<tr>
<td>Quorums</td>
<td>Majorities</td>
</tr>
<tr>
<td>Finiteness</td>
<td>Theories as adds-on</td>
</tr>
<tr>
<td>Paths in a graph</td>
<td>First order imperative updates</td>
</tr>
<tr>
<td>Hard for automation</td>
<td>Restrict to EPR++/FAU</td>
</tr>
<tr>
<td>Satisfiability is undecidable</td>
<td>Satisfiability is NEXPTIME complete/Σ_2</td>
</tr>
<tr>
<td>NP-complete for fixed size</td>
<td>Support from Yices, Z3, Iprover, Vampire</td>
</tr>
</tbody>
</table>
Languages and Inductiveness

<table>
<thead>
<tr>
<th>Language</th>
<th>Executable</th>
<th>Expressiveness</th>
<th>Inductiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, Java, Python...</td>
<td>✓</td>
<td>Turing-Complete</td>
<td>Undecidable</td>
</tr>
<tr>
<td>SMV</td>
<td>☒</td>
<td>Finite-state</td>
<td>Temporal Properties</td>
</tr>
<tr>
<td>TLA+</td>
<td>☒</td>
<td>Turing-Complete</td>
<td>Manual</td>
</tr>
<tr>
<td>Coq, Isabelle/HOL</td>
<td>✓</td>
<td>“Turing-Complete”</td>
<td>Manual with tactics</td>
</tr>
<tr>
<td>Dafny</td>
<td>✓</td>
<td>Turing-Complete</td>
<td>Undecidable with lemmas</td>
</tr>
<tr>
<td>Ivy</td>
<td>✓</td>
<td>Turing-Complete</td>
<td>Decidable (EPR++/FAU)</td>
</tr>
</tbody>
</table>
State of the art in formal verification

Proof Assistants

- Ultimate limited by human

- Verdi: ~10
- IronFleet: ~4

Decidable Models

- Decidable deduction
- Finite counterexamples
- Ivy
- Proof/code: ~0.2

Ultimately limited by undecidability

Decidable Models
- Model Checking
- Static Analysis