Satisfiability of Propositional Formulas

Mooly Sagiv

Slides by Sharad Malik, Ohad Shacham, Daniel Kroening and Ofer Strichman
The SAT Problem

- Given a propositional formula (Boolean function)
 \[\phi = (a \lor b) \land (\neg a \lor \neg b \lor c) \]

- Determine if \(\phi \) is valid
 true in all assignments

- Determine if \(\phi \) is satisfiable
 - Find a satisfying assignment or report that such does not exist

- For \(n \) variables, there are \(2^n \) possible truth assignments to be checked
Why Bother?

• Core computational engine for major applications
 – Artificial Intelligence
 • Knowledge base deduction
 • Automatic theorem proving
 – Electronic Design Automaton
 • Testing and Verification
 • Logic synthesis
 • FPGA routing
 • Path delay analysis
 • And more…
 – Software Verification
Verification by reductions to SAT

Program P

Desired Property φ

Front-End

Formula $[P] \land \neg \varphi$

SAT(DPLL)

Counterexample

Proof
Verification by reduction to SAT

SAT Query:
\[
((a \land x) \lor (\neg a \land \neg x)) \land ((b \land y) \lor (\neg b \land \neg y)) \land ((x \land \neg y) \lor (\neg x \land y))
\]

assert x==y
Verification by reduction to SAT

SAT Query:
\(((a \land x) \lor (\neg a \land \neg x)) \land
((b \land y) \lor (\neg b \land \neg y)) \land
((x \land \neg y) \lor (\neg x \land y))\)?
Verification by reduction to SAT

SAT Query:

\[((a \land x \land b) \lor (\neg a \land \neg x \land \neg b)) \land ((b \land y) \lor (\neg b \land \neg y)) \land ((x \land \neg y) \lor (\neg x \land y))\]

SAT Answer: Unsatisfiable
Problem Representation

- Represent the formulas in Conjunctive Normal Form (CNF)
- Conversion to CNF is straightforward
 - \(a \lor (b \land \neg(c \lor \neg d)) \equiv (a \lor (b \land \neg c \land \neg d)) \equiv (a \lor (b \land \neg c \land d)) \equiv (a \lor b) \land (a \lor \neg c) \land (a \lor d) \)
 - May need to add variables
- Notations
 - Literals
 - Variable or its negation
 - Clauses
 - Disjunction of literals
 - \(\varphi = (a \lor b) \land (\neg a \lor \neg b \lor c) \equiv (a + b)(a' + b' + c) \)
- Advantages of CNF
 - Simple data structure
 - Compact
 - Compositional
 - All the clauses need to be satisfied
Complexity Results

• First established NP-Complete problem
 – Even when at most 3 literals per clause (3-SAT)
 – No polynomial algorithm for all instances unless P = NP

• Becomes polynomial when
 – At most two literals per clause (2-SAT)
 – At most one positive literal in every clause (Horn)
Goals

• Develop algorithms which solve all SAT instances

• Exponential worst case complexity
 – Sometimes in space too

• But works well on many instances
 – Interesting Heuristics
 – Annual SAT conferences
 – SAT competitions
 • Randomly, Handmade, Industrial, AI
 – 10 Millions variables!
SAT made some progress…
Naïve SAT solving (DFS)

- Enumerate all truths assignments X_1, X_2, \ldots, X_n

Pseudo code

```plaintext
main=
    if sat(0, $\varphi$)
        then return SAT($X$)
        else return UNSAT

boolean sat(i, $\varphi$)=
    if i = n then return false
    else
        j := i+1
        x[j] := 0; $\varphi'$ := simp($\varphi$, j, 0)
        if sat(j, $\varphi'$) then return true
        else x[j] := 1; $\varphi'$ := simp($\varphi$, j, 1)
        return sat(j, $\varphi'$)
```
The intuition behind resolution

\[A \rightarrow B \]
\[B \rightarrow C \]

\[A \rightarrow C \]

\[\neg A \lor B \]
\[\neg B \lor C \]

\[\neg A \lor C \]

\[\neg A \lor B \]
\[\neg B \lor C \]

\[A \rightarrow C \]
Clause Resolution

- Resolution of a pair of clauses with exactly ONE incompatible variable

- What if more than one incompatible variables?
Davis Putnam Algorithm

- Iteratively select a variable for resolution till no more variables are left
- Report UNSAT when the empty clause occurs
- Can discard resolved clauses after each iteration
Davis Putnam Algorithm

dp(\mathcal{C}L) =
 \text{for } i = 1 \text{ to } n \text{ do}
 \quad \mathcal{C}L := \text{eliminate}(X_i, \mathcal{C}L) ;

 \text{if } () \in \mathcal{C}L \text{ then return UNSAT;}
 \quad \text{else return SAT;}

\text{eliminate}(x, \mathcal{C}L) =
 \text{new := } \{\}
 \text{for each } c_1, c_2 \in \mathcal{C}L
 \quad \text{such that } x \in c_1 \text{ and } \neg x \in c_2
 \quad \text{new := new } \cup (c_1-x \cup c_2-\neg x)
 \text{return } \mathcal{C}L - x \cup \text{new}
Davis Putnam Algorithm

Potential memory explosion problem!
Can we avoid using exponential space?
DLL Algorithm

- Davis, Logemann and Loveland

- Basic framework for many modern SAT solvers

- Also known as DPLL for historical reasons
Basic DLL Procedure - DFS

(a’ + b + c)
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)
Basic DLL Procedure - DFS

(a’ + b + c)
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

Diagram:

Decision
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Implication Graph

Conflict!
Basic DLL Procedure - DFS

(a’ + b + c)
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

Implication Graph

Conflict!
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Backtrack
Basic DLL Procedure - DFS

\[
\begin{align*}
(a' + b + c) \\
(a + c + d) \\
(a + c + d') \\
(a' + c' + d) \\
(a + c' + d') \\
(b' + c' + d) \\
(a' + b + c') \\
(a' + b' + c)
\end{align*}
\]

\[
\begin{align*}
a = 0 & \quad (a + c' + d) \\
\text{Forced Decision} & \quad (a + c' + d') \\
c = 1 & \quad d = 1 \\
& \quad d = 0
\end{align*}
\]

Conflict!
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Diagram:

- Node a
- Node b
- Node c
- Backtrack arrow from c to b
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Forced Decision
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Decision

Conflict!
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Backtrack
Basic DLL Procedure - DFS

(a’ + b + c)
(a + c + d)
(a + c + d’)

(a + c’ + d)
(a + c’ + d’)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

(a + c’ + d)
(a + c’ + d’)

Conflict!

Forced Decision

(a + c’ + d)

0 1

0 1

0 1

(a + c’ + d’)

Conflict!
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Backtrack
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Forced Decision
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Diagram:

- a
 - b
 - c
 - 0
 - 1
 - c
 - 0
 - 1
 - b
 - 0
 - Decision
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Conflict!
Basic DLL Procedure - DFS

\[(a' + b + c)\]
\[(a + c + d)\]
\[(a + c' + d')\]
\[(b' + c' + d)\]
\[(a' + b + c')\]
\[(a' + b' + c)\]
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

Forced Decision
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

a = 1
b = 1

(a' + b' + c)
(c = 1)
(b' + c' + d)
(d = 1)
Basic DLL Procedure - DFS

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

(a' + b' + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(b' + c' + d)
(a' + b + c')
(a' + b' + c)

b=1
a=1
(b' + c' + d)
(c=1)

d=1
SAT

0 1
0 1
0 1
0 1

0
1
0
1
0
1
Implications and Boolean Constraint Propagation

• Implication
 – A variable is forced to be assigned to be True or False based on previous assignments

• **Unit** clause rule (rule for elimination of one literal clauses)
 – An unsatisfied clause is a unit clause if it has exactly one unassigned literal

\[(a + b' + c)(b + c')(a' + c')\]

\[a = T, \ b = T, \ c \ is \ unassigned\]

 – The unassigned literal is implied because of the unit clause

• Boolean Constraint Propagation (BCP)
 – Iteratively apply the unit clause rule until there is no unit clause available

• Workhorse of DLL based algorithms
While (true)
{
 if (!Decide()) return (SAT)
 while (!BCP())
 if (!Resolve_Conflict()) return (UNSAT)
}

Apply repeatedly the \textit{unit clause rule}. Return False if reached a conflict

Choose the next variable and value. Return False if all variables are assigned

Backtrack until no conflict. Return False if impossible
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10}' \]
\[x_7 + x_{10} + x_{12}' \]

\[x_1 = 0 \]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_{7'} + x_3' + x_9 \]
\[x_{7'} + x_8 + x_9' \]
\[x_{7'} + x_8 + x_{10'} \]
\[x_{7} + x_{10} + x_{12'} \]

x1=0, x4=1
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10}' \]
\[x_7 + x_{10} + x_{12}' \]

\[x_{1}=0, \ x_{4}=1 \]
\[x_{3}=1 \]
Conflict Driven Learning and Non-chronological Backtracking

\[\begin{align*}
x_1 + x_4 \\
x_1 + x_3' + x_8' \\
x_1 + x_8 + x_{12} \\
x_2 + x_{11} \\
x_{7'} + x_3' + x_9 \\
x_{7'} + x_8 + x_9' \\
x_7 + x_8 + x_{10'} \\
x_7 + x_{10} + x_{12'} \\
x_4 = 1 \\
x_1 = 0 \\
x_3 = 1 \\
x_8 = 0 \\
x_1 = 0, x_4 = 1 \\
x_3 = 1, x_8 = 0
\end{align*} \]
Conflict Driven Learning and Non-chronological Backtracking

\begin{align*}
x_1 + x_4 \\
x_1 + x_3' + x_8' \\
x_1 + x_8 + x_{12} \\
x_2 + x_{11} \\
x_7' + x_3' + x_9 \\
x_7' + x_8 + x_9' \\
x_7 + x_8 + x_{10'} \\
x_7 + x_{10} + x_{12'}
\end{align*}
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_{7'} + x_3' + x_9 \]
\[x_{7'} + x_8 + x_{9'} \]
\[x_{7} + x_8 + x_{10'} \]
\[x_{7} + x_{10} + x_{12'} \]
Conflict Driven Learning and Non-chronological Backtracking

\[
x_1 + x_4
x_1 + x_3' + x_8'
\]

\[
x_1 + x_8 + x_{12}
\]

\[
x_2 + x_{11}
\]

\[
x_7' + x_3' + x_9
\]

\[
x_7' + x_8 + x_9'
\]

\[
x_7 + x_8 + x_{10'}
\]

\[
x_7 + x_{10} + x_{12'}
\]

\[
x_4 = 1
\]

\[
x_1 = 0 \quad x_3 = 1
\]

\[
x_8 = 0 \quad x_{11} = 1
\]

\[
x_{12} = 1
\]

\[
x_1 = 0, x_4 = 1
\]

\[
x_3 = 1, x_8 = 0, x_{12} = 1
\]

\[
x_2 = 0, x_{11} = 1
\]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10}' \]
\[x_7 + x_{10} + x_{12}' \]
Conflict Driven Learning and Non-chronological Backtracking

\[\begin{align*}
\text{x1} + \text{x4} \\
\text{x1} + \text{x3}' + \text{x8}' \\
\text{x1} + \text{x8} + \text{x12} \\
\text{x2} + \text{x11} \\
\text{x7}' + \text{x3}' + \text{x9} \\
\text{x7}' + \text{x8} + \text{x9}' \\
\text{x7} + \text{x8} + \text{x10}' \\
\text{x7} + \text{x10} + \text{x12}'
\end{align*}\]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_12 \]
\[x_2 + x_11 \]
\[x_7' + x_3' + x_9' \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10}' \]
\[x_7 + x_{10} + x_{12}' \]
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10}' \]
\[x_7 + x_{10} + x_{12}' \]

Add conflict clause: \(x_3' + x_7' + x_8 \)
Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
\[x1 + x8 + x12 \]
x2 + x11
\[x7' + x3' + x9\]
\[x7' + x8 + x9'\]
x7 + x8 + x10’
x7 + x10 + x12’

Add conflict clause: x3’+x7’+x8

x3=1, x8=0, x12=1
x2=0, x11=1
x7=1, x9=1

x3=1 \land x7=1 \land x8=0 \rightarrow \text{conflict}

Add conflict clause: x3’+x7’+x8
Conflict Driven Learning and Non-chronological Backtracking

\[x_1 + x_4 \]
\[x_1 + x_3' + x_8' \]
\[x_1 + x_8 + x_{12} \]
\[x_2 + x_{11} \]
\[x_7' + x_3' + x_9 \]
\[x_7' + x_8 + x_9' \]
\[x_7 + x_8 + x_{10'} \]
\[x_7 + x_{10'} + x_{12'} \]
\[x_3' + x_7' + x_8 \]

Backtrack to the decision level of \(x_3 = 1 \)
\(x_7 = 0 \)
Conflict Driven Learning and Non-chronological Backtracking

\[\begin{align*}
x_1 + x_4 \\
x_1 + x_3' + x_8' \\
x_1 + x_8 + x_{12} \\
x_2 + x_{11} \\
x_7' + x_3' + x_9 \\
x_7' + x_8 + x_9' \\
x_7 + x_8 + x_{10'} \\
x_7 + x_{10} + x_{12'} \\
x_3' + x_7 + x_8'
\end{align*}\]
What’s the big deal?

Conflict clause: \(x_1' + x_3 + x_5' \)

Significantly prune the search space – learned clause is useful forever!

Useful in generating future conflict Clauses

No longer polynomial space
Restart

- Abandon the current search tree and reconstruct a new one
- The clauses learned prior to the restart are still there after the restart and can help pruning the search space
- Adds to robustness in the solver

Conflict clause: \(x_1' + x_3 + x_5' \)
BCP Algorithm

- What “causes” an implication? When can it occur?
 - All literals in a clause but one are assigned to F
 - \((v_1 + v_2 + v_3):\) implied cases: \((0 + 0 + v_3)\) or \((0 + v_2 + 0)\) or \((v_1 + 0 + 0)\)
 - For an N-literal clause, this can only occur after N-1 of the literals have been assigned to F
 - So, (theoretically) we could completely ignore the first N-2 assignments to this clause
 - In reality, we pick two literals in each clause to “watch” and thus can ignore any assignments to the other literals in the clause
 - Example: \((v_1 + v_2 + v_3 + v_4 + v_5)\)
 - \((v_1=X + v_2=X + v_3=? \{\text{i.e. X or 0 or 1}\} + v_4=? + v_5=?)\)
Chaff Decision Heuristic - VSIDS

- Variable State Independent Decaying Sum
 - Rank variables by literal count in the initial clause database
 - Periodically, divide all counts by a constant
 - Only increment counts as new clauses are added

- Quasi-static:
 - Static because it doesn’t depend on var state
 - Not static because it gradually changes as new clauses are added
 - Decay causes bias toward *recent* conflicts
Finding a Solution to a SAT problem is can be viewed as 2 player game

- **Player 1**: tries to find satisfying assignment
- **Player 2**: tries to show that such assignment does not exist

Let A be an arbitrary assignment
while true:

 if $A \vDash C$ then return SAT
 if $() \in C$ then return UNSAT

 let $c \in C$ such that not $A \vDash c$ and let A' such that $A' \vDash c$
 $A := A'$

 $|$ $|
 $let c' \notin C$ such that $C \vDash c'$ and not $A \vDash c'$
 $C := C \cup \{c'\}$
Example Game 1

(a + b) (a + b’) (a’ + c)(a’ + c’)
Example Game 2

\[(a + b + c)(b + c' + f')(b' + e)\]
Some Bibliography

- **Chaff: Engineering an Efficient SAT Solver**
 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik (DAC'01)

- **Efficient Conflict Driven Learning in a Boolean Satisfiability Solver**
 Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz (IJCAD’01)

- **A New Method for Solving Hard Satisfiability Problems**
 Bart Selman, Hector Levesque, David Mitchell (AAI’92)
• Post Chaff SAT solvers
 – BerkMin
 – Seige
 – miniSat
 – HaifaSAT
 – JeruSAT (Alex Nadel)

• The Stålmarck’s algorithm

• Hyperresolution

• Local Search
Open Question

• Is there a subset of a useful propositional logic beyond Horn clauses which:
 – Allows polynomial SAT
 – Includes many of the practical instances
 – Some recent ideas in
Summary

• Rich history of emphasis on practical efficiency
• Need to account for computation cost in search space pruning
• Need to match algorithms with underlying processing system architectures
• Specific problem classes can benefit from specialized algorithms
 – Identification of problem classes?
 – Dynamically adapting heuristics?
• We barely understand the tip of the iceberg here
 – much room to learn and improve