Techniques for Improving
Software Productivity

Instructor: Mooly Sagiv
TA: Kalev Alpernas

http://cs.tau.ac.il/~msagiv/courses/software-
productivity.html

Slides from Eran Yahav, Zach Tatlock and the Noun Project, Wikipedia

Course Prerequisites

 Logic in Computer Science
 Software Project

Course Requirements

e The students must solve all homework
assignments but one (40%)

— Apply a tool
— ~10 hours per project
— First assignment available on next Thursday

e 60% final exam

Software Is Everywhere

Surlware 1S Everywhere

re Is Everywhere

Buffer Overrun

volid foo (char *x
char buf[2];
= Strcpy (buf, x);

int main (int argc, char *argv

foo(argvi[l]);

e ’scc))ﬁlric_fe code
abracadabra
Segmentation

fault

terminal

csO

returnceddress

ca
ra
ab

memaoryv

Buffer Overrun Exploits

Int check _authentication(char *password) {
Int auth_flag = 0;
char password_buffer[16];

strcpy(password_buffer, password);
If(strcmp(password_buffer, "brillig") == 0) auth_flag = 1;
If(strcmp(password_buffer, "outgrabe™) == 0) auth_flag = 1;
return auth_flag;
¥
Int main(int argc, char *argv[]) {
if(check_authentication(argv[1])) {

pr‘intf("\n-:-:-:-:-:-:-:-:-:-:-:-:-:-\n");

printf(" Access Granted.\n");

printf("-:-:-:_:-:_:-:_:-:_:-:_:-:_\n)’ }
else

printf(*\nAccess Denied.\n");

(corirce: “hackina — the art aof exvnloitatinn 2nd Ed>°)

Attack

' — Application

« A sallor on the U.S.S. Yorktown entered a O into a data field in
a kitchen-inventory program

« The O-input caused an overflow, which crashed all LAN
consoles and miniature remote terminal units

« The Yorktown was dead in the water for about two hours and
45 minutes

One Day Last Summer...

Ehe New Aork Eimes
The Stock Market Bell Rings, Computers Fail, Wall Street Cringes

By NATHANIEL POPPER JULY § 2015

Problems with technology have at

times roiled global financial markets,
but the 223-year-old :
Exchange has held itself up as an oasis

of humans ready to step in when the
computers go haywire.

On Wednesday, however, those
working on the trading floor were left
helpless when the computer systems at
the exchange went down for nearly
four hours in the middle of the day,
bringing an icon of capitalism’s
ceaseless energy to a costly halt.

The exchange ultimately returned to
action shortly before the closing bell,

One Day Last Summer...

Ehe New York Times
The Stock Market Bell Rings, Computers Fail, Wall Street Cringes

By NATHANIEL POPPER JULY

THE WALL STREET JOURNAL

Digital Network WSJ.com Market'\atch BARRON'S

THE WALL STREET JOURNAL

The story of a Chinese military staffer’s
hacking provides a detailed look into B
controlled cyberespionage machinery.

Debt Relief for Students Snarls Market for Their Loans
Federal programs designed to ease the burden of college loans are causing snarls
in the bond market and raising concerns that banks may soon ratchet back lending.

The New Bond Market: Algorithms Trump Humans
Computerized trading strategies, or algorithms, are remaking the $12.7 trillion
Treasury market, emulating earlier sea changes in stock and currency trading.

One Day Last Summer...

Ehe New York Times

The Stock Market Bell Rings, Computers Fail, Wall Street Cringes

By NATHANIEL POPPER JULY § 2015

THE WALL STREET JOURNAL

Digital Network WSJcom MarketWWatch BARRON'S

THE WALL STREET JOURNAL.

WSJ.com is having technical difficulties. The full site will return shortly.

er Sleuths Tra
ina’s Military

The story of a Chinese military staffer’s
hacking provides a detailed look into B
controlled cyberespionage machinery.

e closing bell,

Federal programs designed to ease the burg
in the bond market and raising concerns tha

The New Bond Market: Algo
Computerized trading strategies, or algorith
Treasury market, emulating earlier sea cha

Software Is Complex

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Codebases

Millions of lines of code

—— hundred
thousand

simple iPhone game app
Unix Vllg".”ol

Win32/5Simile virus
average iPhone app
Pacemaker

Photoshop v.] 10
Cami.nc-)

Quake 3 eng‘1 ne

Video game system

Space Shuttle MACHINE

a million lines of code

—— million

a mllhon hnes of code
18,000 pages of printed text

War Ane
I.
The Catcheri)
CryEngine 2

3D video game system

Bacteria
Syphillis (Treponema pallidum)

Age of Empires online

CESM Climate Model

National Center for Atmospheric Research

F-22 Raptor fighter jet

Linux Kernel 2.2.0

| MySQL Workbench 5.2 Code Statistics

Limux
Windows
MacO5X
Common
MForms
3rd Party

Glade LN
HIB
.MET Designer

Files

Lines of Code

)

Code by Category

@ Linux P Windaws MacOSX
® Common @ MForms @ 3ed Party

Code by Language

& C/C++ B CH Objactive-C
@ Python @ Lua

Cost of software bugs

» 59.5 billion dollars in the US due to
software bugs

 Software security
— Cars, Planes, Radiotherapy, Internet,

 Software agility

Improving Software Productivity

» High level programming languages
— Abstractions

 Software Engineering
— Software designs

 Software tools
— Software testing
— Software debugging
— Formal Verification

Software Testing

« Goal: “to affirm the quality of software
systems by systematically exercising the
software in carefully controlled
circumstances” [E. F. Miller, Introduction
to Software Testing Technology]

The Testing Spectrum

Unit Testing: basic unit of software
Integration Testing: combination
System’s testing: end-to-end
Acceptance testing: client check

Testing Technigues

Random testing: Runs the program on random
Inputs

Symbolic techniques

Concolic techniques

Adequacy of test suit
— Coverage

— Mutation testing: Modify the program in a small way
« Check the adequacy of the test suit

Symbolic vs. Concrete Testing

Program Path

* Program Path

— A path in the control flow of the program
e Can start and end at any point
* Appropriate for imperative programs

* Feasible program path

— There exists an input that leads to the execution
of this path

* |nfeasible program path

* No input that leads to the execution

Infeasible Paths

void grade(int score) {
A: if (score <45) {
B: printf(“fail”);
}
else
C: printf(“pass”);
}
D: if (score > 85) {
E: printf(“with honors”);

}

Concrete vs. Symbolic Executions

* Real programs have many infeasible paths

— Ineffective concrete testing

* Symbolic execution aims to find rare errors

Symbolic Testing Tools

EFFIGY [King, IBM 76]
PEX [MSR]

SAGE [MSR]
SATURN([Stanford]
KLEE[Stanford]

Java pathfinder[NASA]
Bitscope [Berkeley]
Cute [UIUC, Berkeley]
Calysto [UBC]

Finding Infeasible Paths Via Constraint
Solving

void grade(int score) {
A: if (score <45) {
B: printf(“fail”);
}
else
C: printf(“pass”);
}
D: if (score > 85) {
E: printf(“with honors”);
}
F:
}

score < 45 A score > 85 UNSAT

Plan

 Random Testing
* Symbolic Testing
* Concolic Testing

Fuzzing [Miller 1990]

Test programs on random unexpected data
Can be realized using black/white testing

Can be quite effective
— Operating Systems
— Networks

Usually implemented via instrumentation
Tricky to scale for programs with many paths

If (x ==10001) { int f(int *p) {
if (p 1=NULL) {
if (f(*y) == *2z) { return q;

Success Stories Fuzzing

* Crashes to Unix [90s]
* Crashes to all systems

— American Fuzzy Lop
http://lcamtuf.coredump.cx/afl/

Symbolic Exploration

Execute a program on symbolic inputs
Track set of values symbolically

Update symbolic states when instructions are
executed

Whenever a branch is encountered check if
the path is feasible using a theorem prover
call

Symbolic Execution Tree

The constructed symbolic execution paths
Nodes

— Symbolic Program States

Edges
— Potential Transitions

Constructed during symbolic evaluation
Each edge requires a theorem prover call

- Simple Example
intx,y;

2)if (x>vy){
3)x=x+y; Qﬂ, X =s1, y=D
v

4)y=x-y;
B)x=x-y;
6)if (x>y)

7) assert false; A

Y
8)}
Qﬂ, X =s1, y=s2, 51>D Q@& x =s1, y=s2, slSD
R
Qc=4, X =s1+s2, y=s2, 51>SD

y=x-y |

QC=5, X =s1+s2, y=s1, Sl>SD

X=x-y |,

Xy
< pc=6, x =s2, y=s1, s1>s2 >—>< pc=8, x =52, y=s1, s1>s2 >

pc=2, x =s1, y=s2
XSy

Another Example

int f(int x) { return 2 * x ;}
int h(int x, inty) {

1)if (x!=y) { 1w —eq e
2) if (f(x) == x +10) { Q‘L x=sl, V‘D

3) abort() // * error */

}
}

4) return 0;

pc=3, x =51, y=s2, s1#s2, < pc=4, x=s1, y=s2, s1#s2, >
< 2*s1 =s2+10 > 2%s1 #s2+10

Non-Deterministic Behavior

int x;y;
1) if (nondet()) {
2)x=7;
}
else {
3)x=19;
}
4)

1) inti;

2) while i<n{
i=i+1;
}

3) if (n ==10°) {
4) abort();
5) }

Loops

Scaling Issues for
Symbolic Exploration

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, int y) {
z = double (y);
if (z==x) {
if (x >y+10) {

ERROR;
}

Concrete
Execution

concrete
State

X=22,y=17

Symbolic

symbolic
state

X=Xo Y =Yo

Execution

path
condition

Concolic Testing Approach

Concrete Symbolic

int double (int v) { Execution Execution

return 2*v; concrete symbolic | path
} State State condition
void testme (int x, int y) {

z = double (y);

X=22,y=1, X = Xg, Y = Yo
if (z==x){ z=14 Z = 2%,

if (x >y+10) {

ERROR;
}

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, int y) {
z = double (y);
if (z==x) {
if (x >y+10) {

ERROR;
}
J

Y ———

}

Concrete Symbolic
Execution Execution
concrete symbolic | path
State State condition
2%y 1= %o
X:221y_71 X:XO’y:yO’
z=14 z=2%,

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, int y) {
z = double (y);
if (z==x) {
if (x >y+10) {

ERROR;

Concrete Symbolic
Execution Execution
concrete symbolic | path
State State condition
Solve: 2*y, ==X,
Solution: X, =2,y,=1
2%y 1= Xq

X=Xo Y = Yo
z=2%,

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, int y) {
z = double (y);
if (z==x) {
if (x >y+10) {

ERROR;
}

Concrete
Execution

concrete
State

Xx=2,y=1

Symbolic

symbolic
state

X=Xo Y =Yo

Execution

path
condition

Concolic Testing Approach

Concrete Symbolic

int double (int v) { Execution Execution

return 2*v; concrete symbolic | path
} State State condition
void testme (int x, int y) {

z = double (y);

X=2,y=1, X = Xg, Y = Yo
if (z==x){ z=2 Z = 2%,

if (x >y+10) {

ERROR;
}

Concolic Testing Approach

Concrete Symbolic
int double (int v) { Execution Execution
return 2*v; concrete symbolic | path
} State State condition
void testme (int x, int y) {
z = double (y);
if (z==x) { 2*Yo == Xo
X=2,y=1, X = Xg, Y = Yo
if (x >y+10) { z7=2 z = 2%y,

ERROR;
}

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, int y) {
z = double (y);
if (z==x) {
if (x >y+10) {

ERROR;
}

}

Y ———

}

Concrete Symbolic
Execution Execution
concrete symbolic | path
State state condition
2*Yo == Xo
Xo " Yot10
X=2,y=1, X = Xg, Y = Yo
z=2 z=2%,

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, int y) {
z = double (y);
if (z==x) {
if (x >y+10) {

ERROR;

Concrete Symbolic

Execution Execution
concrete symbolic | path
State state condition

Solve: (2*y, == Xy) A (Xg > Yo + 10)
Solution: x, = 30, y, = 15

X=Xo Y = Yo
z=2%,

2%Yo == Xg

Xo " Yot10

Concolic Testing Approach

Concrete Symbolic

int double (int v) { Execution Execution

return 2*v; concrete symbolic | path
} State State condition
void testme (int x, int y) {

x=30,y=15 X=X Y=Y
z = double (y);
if (z==x) {

if (x >y+10) {

ERROR;
}

The Concolic Testing Algorithm

Classify input variables into symbolic / concrete

v

Instrument to record symbolic vars and path conditions

v
Choose an arbitrary input
v
Execute the program
v

Symbolically re-execute the program

v

Negate the unexplored last path condition
-)
Is there an input satisfying constraint

SAGE: Whitebox Fuzzing for Security Testing

Check correctness of Win’7, Win’8

200+ machine years

1 Billion+ SMT constraints

100s of apps, 100s of bugs

1/3 of all Win7 WEX security bugs found
Millions of dollars saved

Automatic Program Verification

Program Desired
P Properties ¢

Solver

Is there a behavior
of P that violates ¢?

Counterexample | Proof

7 5// .

Example

Int check authentication(char *password) {
Int auth_flag = 0;
char password_buffer[16];

strcpy(password_buffer, password);
If(strcmp(password_buffer, "brillig") == 0) auth_flag = 1;
If(strcmp(password_buffer, "outgrabe™) == 0) auth_flag = 1,
return auth_flag;
by
Int main(int argc, char *argv[]) {
if(check_authentication(argv[1])) {

printf("\n-:-:-:-:-:-:-:-:-:-:-:-:-:-\n");

printf(" Access Granted.\n");

printf("-:-:-:-:-:-:-:-:-:-:-:-:-:-\n"); }
else

printf("\nAccess Denied.\n");

Undecidability

» The Halting Problem
— Does the program P terminate on input |

 Rice’s Theorem

— Any non-trivial property of partial functions,
there Is no general and effective method to
decide If program computes a partial function
with that property

Coping with Undecidability

Permits occasional divergence

Limited programs (not Turing Complete)
Unsound Verification

— Explore limited program executions

Incomplete Verification
— Explore superset of program executions

Programmer Assistance
— Inductive loop Invariants

Limited Programs

* FInite state programs

— Finite state model checking
 Explicit state SPIN, CHESS
« Symbolic model checking SMV

 Loop free programs
— Configuration files

Unsound Verification

« Dynamic checking
— Valgrind, Parasoft Insure, Purify, Eraser

« Bounded Model Checking
e Concolic Executions

The SAT Problem

* Given a propositional formula (Boolean function)
* p=(avb)A(—-av-abve)
* Determine if @ is satisfiable
* Find a satisfying assignment or report that such does not exit

* For nvariables, there are 2" possible truth assignments to be
checked

SAT made some progress...

-

100000

10000

1000

100

10

1

/

/

I

——

1960 1970

1980 1990
Year

2000

2010

y

Bounded Model Checking

Program P

Input
Bound k

FrontEnd

Propositional Formula
[P(K)] Ao

SAT Solver

Assignment

4
7

[e
\é 2,
«@
¥
\®

Desired
Properties ¢

A Simple Example

Program Constraints

int x: counterexample found!
int y=8,z=0,w=0;
if (x) y =8,

z =y — 1; z=x?y-1:0, y=8,x=1,w=0,z=7
else w=x?0:y+1,

w=1yvy + 1; z1=5,
assert (z == | | wlil=9

w == 9)

A Simple Example

Program Constraints | .,

int x; Assertion always
int y=8,z=0,w=0; holds!
if (x) y =8,

z =y - 1; z=x7y-1:0,
else w=x?0:y+1,

w=y+ 1; z1=17,
assert (z == 7 || wl!=9

w == 9)

Summary Bounded Model Checking

Excellent tools exist (CBMC, Alloy)
Many bugs occur on small inputs
Useful for designs too

Scalability is an issue

Challenging features
— Bounded arithmetic
— Pointers and Heap

— Procedures

— Concurrency

Success Stories BMC

o Car Industry
 Amazon
» Regression

Safety of Transition Systems

Transition System

Bad = Safety

System S is safe if no bad state is reachable

R, = Init — Initial states, reachable in O transitions
R.,, =R, U{co’| o2 0c’and o € R}

R=R, UR; UR, U...

Safety: R N Bad = &

K-Safety: R, N Bad = &

Inductive Invariants

Transition System

. Bad

Initial

System S is safe if no bad state is reachable
System S is safe iff there exists an inductive invariant Inv s.t.:

Inv N Bad = & (Safety)
Init < Inv (Initiation)
if o € Invand o =2 o’ then o’ € Inv (Consecution)

Counterexample To Induction (CTl)

States 0,0’ are a CTl of Inv if:
* 0 € lnv
e 0 & lInv

e 02> 0

* A CTl may indicate:
* ADbuginthe system
* A bugin the safety property
* A bug in the invariant
* Too weak
* Too strong

Strengthening & Weakening from CT]

Strengthening Weakening

Deductive (Semi-Automatic) Verification

Program Candidate Inductive Safety
P Invariant | Property ¢

Solver

Is there a behavior
of P that violates the inductiveness of I?

1 \ l

Counterexample to induction Unknown Proof
®

> —

Deductive Verification

1:x:=1;
2.y = 2;
while * do { = at(3 9
3: assert x >1; Q()=>D at(3) > x =1
4: X=X +Yy,
5y =y+1 \
}
> Solver
D RR—

Is there a behavior
of P that violates the inductiveness of I?

x=-1,y=-1

Deductive Verification

1:x:=1;
2.y = 2;
while * do { 3 1 v
3: assert x >1; Qﬁx NY# at(3) > x =1
4: X=X +Yy,
S: yi=y+1 \
}
> Solver
e

Is there a behavior
of P that violates the inductiveness of I?

X=-6, y=-6

Deductive Verification

1. x:=1,
2.y =2
while * do { at(3) = x >1ay >0 at(3) = x >1
3. assert x >1;
4. X:=X+Y;
S:yi=y+1 W&
¥
6: Solver
——

Is there a behavior
of P that violates the inductiveness of I?

Proof

Algorithmic Deductive Verification

* SAT/SMT has made huge progress in the last decade

e Great impact on verification:
Dafny[ITP’13], IronClad/IronFleet[SOSP’15], and more

State: finite first-order structure over vocabulary V

Initial states and safety property (first-order formulas):
* |Init(V) — initial states
* Bad(V)— bad states

* Transition relation:
first-order formula TR(V, V')
V' is a copy of V describing the next state

[ITP’13] K.R. Leino: Automating Theorem Proving with SMT. DAFNY

[SOSP’15] C. Hawblitzel, J. Howell, M. Kapritsos, J.R. Lorch, B. Parno, M. Roberts, S.
Setty, B. Zill: IronFleet: proving practical distributed systems correct

Algorithmically Checking
Inductiveness

Inv is an inductive invariant if:

* |nitiation: Init = Inv InitA—=Inv unsat
e Safety: Inv = —Bad InvABad unsat
e Consecution: InVATR = InvV InvVATRA=INV' unsat

System State Space

. Bad

Initial

Algorithmic Deductive Verification

Program Candidate Inductive Safety
P Invariant | Property ¢

Solver

Is there a behavior
of P that violates the inductiveness of I?

1 \ l

Counterexample to induction Unknown Proof
®

> —

Challenges

1. Formal specification:
* Modeling the system (TR, Init)
* Formalizing the safety property (Bad)

2. Inductive Invariants (Inv)
 Hard to specify manually
 Hard to maintain

 Hard to infer automatically

3. Deduction — Checking inductiveness
* Undecidability of implication checking

* Unbounded state, arithmetic, quantifier alternation

Existing Approaches for
Verification

* Automated invariant inference
e Abstract Interpretation

e Ultimately limited due to undecidability

* Use SMT for deduction with manual program annotations
(e.g. Dafny)

* Requires programmer effort to provide inductive invariants

* SMT solver may diverge (matching loops, arithmetic)

* Interactive theorem provers (e.g. Coq, Isabelle/HOL)
* Programmer gives inductive invariant and proves it

e Huge effort (10-50 lines of proof per line of code)

Abstract Interpretation

Automatically prove that the program is correct by
also considering infeasible executions

Abstract interpretation of program
statements/conditions

Conceptually explore a superset of reachable
states

Sound but incomplete reasoning
Automatically infer sound inductive invariants

Automatic Program Verification

Program Desired
P Properties ¢

Solver

Is there a behavior
of P that violates ¢?

Counterexample Unknown | | Proof

7 Sj/ .

Interval Based Abstract Interpretation

pc: Int(X)
1:x=2; 110, 0]
2. while true {x >0} do
3:x=2*x-1
_ 2:[2, 2] 2:[2,3]
4
3:[2, 2]

4: 13, 3]

Interval Based Abstract Interpretation

pc: Int(X)
1:x=2; 110, 0]
2. while true {x >0} do
3:x=2*x-1
_ 2:12, 2] 2: [2, oo
4
3:[2, 2] 3: [2, 0]

4: 13, 3] 4,:]3, o]

Interval Based Abstract Interpretation
pc: Int(x), Iint(y)

1:x=2,y=2 1: [0, 0], [0, O]
2: while true {x =y} do
. —_ D% .
3';/(:_22*;(_1 L [2, 2], [2, 2] 2:12,3], [2, 3]
4
3:[2, 2], [2, 2]

4: 3, 3], [3, 3]

Shape-Based Abstract Interpretation

node search(node h, int v) { n
{003
2: while (h 1= NULL) { n's:

3. if (x->d ==v) return Xx;
4: assert X !=null; x =x->n;

}
5: return (node) NULL

Shape-Based Abstract Interpretation

node search(node h, int v) { n
{003
2: while (x 1= NULL) { n<

3. if (x->d ==v) return x;
4: assert x !'=null; x =x->n;
b
5: return (node) NULL @
n
- =0O-- ->@
n<:
n n
& DECD
n‘\' n‘\'

Odd/Even Abstract Interpretation

1: while (x!'=1) do{
2:if X%2)==0 :
{3:x:=x/2;} @

else

{4:x:=x*3+1; @
5: assert (x %2 ==0); }
6: }

Abstract Interpretation

Abstract

Concrete

0 Descriptors of
Sets of stores

Odd/Even Abstract Interpretation

All concrete states

Odd/Even Abstract Interpretation

All concrete states

Ly 11 5}
X: X € Even}

P
e \/

Odd/Even Abstract Interpretation

All concrete stat

_ ?
X: X eEgleZn’}l’ L 7 \
10,2}

N \/

(Best) Abstract Transformer

A

Concrete Transition

St -

Concretization Abstraction

St

-

Abstract Transition

Odd/Even Abstract Interpretation

1: while (x!'=1) do{
2:if X%2)==0 :
{3:x:=x/2;} @

else

{4:x:=x*3+1; @
5: assert (x %2 ==0); }
6: }

Summary Abstract Interpretation

 Conceptual method for building static
analyzers

A lot of techniques:
— Join, meet, widening, narrowing, procedures

« Can be combined with theorem provers

Driver)
Development Kit

Cy

Static Driver Veritie
Read for Drive testing

<«understanding Precise tools

New API rules . API Usage Rules
| SLIC

Software Model
Checking

k.
55555555

100% path

coveragg
“Things like evendSftware verification, t is has been the Holy
Grail of computer science for many deca Ies but now in some

very key areas, for example, dr’ re building
tools that can do actual proof & Source Code |nd how it

works in order to guarantee the re

Success Story: Astree

* Developed at ENS

A tool for checking the absence of runtime
errors in Airbus flight software

[CC’00] R. Shaham, E.K. Kolodner, S. Sagiv:

Automatic Removal of Array Memory Leaks in Java

[WCRE’2001] A. Miné: The Octagon Abstract Domain

[PLDI’03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Ming¢,
D. Monniaux, X. Rival: A static analyzer for large safety-critical software

MSS Panaya

Making ERP easy

o Static analysis to detect the impact of a
change for ERP professionals (slicing)

« Developed by N. Dor and Y. Cohen
« Acquired by Infosys

[ISSTA’08] N. Dor, T. Lev-Ami, S. Litvak, M. Sagiv, D. Weiss:
Customization change impact analysis for erp professionals via program
slicing
[FSE’10] S. Litvak, N. Dor, R. Bodik, N. Rinetzky, M. Sagiv:
Field-sensitive program dependence analysi

Exciting Times for Formal
Methods

« Adapted by the Network and System’s
communities
* The beginning of industry adaption
* New applications
— Networks
— Biology
— Education

Overview

SAT and SMT Solvers

Bounded Model
Checking

Concolic Testing

Deductive Verification
1

Deductive Verification
2

Static Analysis

Random Testing
Fuzz Testing
Mutation Testing
Unit Testing

Delta Debugging
Program Synthesis
System's Code

Network and Cloud

Tentative Schedule
s e

No Recitation

Z3
CBMC
KLEE

No Recitation

Dafny

Apron, Absint

No assignment

Graph algorithms with Z3
CBMC
KLEE

No assignment

Dafny

Apron and Abslint

Quickcheck, Randoop, Simullant, Autotest, YETI, GramTest Use the tools

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Course Benefits

» Learn about research which is becoming
mature

e Understand the limits of formal methods

