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Background

• High level formalisms for static program 
analysis
– Circular attribute grammars

– Horn clauses

• Interprocedural Analysis
– Context free reachability

• Implemented in SLAM/SDV

• Shape Analysis
– Low level pointer data structures
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Problem: Multiple Indexes

Access Patterns

• Find all mounted 
filesystems

• Find cached files on 
each filesystem

• Iterate over all used 
or unused cached 
files in Least-
Recently-Used order
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Disadvantages of linked shared data structures

• Error prone

• Hard to change

• Performance may depend on the machine and 
workload

• Hard to reason about correctness

• Concurrency makes it harder
– Lock granularity

– Aliasing



Our thesis

• Very high level programs
– No pointers and shared data structures

– Easier programming

– Simpler reasoning

– Machine independent

• The compiler generates pointers and multiple 
concurrent shared data structures 

• Performance comparable to manually written 
code



Our Approach

• Program with “database”
– States are tables 
– Uniform relational operations

• Hide data structures from the program

– Functional dependencies express program invariants

• The compiler generates low level shared pointer 
data structures with concurrent operations
– Correct by construction

• The programmer can tune efficiency
• Autotuning for a given workload



Conceptual Programming Model
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Relational Specification

• Program states as relations

– Columns correspond to properties

– Functional dependencies define global invariants

Atomic Operation meaning

r= empty r := {}

insert r s t if s r then r = r  {<s.t>} 

query r S C The  C of all the tuples in r 
matching tuple

remove r s remove from r all the 
tuples which match s



The High Level Idea

Concurrent Compositions of
Data Structures,
Atomic Transactions

Compiler

RelScala

Scala

Decomposition

query  <inuse:T> {fs, file}

List * query(FS* fs, File* file) {
lock(fs) ; for (q= file_in_use; …) 
….  



Filesystem

• Three columns  {fs, file, inuse}

• fs:int  file:int  inuse:Bool

• Functional dependencies

– {fs, file} { inuse}
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Filesystem (operations)
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query  <inuse:T> {fs, file }=

[<fs:2, file:7>, <fs:1, file:6>]



Filesystem (operations)
fs file inuse
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Filesystem (operations)

remove <fs:1>
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Directed Graph Data Structure

• Three columns  {src, dst, weight}

• src  dst  weight

• Functional dependencies

– {src, dst} { weight}

• Operations

– query <src:1> {dst, weight}

– query <dst:5> {src, weight}



Plan

• Compiling into sequential code (PLDI’11)

• Adding concurrency (PLDI’12)



Mapping Relations into 
Low Level Data Structures

• Many mappings exist

• How to combine several existing data 
structures
– Support sharing

• Maintain the relational abstraction

• Reasonable performance

• Parametric mappings of relations into shared 
combination of data structures
– Guaranteed correctness



The RelC Compiler
fs fileinuse
{fs, file}  {inuse}

foreach <fs, file, inuse> filesystems s.t. fs= 
5

do …

RelC C++

inuse

fs, file
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file

Relational Specification

Graph decomposition



Decomposing Relations

• Represents subrelations using container data 
structures 

• A directed acyclic graph(DAG)

– Each node is a sub-relation

– The root represents the whole relation

– Edges map columns into the remaining sub-
relations

– Shared node=shared representation



Decomposing Relations into Functions 
Currying

fs fileinuse
{fs, file}  {inuse}fs fileinuse

fs filefileinuse

inuse

group_by {fs, file}

group-by {fs} group-by {inuse}

group-by {file}

FS   (FILEINUSE)

FILEINUSE

INUSE  FS   FILE 

FS  FILE INUSE

FS   (FILEINUSE) INUSE  (FS  FILE INUSE)

fs

file fs,  file

inuse



Filesystem Example
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Memory Decomposition(Left)
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Filesystem Example
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Memory Decomposition(Right)
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Decomposition Instance

fs:1
file:14

fs:1
file:6

fs:1
file:2

fs:2
file:7

fs:2
file:5

inuse:T inuse:F

inuse:F inuse:T inuse:F Inuse:T Inuse:F

fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

fs:1

file:14 file:6 file:2 file:7

file:5

fs:2

fs  file  inuse

{fs, file} { inuse} inuse

fs, file

fs inuse

file



Decomposition Instance
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Decomposing Relations Formally(PLDI’11)

fs fileinuse
{fs, file}  {inuse}

inuse

fs, file

x

y z

w

fs inuse

file

let w: {fs, file,inuse}  {inuse} = {inuse}  in
let y : {fs}  {file, inuse} =  {file} list {w} in
let z : {inuse }  {fs, file, inuse} =  {fs,file} list {w} in
let x: {}  {fs, file, inuse} =   {fs} clist {y} 

{inuse} array{z} 



Memory State
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Adequacy

A decomposition is adequate if it can represent every possible relation 
matching a relational specification

Adequacy

enforces sufficient conditions for adequacy

Not every decomposition is a good representation of a 
relation



Adequacy of Decompositions

• All columns are represented

• Nodes are consistent with functional 
dependencies

– Columns bound to paths leading to a common 
node must functionally determine each other



Respect Functional Dependencies

file,fs

inuse

 {file, fs}  {inuse}



Adequacy and Sharing

fs, file

fs inuse

file

inuse

Columns bound on a path to an object x must functionally
determine columns bound on any other path to x

 {fs, file}{inuse, fs, file}



Adequacy and Sharing

fs

fs inuse

file

inuse

Columns bound on a path to an object x must functionally
determine columns bound on any other path to x

 {fs, file}  {inuse, fs}



The RelC Compiler PLDI’11

Sequential Compositions of
Data Structures

Compiler

ReLC

C++

inuse

fs, file

fs inuse

file



Query Plans 

foreach <fs, file, inuse> filesystems
if inuse=T do …

fs, file

fs inuse

file

inuse

Cost proportional to the number of files



Query Plans 

foreach <fs, file, inuse> filesystems
if inuse=T do …

fs, file

fs inuse

file

inuse

Cost proportional to the number of files in use



Removal and graph cuts
remove <fs:1>
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Abstraction Theorem

• If the programmer obeys the relational 
specification and the decomposition is adequate 
and if the individual containers are correct

• Then the generated low-level code maintains the 
relational abstraction 

relation relation
remove <fs:1>

low-level
state

low-level
state

low level code 
remove <fs:1>

 



Autotuner

• Given a fixed set of primitive types

– list, circular list, doubly-linked list, array, map, …

• A workload

• Exhaustively enumerate all the adequate 
decompositions up to certain size

• The compiler can automatically pick the best 
performing representation for the workload



Directed Graph Example (DFS)
• Columns 

src  dst  weight
• Functional Dependencies

– {src, dst}  {weight}

• Primitive data types
– map, list

…
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Synthesizing Concurrent 
Programs

PLDI’12



Multiple ADTs

Invariant: Every element that added to eden is either in 
eden or in longterm

public void put(K k, V v) {
if (this.eden.size() >= size) {

this.longterm.putAll(this.eden);
this.eden.clear();

}
this.eden.put(k, v);

}



OOPSLA’11 Shacham

• Search for all public domain collection operations 
methods with at least two operations

• Used simple static analysis to extract composed 
operations
– Two or more API calls

• Extracted 112 composed operations from 55
applications
– Apache Tomcat, Cassandra, MyFaces – Trinidad,  …

• Check Linearizability of all public domain 
composed operations



47%
Linearizable

38%
Non 

Linearizable

15%
Open Non 

Linearizable

Motivation: OOPSLA’11 Shacham



Relational Specification

Atomic operation meaning

r= empty r := {}

insert r s t if s r then r := r  {<s.t>} 

query r S C The  C of all the tuples in r 
matching tuple

remove r s remove from r all the tuples
which match s

• Program states as relations

– Columns correspond to properties

– Functional dependencies define global invariants



The High Level Idea

Concurrent Compositions of
Data Structures,
Atomic Transactions

Compiler

RelScala

Scala

Concurrent Decomposition

ConcurrentHashMap

HashMap

query  <inuse:T> {fs, file}

List * query(FS* fs, File* file) {
lock(…) for (q= file_in_use; …) 
….  



Two-Phase Locking

Two phase locking protocol:

• Well-locked: To perform a read or write, a 
thread must hold the corresponding lock

• Two-phase: All lock acquisitions must precede 
all lock releases

Attach a lock to each piece of data

Theorem [Eswaran et al., 1976]:  Well-locked, two-phase transactions are 
serializable



Two Phase Locking

Attach a lock to every edge

Problem 2: Too many locks

Decomposition Decomposition Instance

We’re done!

Problem 1: Can’t attach locks to container entries

Two Phase Locking  Serialiazability

Butler Lampson/David J. Wheeler: “Any problem in computer science can 

be solved with another level of indirection.”



Two Phase Locking

Attach a lock to every edge

Problem 2: Too many locks

Decomposition Decomposition Instance

We’re done!

Problem 1: Can’t attach locks to container entries

Two Phase Locking  Serialiazability



Lock Placements

1. Attach locks to nodes

Decomposition Decomposition Instance



Coarse-Grained Locking

Decomposition Decomposition Instance



Finer-Grained Locking
Decomposition Decomposition Instance



Lock Placements: Domination

Decomposition Decomposition Instance

Locks must dominate the edges they protect



Lock Placements: Path-Closure
All edges on a path between an edge and its 
lock must share the same lock



Lock Ordering

Prevent deadlock via a topological order on locks



Queries and Deadlock

2. lookup(tv)

1. acquire(t)

3. acquire(v)

4. scan(vw)

Query plans must acquire the correct locks in the correct order

Example: find files on a particular filesystem



Deadlock and Aliasing

L1

L2

{
lock(a)
lock(b)
// do  something
unlock(b)
unlock(a)

}

{
lock(a)
lock(b)
// do  something
unlock(b)
unlock(a)

}

a

a

b

b





Decompositions and Aliasing

• A decomposition is an 
abstraction of the set of 
potential aliases

• Example: there are exactly
two paths to any instance 
of node w



Concurrent Synthesis (Autotuner)
Find optimal combination of

Decomposition
Container
Data Structures

ConcurrentHashMap

ConcurrentSkipListMap

CopyOnWriteArrayList

Array

HashMap

TreeMap

LinkedList

Lock Implementations

ReentrantReadWriteLock

ReentrantLock

Lock Striping Factors

Lock Placement



Concurrent Graph Benchmark

• Start with an empty graph

• Each thread performs 5 x 105 random 
operations

• Distribution of operations a-b-c-d (a% 
find successors, b% find predecessors, c% 
insert edge, d% remove edge)

• Plot throughput with varying number of 
threads

Based on Herlihy’s benchmark of concurrent maps



Black 
= handwritten,
isomorphic to 
blue

= ConcurrentHashMap

= HashMap

...

Results: 35-35-20-10
35% find successor, 35% find predecessor, 
20% insert edge, 10% remove edge

ConcurrentHashMap

HashMap



(Some) Related Projects

• SETL

• Relational synthesis: [Cohen & Campbell 1993], 
[Batory & Thomas 1996], [Smaragdakis & Batory
1997], [Batory et al. 2000] [Manevich, 2012] …

• Two-phase locking and Predicate Locking 
[Eswaran et al., 1976],  Tree and DAG locking 
protocols [Attiya et al., 2010], Domination 
Locking [Golan-Gueta et al., 2011]

• Lock Inference for Atomic Sections: [McCloskey et 
al.,2006], [Hicks, 2006], [Emmi, 2007]



Summary

• Programming with uniform relational 
abstraction

– Increase the gap between data abstraction and 
low level implementation

• Comparable performance to manual code

• Easier to evolve

• Automatic data structure selection

• Easier for program reasoning



Concurrent Libraries with Foresight 
PLDI’13

Guy Gueta(TAU)
G. Ramalingam (MSR)

M. Sagiv (TAU)
E. Yahav (Technion)



Transactional Libraries with Foresight

• Enforce atomicity of arbitrary sequences

• The client declares intended  operations 
– foresight

• The library utilizes the specification
– Synchronize between operations which do not 

serialize with foresight

• Methodology for creating libraries with foresights
– Maps

• Foresight can be automatically inferred by 
sequential static  program analysis



ComputeIfAbsent (single Map)
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Summary

• Methods for enforcing atomicity of sequences 
of operations

• Provably correct

• Simplifies reasoning
– Sequential reasoning

– High level data structures & invariants

• Is that efficient enough?
– Pessimistic concurrency

– Optimistic concurrency


