Data Representation Synthesis
PLDI’20117, ESOP’12, PLDI'12"
CACM’12

Peter Hawkins, Stanford University
Alex Aiken, Stanford University
Kathleen Fisher, DARPA
Martin Rinard, MIT
Mooly Sagiv, TAU

E 3
http://theory.stanford.edu/~hawkinsp/ Best Paper Award

Background

* High level formalisms for static program
analysis
— Circular attribute grammars
— Horn clauses

* |Interprocedural Analysis

— Context free reachability
* Implemented in SLAM/SDV

* Shape Analysis
— Low level pointer data structures

Composing Data Structures

filesystem=1 filesystem=2

filesystems
T s_list —> s_list

s_files s_files
f list f list

f fs_list f fs_list

__ file=6

f list f list

(f fs_list f fs_list

f I|st
f fs_list

Problem: Multiple Indexes

+Concurency

filesystem=1 filesystem=2 Access Patterns

filesystems
T s_list —> s_list

s_files s_files
* Find all mounted

file=14 filesystems

f list f list * Find cached files on
f fs_list f fs_list each filesystem

* |terate over all used

g or unused cached
f I|st f list files in Least-
f fs_list f_fs_list Recently-Used order

f|Ie p)
f list
f fs_list

Disadvantages of linked shared data structures

Error prone
Hard to change

Performance may depend on the machine and
workload

Hard to reason about correctness

Concurrency makes it harder
— Lock granularity
— Aliasing

Our thesis

* Very high level programs
— No pointers and shared data structures
— Easier programming
— Simpler reasoning
— Machine independent

* The compiler generates pointers and multiple
concurrent shared data structures

* Performance comparable to manually written
code

Our Approach

Program with “database”
— States are tables

— Uniform relational operations
* Hide data structures from the program

— Functional dependencies express program invariants

The compiler generates low level shared pointer
data structures with concurrent operations

— Correct by construction
The programmer can tune efficiency
Autotuning for a given workload

Conceptual Programming Model

insert

query
e § query
insert

insert

shared database

remove

_remove

Relational Specification

* Program states as relations

— Columns correspond to properties
— Functional dependencies define global invariants

r= empty r:=1{}
insertrst if s grthenr=ru {<s.t>}
queryrSC The C of all the tuplesinr

matching tuple

removers remove from r all the
tuples which match s

Decomposition

o

The High Level Idea

-
u1asystem)
s_list

[filesystems

\ 4

s_files

ile N
 f_fs_list
Cyftile |

f_list

 f_fs_list
\ /

RelScala

Compiler

{fs, file, inuse}
fs, file — inuse

query <inuse:T> {fs, file}

Concurrent Compositions of
Data Structures,
Atomic Transactions

List * query(FS* fs, File* file) {
lock(fs) ; for (gq= file_in_use; ...)

Filesystem

e Three columns {fs, file, inuse} ENNEEN

14

e fs:int x file:int x inuse:Bool .

* Functional dependencies
— {fs, file} >{ inuse}

R R NN R

5
6
2
2

— m 4 m — T

Filesystem (operations)

fs__file |inuse
1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

query <inuse:T> {fs, file }=

[<fs:2, file:7>, <fs:1, file:6>]

Filesystem (operations)
s | file |inuse

7

R R NN R

F
T
5 F
6 T
2 F
insert <fs:1, file:15> <inuse:T>

fs __file | inuse
14

1 F
2 7 T
2 5 F
1 6 T
1 2 F
1 15 T

Filesystem (operations)
s |file |inuse

1 F
2 7 T
2 5 F
1 6 T
1 2 F
1 15 T

remove <fs:1>
fs | file |inuse
2 7 T

2 5 F

Directed Graph Data Structure

Three columns {src, dst, weight}
src x dst x weight

Functional dependencies

— {src, dst} —>{ weight}

Operations

— query <src:1> {dst, weight}

— query <dst:5> {src, weight}

Plan

 Compiling into sequential code (PLDI'11)
e Adding concurrency (PLDI’12)

Mapping Relations into
Low Level Data Structures

Many mappings exist

How to combine several existing data
structures

— Support sharing
Maintain the relational abstraction
Reasonable performance

Parametric mappings of relations into shared
combination of data structures

— Guaranteed correctness

The RelC Compiler

Relational Specification

fsx fitexinuse ™\
{fs, file} — {inuse}

foreach <fs, file, inuse>e filesystems s.t. fs=

5
do— /

Graph decomposition

fs, file

e/

Decomposing Relations

* Represents subrelations using container data
structures

e Adirected acyclic graph(DAG)
— Each node is a sub-relation
— The root represents the whole relation

— Edges map columns into the remaining sub-
relations

— Shared node=shared representation

Decomposing Relations into Functions
Currying

o fsx filexinuse
fsx filexinuse {fs, file} — {inuse}

group-by {fs}
FS > (FILExINUSE)

group-by {inuse}

se
INUSE = FS X FILE

filexinuse fsx file

group-by {file} fi ile group_ by {fs, file}

FILE=>INUSE FS x FILE = INUSE

inuse

FS = (FILE=>INUSE) INUSE = (FS x FILE = INUSE)

Filesystem Example

{fs, file, inuse} um

1 F
2 T
2 F
1 T
1 F

file fs, file I
F 7
inuse 6 T 5
F
f||<74/ f,é\(, \O\ file:

F T T

—

Memory Decomposition(Left)

inuse

file:14 file-6 file:2 filet7 file:5

inuse:F Inuse:T inuse:F Inuse:T Inuse:F

Filesystem Example

fs__file | inuse.
14

F
T
F
T
F

inuse

{fs, file} >{ inuse}

fs:1 fs:2 fs:1
ilé:14 ile:5 ile:2

Memory Decomposition(Right)

inuse:T inuse:F
inuse
{fs, file} =>{ inuse}
2 1 s:1 f5:2 s:1
file:7 file:6 file:14 file:5 file:2

inuse:T inuse:T inuse:F Inuse:F Inuse:F

Decomposition Instance

fs x file x inuse

{fs, file} —{ inuse} inuse

fs | file linuse

1 14 F

2 7 T

2 5 F

1 6 T

] 2 c inuse:F inuse:T inuse:F Inuse:T Inuse:F

Decomposition Instance

use T

inuse:F

fs, file

>t

fs x file x inuse

{fs, file} —{ inuse} inuse

s |file |inuse
1 14 F
2 7 T
2 5 F
1 6 T
inuse:F inuse:T : Inuse:T
1 2 F f_list f_list

Decomposing Relations Formally(PLDI’11)

fsx filexinuse
{fs, file} — {inuse}

let w: {fs, file,inuse} > {inuse} = {inuse} in
let v : {fs} > {file, inuse} = {file} 2'st{w}in
let z : {inuse } > {fs, file, inuse} = {fs,file} 2'ist{w}in
let x: {} > {fs, file, inuse} = {fs} >clist{y}x
{inuse} 2>2"av{z}

inuse

Memory State
filesystems

\ filesystem=1 filesystem=2

s_list —> s_list
s_files s_files
file=14
f list f list
f fs_list f fs_list
fs x file x inuse
s, el Stnusel - inuse
s |file |inuse f_list f_list
1 14 F f fs_list f fs_list
2 7 T
R
f list
1 ° T f fs_list
1 2 F

Adequacy

Not every decomposition is a good representation of a
relation

A decomposition is adequate if it can represent every possible relation
matching a relational specification

enforces sufficient conditions for adequacy

{fsﬂ ﬁleﬂ ’E.?'I,’ULSE} Adequacy
fs, file — tnuse ~

inuse

Adequacy of Decompositions

* All columns are represented
* Nodes are consistent with functional
dependencies

— Columns bound to paths leading to a common
node must functionally determine each other

Respect Functional Dependencies

file,fs
v {file, fs} = {inuse}

inuse

Adequacy and Sharing

fs, file

inuse

Columns bound on a path to an object x must functionally
determine columns bound on any other path to x

v’ {fs, file}¢>{inuse, fs, file}

Adequacy and Sharing

inuse

Columns bound on a path to an object x must functionally
determine columns bound on any other path to x

{fs, file} «» {inuse, fs}

The RelC Compiler PLDI'11
{fs, file, inuse}

fs, file — inuse

fs, file

Compiler

s_files

Sequential Compositions of
Data Structures

Query Plans

foreach <fs, file, inuse>e filesystems
if inuse=T do ...

fs, file

inuse

Cost proportional to the number of files

Query Plans

foreach <fs, file, inuse>e filesystems
if inuse=T do ...

inuse

Cost proportional to the number of files in use

Removal and graph cuts

remove <fs:1>

fileystems

s_list
s_files

—
f list
f fs_list

f list

f fs_list
1

Abstraction Theorem

* |f the programmer obeys the relational
specification and the decomposition is adequate
and if the individual containers are correct

 Then the generated low-level code maintains the
relational abstraction

remove <fs:1>
relation relation
N

[[

low level code
low-level | remove <fs:1> | low-level

state state

Autotuner

Given a fixed set of primitive types

— list, circular list, doubly-linked list, array, map, ...

A workload

Exhaustively enumerate all the adequate
decompositions up to certain size

The compiler can automatically pick the best
performing representation for the workload

Directed Graph Example (DFS)

 Columns
src x dst x weight

* Functional Dependencies
— {src, dst} > {weight}
* Primitive data types

— map, list
src g dst g

O O
dst| @ src| &

weight weight

Synthesizing Concurrent
Programs

Multiple ADTs

public void put(K k, V v) {
if (this.eden.size() >= size) {
this.longterm.putAll(this.eden);
this.eden.clear();

1
this.eden.put(k, v);

Invariant: Every element that added to eden is either in
eden or in longterm

OOPSLA’11 Shacham

Search for all public domain collection operations
methods with at least two operations

Used simple static analysis to extract composed
operations

— Two or more API calls

Extracted 112 composed operations from 55
applications
— Apache Tomcat, Cassandra, MyFaces — Trinidad, ...

Check Linearizability of all public domain
composed operations

Motivation: OOPSLA’11 Shacham

\\ p—=

Linearizable
38%

Non
Linearizable

Relational Specification

* Program states as relations
— Columns correspond to properties
— Functional dependencies define global invariants

operation meaning

r= empty r:={}
insertrst if s grthenr:= ru {<s.t>}
queryrSC The C of all the tuplesinr

matching tuple

removers remove from r all the tuples
which match s

The High Level Idea

Concurrent Decomposition
{fs, file, inuse}

RelScala fs,ﬁle — 1nuse

query <inuse:T> {fs, file}

inuse

==—=3 ConcurrentHashMap
== =» HashMap

u uasyst u1asystam)
[filesystemﬂ s_list > s_list

s_files
£

Compiler

s_files

Concurrent Compositions of
Data Structures,
Atomic Transactions

Lyfrile N

£_list

 f_fs_list
| ytile N
£_list

 f_fs_list

file_unused

£ £s_list !

List * query(FS* fs, File* file) {
lock(...) for (gq= file_in_use; ...)

Two-Phase Locking

Attach a lock to each piece of data

'D ,'D 'D

Two phase locking protocol:

 Well-locked: To perform a read or write, a
thread must hold the corresponding lock

* Two-phase: All lock acquisitions must precede
all lock releases

Theorem [Eswaran et al., 1976]: Well-locked, two-phase transactions are
serializable

Two Phase Locking

Decomposition Decomposition Instance

@

LJ LM
v

® R R
v v

v i-. o O “
¢ g * ™y ‘l ™y ' ™)'

@ L W1 | | W2) (W3 | [W4

Attach a lock to every edge
Two Phase Locking =2 Serialiazability We're done!

Problem 1: Can’t attach locks to container entries
Problem 2: Too many locks

Butler Lampson/David J. Wheeler: “Any problem in computer science can
be solved with another level of indirection.”

Two Phase Locking

Decomposition Decomposition Instance

Oz —
v

®
' |

Iy Cy

®<—
Ele

Attach a lock to every edge

Two Phase Locking =2 Serialiazability

Problem 1: Can’t attach locks to container entries

Problem 2: Too many locks

Y ' Y
,f| |\ 'UJ'S l
We’re done!

Lock Placements

Decomposition Decomposition Instance

Jé;

P~
e
i

r
ST TR A)
@ | Wwp | | Wwge | [Wz | [W4
. A b A L A N S

1. Attach locks to nodes
2. Use a lock placement 1) to map data (on edges)

to locks (on nodes)

Coarse-Grained Locking

Decomposition Decomposition Instance

v
TR TR A)
@ | Wy | Wwgq | | Wz | [W4 |
b A b A L A L A

Y = {uv — u, vw — u}

Finer-Grained Locking

Decomposition

|
@O
)

Y

@

")

@)

Decomposition Instance

TR TR A)
| w1 | | Wwge | | W3 | [W4
A A A A L A L oy

Y = {uv — u, vw — v}

Lock Placements: Domination

Locks must dominate the edges they protect

Decomposition Decomposition Instance

Lock Placements: Path-Closure

All edges on a path between an edge and its
lock must share the same lock

J

If 1)(vw) = u, then 1 (uv) = wu also.

Lock Ordering

Prevent deadlock via a topological order on locks

Queries and Deadlock

Query plans must acquire the correct locks in the correct order

t<u<v<w
1. acquire(t)

2. lookup(tv)

4 3.acquire(v)

4. scan(vw)

Tnuse

Example: find files on a particular filesystem

Deadlock and Aliasing

{ {

lock(a) lock(a)

lock(b) lock(b)

// do something // do something
unlock(b) unlock(b)
unlock(a) unlock(a)

} }

Decompositions and Aliasing

A decomposition is an
abstraction of the set of
potential aliases

 Example: there are exactly
two paths to any instance
of node w

Concurrent Synthesis (Autotuner)

Find optimal combination of

dst sTC

O

weight

dst

O O
weight weight
sre dst

dst

src

weight

Decomposition

Array TreeMap

HashMap
LinkedList

ConcurrentHashMap
ConcurrentSkipListMap

CopyOnWriteArrayList

Container
Data Structures

ReentrantLock

ReentrantReadWriteLock

Lock Placement

Lock Implementations

]] d |
PP
'] '] | |
UL

Lock Striping Factors

Based on Herlihy’s benchmark of concurrent maps

Concurrent Graph Benchmark
{src, dst, weight }

src, dst — weight

e Start with an empty graph

* Each thread performs 5 x 10° random
operations

* Distribution of operations a-b-c-d (a%
find successors, b% find predecessors, c%
insert edge, d% remove edge)

* Plot throughput with varying number of
threads

Results: 35-35-20-10

35% find successor, 35% find predecessor,
‘ 20% insert edge, 10% remove edge

6,000

v
('8
o
]
2
£ 4,000
s
2
<=
-

— = ConcurrentHashMap 2,000
.......... » = HashMap

(@] ‘ 0

weight

Number of Threads

=== ConcurrentHashMap
== =» HashMap

(Some) Related Projects

SETL

Relational synthesis: [Cohen & Campbell 1993],
[Batory & Thomas 1996], [Smaragdakis & Batory
1997], [Batory et al. 2000] [Manevich, 2012] ...

Two-phase locking and Predicate Locking
[Eswaran et al., 1976], Tree and DAG locking
protocols [Attiya et al., 2010], Domination
Locking [Golan-Gueta et al., 2011]

Lock Inference for Atomic Sections: [McCloskey et
al.,2006], [Hicks, 2006], [Emmi, 2007]

Summary

Programming with uniform relational
abstraction

— Increase the gap between data abstraction and
low level implementation

Comparable performance to manual code
Easier to evolve
Automatic data structure selection

Easier for program reasoning

Concurrent Libraries with Foresight
PLDI'13

Guy Gueta(TAU)
G. Ramalingam (MSR)
M. Sagiv (TAU)
E. Yahav (Technion)

Transactional Libraries with Foresight

Enforce atomicity of arbitrary sequences
The client declares intended operations
— foresight

The library utilizes the specification

— Synchronize between operations which do not
serialize with foresight

Methodology for creating libraries with foresights
— Maps

Foresight can be automatically inferred by
sequential static program analysis

ComputelfAbsent (single Map)

Global Lock ap=urs -%-Manual -4+-CHashMapV8

4000 -
3500 -
3000 -
2500 -

2000 -

operations/mllisecond

1500 -

1000 -

500 -

O I I I I

Threads 1 2 4 8 16

GossipRouter (multiple Maps)

1200 Global Lock ==0urs

5000 Messages per client
16 Clients

S 800 -

(@)

o

<

0

o

400 -

=

0

Threads

Summary

Methods for enforcing atomicity of sequences
of operations

Provably correct

Simplifies reasoning

— Sequential reasoning

— High level data structures & invariants

Is that efficient enough?
— Pessimistic concurrency
— Optimistic concurrency

