
Data Representation Synthesis
PLDI’2011*, ESOP’12, PLDI’12*

CACM’12

Peter Hawkins, Stanford University
Alex Aiken, Stanford University

Kathleen Fisher, DARPA
Martin Rinard, MIT
Mooly Sagiv, TAU

* Best Paper Awardhttp://theory.stanford.edu/~hawkinsp/

Background

• High level formalisms for static program
analysis
– Circular attribute grammars

– Horn clauses

• Interprocedural Analysis
– Context free reachability

• Implemented in SLAM/SDV

• Shape Analysis
– Low level pointer data structures

filesystem=1
s_list

s_files

filesystem=2
s_list

s_files

filesystems

file=14
f_list

f_fs_list

file=6
f_list

f_fs_list

file=2
f_list

f_fs_list

file=7
f_list

f_fs_list

file=5
f_list

f_fs_list

Composing Data Structures

Problem: Multiple Indexes

Access Patterns

• Find all mounted
filesystems

• Find cached files on
each filesystem

• Iterate over all used
or unused cached
files in Least-
Recently-Used order

filesystem=1
s_list

s_files

filesystem=2
s_list

s_files

filesystems

file=14
f_list

f_fs_list

file=6
f_list

f_fs_list

file=2
f_list

f_fs_list

file=7
f_list

f_fs_list

file=5
f_list

f_fs_list

file_in_use

file_unused

+Concurency

Disadvantages of linked shared data structures

• Error prone

• Hard to change

• Performance may depend on the machine and
workload

• Hard to reason about correctness

• Concurrency makes it harder
– Lock granularity

– Aliasing

Our thesis

• Very high level programs
– No pointers and shared data structures

– Easier programming

– Simpler reasoning

– Machine independent

• The compiler generates pointers and multiple
concurrent shared data structures

• Performance comparable to manually written
code

Our Approach

• Program with “database”
– States are tables
– Uniform relational operations

• Hide data structures from the program

– Functional dependencies express program invariants

• The compiler generates low level shared pointer
data structures with concurrent operations
– Correct by construction

• The programmer can tune efficiency
• Autotuning for a given workload

Conceptual Programming Model

shared database

query
…

insert

…
remove

insert

query
…
insert

…
remove

…

Relational Specification

• Program states as relations

– Columns correspond to properties

– Functional dependencies define global invariants

Atomic Operation meaning

r= empty r := {}

insert r s t if s r then r = r  {<s.t>}

query r S C The C of all the tuples in r
matching tuple

remove r s remove from r all the
tuples which match s

The High Level Idea

Concurrent Compositions of
Data Structures,
Atomic Transactions

Compiler

RelScala

Scala

Decomposition

query <inuse:T> {fs, file}

List * query(FS* fs, File* file) {
lock(fs) ; for (q= file_in_use; …)
….

Filesystem

• Three columns {fs, file, inuse}

• fs:int  file:int  inuse:Bool

• Functional dependencies

– {fs, file} { inuse}

fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

1 2 T

Filesystem (operations)

fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

query <inuse:T> {fs, file }=

[<fs:2, file:7>, <fs:1, file:6>]

Filesystem (operations)
fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

insert <fs:1, file:15> <inuse:T>

fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

1 15 T

Filesystem (operations)

remove <fs:1>

fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

1 15 T

fs file inuse

2 7 T

2 5 F

Directed Graph Data Structure

• Three columns {src, dst, weight}

• src  dst  weight

• Functional dependencies

– {src, dst} { weight}

• Operations

– query <src:1> {dst, weight}

– query <dst:5> {src, weight}

Plan

• Compiling into sequential code (PLDI’11)

• Adding concurrency (PLDI’12)

Mapping Relations into
Low Level Data Structures

• Many mappings exist

• How to combine several existing data
structures
– Support sharing

• Maintain the relational abstraction

• Reasonable performance

• Parametric mappings of relations into shared
combination of data structures
– Guaranteed correctness

The RelC Compiler
fs fileinuse
{fs, file}  {inuse}

foreach <fs, file, inuse> filesystems s.t. fs=
5

do …

RelC C++

inuse

fs, file

fs inuse

file

Relational Specification

Graph decomposition

Decomposing Relations

• Represents subrelations using container data
structures

• A directed acyclic graph(DAG)

– Each node is a sub-relation

– The root represents the whole relation

– Edges map columns into the remaining sub-
relations

– Shared node=shared representation

Decomposing Relations into Functions
Currying

fs fileinuse
{fs, file}  {inuse}fs fileinuse

fs filefileinuse

inuse

group_by {fs, file}

group-by {fs} group-by {inuse}

group-by {file}

FS  (FILEINUSE)

FILEINUSE

INUSE  FS  FILE

FS  FILE INUSE

FS  (FILEINUSE) INUSE  (FS  FILE INUSE)

fs

file fs, file

inuse

Filesystem Example

fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

inuse

fs, file

fs inuse

file

file inuse

14 F

6 T

2 F

file inuse

7 T

5 F

inuse

F

inuse

T

inuse

F

inuse

T

inuse

F

fs:1 fs:2

file:14 file:6 file:2 file:7 file:5

{fs, file, inuse}

Memory Decomposition(Left)

inuse

fs, file

fs inuse

file

inuse:F inuse:T inuse:F Inuse:T Inuse:F

fs:1 fs:2

file:14 file:6 file:2 file:7 file:5

Filesystem Example
fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

fs file

2 7

1 6

fs file

1 14

2 5

1 2

fs:2
file:7

inuse

T

inuse

T

inuse

F

inuse

F

inuse

F

fs:1
file:6

fs:1
file:14

fs:2
file:5

fs:1
file:2

inuse:T inuse:F

inuse

fs, file

fs inuse

file

{fs, file} { inuse}

Memory Decomposition(Right)

fs:2
file:7

fs:1
file:6

fs:1
file:14

fs:2
file:5

fs:1
file:2

inuse:T inuse:F

inuse:T inuse:T inuse:F Inuse:F Inuse:F

inuse

fs, file

fs inuse

file

{fs, file} { inuse}

Decomposition Instance

fs:1
file:14

fs:1
file:6

fs:1
file:2

fs:2
file:7

fs:2
file:5

inuse:T inuse:F

inuse:F inuse:T inuse:F Inuse:T Inuse:F

fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

fs:1

file:14 file:6 file:2 file:7

file:5

fs:2

fs  file  inuse

{fs, file} { inuse} inuse

fs, file

fs inuse

file

Decomposition Instance

fs:1
file:14

fs:1
file:6

fs:1
file:2

fs:2
file:7

fs:2
file:5

inuse:T inuse:F

inuse:F inuse:T inuse:F Inuse:T Inuse:F

fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

fs:1

file:14 file:6 file:2 file:7

file:5

fs:2

fs  file  inuse

{fs, file} { inuse}

fs  file  inuse

{fs, file} { inuse} inuse

fs, file

fs inuse

file
s_list

f_fs_list f_fs_list f_fs_list

f_list f_list

f_list

Decomposing Relations Formally(PLDI’11)

fs fileinuse
{fs, file}  {inuse}

inuse

fs, file

x

y z

w

fs inuse

file

let w: {fs, file,inuse}  {inuse} = {inuse} in
let y : {fs}  {file, inuse} = {file} list {w} in
let z : {inuse }  {fs, file, inuse} = {fs,file} list {w} in
let x: {}  {fs, file, inuse} = {fs} clist {y} 

{inuse} array{z}

Memory State

fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

fs  file  inuse

{fs, file} { inuse} inuse

fs, file

fs inuse

file

filesystems

filesystem=1
s_list

s_files

filesystem=2
s_list

s_files

file=14
f_list

f_fs_list

file=6
f_list

f_fs_list

file=2
f_list

f_fs_list

file=7
f_list

f_fs_list

file=5
f_list

f_fs_list
file_in_use

file_unused

Adequacy

A decomposition is adequate if it can represent every possible relation
matching a relational specification

Adequacy

enforces sufficient conditions for adequacy

Not every decomposition is a good representation of a
relation

Adequacy of Decompositions

• All columns are represented

• Nodes are consistent with functional
dependencies

– Columns bound to paths leading to a common
node must functionally determine each other

Respect Functional Dependencies

file,fs

inuse

 {file, fs}  {inuse}

Adequacy and Sharing

fs, file

fs inuse

file

inuse

Columns bound on a path to an object x must functionally
determine columns bound on any other path to x

 {fs, file}{inuse, fs, file}

Adequacy and Sharing

fs

fs inuse

file

inuse

Columns bound on a path to an object x must functionally
determine columns bound on any other path to x

 {fs, file}  {inuse, fs}

The RelC Compiler PLDI’11

Sequential Compositions of
Data Structures

Compiler

ReLC

C++

inuse

fs, file

fs inuse

file

Query Plans

foreach <fs, file, inuse> filesystems
if inuse=T do …

fs, file

fs inuse

file

inuse

Cost proportional to the number of files

Query Plans

foreach <fs, file, inuse> filesystems
if inuse=T do …

fs, file

fs inuse

file

inuse

Cost proportional to the number of files in use

Removal and graph cuts
remove <fs:1>

fs file inuse

1 14 F

2 7 T

2 5 F

1 6 T

1 2 F

filesystems fs:2
s_list

s_files

file:7
f_list

f_fs_list

file:5
f_list

f_fs_list

inuse:T

inuse:F

fs

file

inuse

Abstraction Theorem

• If the programmer obeys the relational
specification and the decomposition is adequate
and if the individual containers are correct

• Then the generated low-level code maintains the
relational abstraction

relation relation
remove <fs:1>

low-level
state

low-level
state

low level code
remove <fs:1>

 

Autotuner

• Given a fixed set of primitive types

– list, circular list, doubly-linked list, array, map, …

• A workload

• Exhaustively enumerate all the adequate
decompositions up to certain size

• The compiler can automatically pick the best
performing representation for the workload

Directed Graph Example (DFS)
• Columns

src  dst  weight
• Functional Dependencies

– {src, dst}  {weight}

• Primitive data types
– map, list

…

src

dst

weight

m
ap

list

src

dst

dst

src

weight

dst

src

weight
m

ap
list

dst

weight

src

weight

dst

listsrc
list

Synthesizing Concurrent
Programs

PLDI’12

Multiple ADTs

Invariant: Every element that added to eden is either in
eden or in longterm

public void put(K k, V v) {
if (this.eden.size() >= size) {

this.longterm.putAll(this.eden);
this.eden.clear();

}
this.eden.put(k, v);

}

OOPSLA’11 Shacham

• Search for all public domain collection operations
methods with at least two operations

• Used simple static analysis to extract composed
operations
– Two or more API calls

• Extracted 112 composed operations from 55
applications
– Apache Tomcat, Cassandra, MyFaces – Trinidad, …

• Check Linearizability of all public domain
composed operations

47%
Linearizable

38%
Non

Linearizable

15%
Open Non

Linearizable

Motivation: OOPSLA’11 Shacham

Relational Specification

Atomic operation meaning

r= empty r := {}

insert r s t if s r then r := r  {<s.t>}

query r S C The C of all the tuples in r
matching tuple

remove r s remove from r all the tuples
which match s

• Program states as relations

– Columns correspond to properties

– Functional dependencies define global invariants

The High Level Idea

Concurrent Compositions of
Data Structures,
Atomic Transactions

Compiler

RelScala

Scala

Concurrent Decomposition

ConcurrentHashMap

HashMap

query <inuse:T> {fs, file}

List * query(FS* fs, File* file) {
lock(…) for (q= file_in_use; …)
….

Two-Phase Locking

Two phase locking protocol:

• Well-locked: To perform a read or write, a
thread must hold the corresponding lock

• Two-phase: All lock acquisitions must precede
all lock releases

Attach a lock to each piece of data

Theorem [Eswaran et al., 1976]: Well-locked, two-phase transactions are
serializable

Two Phase Locking

Attach a lock to every edge

Problem 2: Too many locks

Decomposition Decomposition Instance

We’re done!

Problem 1: Can’t attach locks to container entries

Two Phase Locking  Serialiazability

Butler Lampson/David J. Wheeler: “Any problem in computer science can

be solved with another level of indirection.”

Two Phase Locking

Attach a lock to every edge

Problem 2: Too many locks

Decomposition Decomposition Instance

We’re done!

Problem 1: Can’t attach locks to container entries

Two Phase Locking  Serialiazability

Lock Placements

1. Attach locks to nodes

Decomposition Decomposition Instance

Coarse-Grained Locking

Decomposition Decomposition Instance

Finer-Grained Locking
Decomposition Decomposition Instance

Lock Placements: Domination

Decomposition Decomposition Instance

Locks must dominate the edges they protect

Lock Placements: Path-Closure
All edges on a path between an edge and its
lock must share the same lock

Lock Ordering

Prevent deadlock via a topological order on locks

Queries and Deadlock

2. lookup(tv)

1. acquire(t)

3. acquire(v)

4. scan(vw)

Query plans must acquire the correct locks in the correct order

Example: find files on a particular filesystem

Deadlock and Aliasing

L1

L2

{
lock(a)
lock(b)
// do something
unlock(b)
unlock(a)

}

{
lock(a)
lock(b)
// do something
unlock(b)
unlock(a)

}

a

a

b

b



Decompositions and Aliasing

• A decomposition is an
abstraction of the set of
potential aliases

• Example: there are exactly
two paths to any instance
of node w

Concurrent Synthesis (Autotuner)
Find optimal combination of

Decomposition
Container
Data Structures

ConcurrentHashMap

ConcurrentSkipListMap

CopyOnWriteArrayList

Array

HashMap

TreeMap

LinkedList

Lock Implementations

ReentrantReadWriteLock

ReentrantLock

Lock Striping Factors

Lock Placement

Concurrent Graph Benchmark

• Start with an empty graph

• Each thread performs 5 x 105 random
operations

• Distribution of operations a-b-c-d (a%
find successors, b% find predecessors, c%
insert edge, d% remove edge)

• Plot throughput with varying number of
threads

Based on Herlihy’s benchmark of concurrent maps

Black
= handwritten,
isomorphic to
blue

= ConcurrentHashMap

= HashMap

...

Results: 35-35-20-10
35% find successor, 35% find predecessor,
20% insert edge, 10% remove edge

ConcurrentHashMap

HashMap

(Some) Related Projects

• SETL

• Relational synthesis: [Cohen & Campbell 1993],
[Batory & Thomas 1996], [Smaragdakis & Batory
1997], [Batory et al. 2000] [Manevich, 2012] …

• Two-phase locking and Predicate Locking
[Eswaran et al., 1976], Tree and DAG locking
protocols [Attiya et al., 2010], Domination
Locking [Golan-Gueta et al., 2011]

• Lock Inference for Atomic Sections: [McCloskey et
al.,2006], [Hicks, 2006], [Emmi, 2007]

Summary

• Programming with uniform relational
abstraction

– Increase the gap between data abstraction and
low level implementation

• Comparable performance to manual code

• Easier to evolve

• Automatic data structure selection

• Easier for program reasoning

Concurrent Libraries with Foresight
PLDI’13

Guy Gueta(TAU)
G. Ramalingam (MSR)

M. Sagiv (TAU)
E. Yahav (Technion)

Transactional Libraries with Foresight

• Enforce atomicity of arbitrary sequences

• The client declares intended operations
– foresight

• The library utilizes the specification
– Synchronize between operations which do not

serialize with foresight

• Methodology for creating libraries with foresights
– Maps

• Foresight can be automatically inferred by
sequential static program analysis

ComputeIfAbsent (single Map)

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 16

o
p

e
ra

ti
o

n
s/

m
lli

se
co

n
d

Threads

Global Lock Ours Manual CHashMapV8

0

400

800

1200

1 2 4 8 16

M
e

ss
ag

e
s/

Se
co

n
d

Threads

Global Lock Ours

5000 Messages per client
16 Clients

GossipRouter (multiple Maps)

Summary

• Methods for enforcing atomicity of sequences
of operations

• Provably correct

• Simplifies reasoning
– Sequential reasoning

– High level data structures & invariants

• Is that efficient enough?
– Pessimistic concurrency

– Optimistic concurrency

