Distributed Model:

Petri Nets
Introduction

• Introduced by Carl Adam Petri in 1962.
• A diagrammatic tool to model concurrency and synchronization in distributed systems.
Example: EFTPOS FSA

(Electronic Fund Transfer Point of Sale)
Example: EFTPOS Petri net
EFTPOS System

• Scenario 1: Normal
 – Enters all 4 digits and press OK.

• Scenario 2: Exceptional
 – Enters only 3 digits and press OK.
Example: EFTPOS System (Token Games)
A Petri Net Specification ...

• consists of: *places* (circles), *transitions* (rectangles) and *arcs* (arrows):
 – *Places* represent possible states of the system.
 – *Transitions* are events or actions which cause the change of state.
 – Every *arc* simply connects a place with a transition or a transition with a place.
A Change of State ...

• is denoted by a movement of token(s) (black dots) from place(s) to place(s); and is caused by the firing of a transition.

• The firing represents an occurrence of the event or an action taken.

• The firing is subject to the input conditions, denoted by token availability.
A Change of State

• A transition is *firable* or *enabled* when there are sufficient tokens in its input places.

• After firing, tokens will be transferred from the input places (old state) to the output places, denoting the new state.

• Note that the EFTPOS example is a Petri net representation of a finite state machine (FSM).
Example: Vending Machine

• The machine dispenses two kinds of snack bars – 20c and 15c.
• Only two types of coins can be used – 10c coins and 5c coins.
• The machine does not return any change.
Example: Vending Machine (STD of an FSM)

- 0 cent
 - Deposit 5c
 - Deposit 10c

- 5 cents
 - Deposit 5c
 - Deposit 10c

- 10 cents
 - Deposit 5c
 - Deposit 10c

- 15 cents
 - Deposit 5c

- 20 cents
 - Deposit 5c

Take 15c snack bar
Take 20c snack bar
Example: Vending Machine (A Petri net)

- Take 15c bar
- Deposit 5c
- Deposit 10c
- Deposit 15c
- Take 20c bar
- Deposit 5c
- Deposit 10c
- Deposit 20c
Example: Vending Machine (3 Scenarios)

• Scenario 1:
 – Deposit 5c, deposit 5c, deposit 5c, deposit 5c, take 20c snack bar.

• Scenario 2:
 – Deposit 10c, deposit 5c, take 15c snack bar.

• Scenario 3:
 – Deposit 5c, deposit 10c, deposit 5c, take 20c snack bar.
Example: Vending Machine (Token Games)
Multiple Local States

• In the real world, events happen at the same time.
• A system may have many local states to form a global state.
• There is a need to model concurrency and synchronization.
Example: In a Restaurant (A Petri Net)

- **Waiter**
 - Waiter free

- **Customer 1**
 - Take order
 - Wait
 - Serve food
 - Eating

- **Customer 2**
 - Take order
 - Order taken
 - Tell kitchen
 - Serve food
 - Eating
Example: In a Restaurant (Two Scenarios)

• Scenario 1:
 – Waiter takes order from customer 1; serves customer 1; takes order from customer 2; serves customer 2.

• Scenario 2:
 – Waiter takes order from customer 1; takes order from customer 2; serves customer 2; serves customer 1.
Example: In a Restaurant (Scenario 1)
Example: In a Restaurant (Scenario 2)

Customer 1

Waiter

Free

Take order

Serve food

Eating

Customer 2

Take order

Tell kitchen

Serve food

Eating
Transition (firing) rule

• A transition t is enabled if each input place p has at least $w(p,t)$ tokens
• An enabled transition may or may not fire
• A firing on an enabled transition t removes $w(p,t)$ from each input place p, and adds $w(t,p')$ to each output place p'
Firing example

\[2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \]
Firing example

$2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}$
Some definitions

- **source transition**: no inputs
- **sink transition**: no outputs
- **self-loop**: a pair \((p,t)\) s.t. \(p\) is both an input and an output of \(t\)
- **pure PN**: no self-loops
- **ordinary PN**: all arc weights are 1's
- **infinite capacity net**: places can accommodate an unlimited number of tokens
- **finite capacity net**: each place \(p\) has a maximum capacity \(K(p)\)
- **strict transition rule**: after firing, each output place can't have more than \(K(p)\) tokens
- **Theorem**: every pure finite-capacity net can be transformed into an equivalent infinite-capacity net
Modeling FSMs

vend 15¢ candy

vend 20¢ candy
Modeling FSMs

state machines: each transition has exactly one input and one output

vend 15¢ candy

vend 20¢ candy
Modeling FSMS

conflict, decision or choice
Net Structures

• A sequence of events/actions:

• Concurrent executions:
Net Structures

• Non-deterministic events - conflict, choice or decision: A choice of either e1, e2 ... or e3, e4 ...

```
[Net structure diagram with nodes e1, e2, e3, e4 connected by arrows and decision points]
```
Net Structures

• Synchronization
Net Structures

- Synchronization and Concurrency
Modeling concurrency

marked graph: each place has exactly one incoming arc and one outgoing arc.
Modeling concurrency
Modeling dataflow computation

\[x = \frac{a+b}{a-b} \]
Modeling communication protocols
Modeling synchronization control
Another Example

• A producer-consumer system, consist of one producer, two consumers and one storage buffer with the following conditions:
 • The storage buffer may contain at most 5 items.
 • The producer sends 3 items in each production.
 • At most one consumer is able to access the storage buffer at one time.
 • Each consumer removes two items when accessing the storage buffer.
A Producer-Consumer System

Producer

Consumers
A Producer-Consumer Example

• In this Petri net, every place has a capacity and every arc has a weight.

• This allows multiple tokens to reside in a place to model more complex behaviour.
Behavioural Properties

• Reachability
 • “Can we reach one particular state from another?”

• Boundedness
 • “Will a storage place overflow?”

• Liveness
 • “Will the system die in a particular state?”
Recalling the Vending Machine (Token Game)

- Take 15c bar
- Deposit 10c
- Deposit 5c
- Deposit 10c
- Take 20c bar
- Deposit 5c
- Deposit 10c
A marking is a state ...
Reachability

Initial marking: M0

M0 = (1,0,0,0,0)
M1 = (0,1,0,0,0)
M2 = (0,0,1,0,0)
M3 = (0,0,0,1,0)
M4 = (0,0,0,0,1)
Reachability

A firing or occurrence sequence:

M0 $\xrightarrow{t_1}$ M1 $\xrightarrow{t_3}$ M2 $\xrightarrow{t_5}$ M3 $\xrightarrow{t_8}$ M0 $\xrightarrow{t_2}$ M2 $\xrightarrow{t_6}$ M4

• “M2 is *reachable* from M1 and M4 is *reachable* from M0.”

• In fact, in the vending machine example, all markings are reachable from every marking.
Boundedness

• A Petri net is said to be \(k\text{-bounded} \) or simply \(bounded \) if the number of tokens in each place does not exceed a finite number \(k \) for any marking reachable from \(M0 \).

• The Petri net for vending machine is 1-bounded.

• A 1-bounded Petri net is also \(safe \).
Liveness

• A Petri net with initial marking M0 is *live* if, no matter what marking has been reached from M0, it is possible to ultimately fire *any* transition by progressing through some further firing sequence.

• A live Petri net guarantees *deadlock-free* operation, no matter what firing sequence is chosen.
Liveness

- The vending machine is live and the producer-consumer system is also live.
- A transition is *dead* if it can never be fired in any firing sequence.
An Example

A bounded but non-live Petri net

\[
M_0 = (1,0,0,1) \\
M_1 = (0,1,0,1) \\
M_2 = (0,0,1,0) \\
M_3 = (0,0,0,1)
\]

A bounded but non-live Petri net
Another Example

An unbounded but live Petri net

\[
\begin{align*}
M_0 &= (1, 0, 0, 0, 0) \\
M_1 &= (0, 1, 1, 0, 0) \\
M_2 &= (0, 0, 0, 1, 1) \\
M_3 &= (1, 1, 0, 0, 0) \\
M_4 &= (0, 2, 1, 0, 0)
\end{align*}
\]
Analysis Methods

• Reachability Analysis:
 • Reachability or coverability tree.
 • State explosion problem.

• Incidence Matrix and State Equations.

• Structural Analysis
 • Based on net structures.
Behavioral properties (1)

- Properties that depend on the initial marking
- Reachability
 - \(M_n \) is reachable from \(M_0 \) if exists a sequence of firings that transform \(M_0 \) into \(M_n \)
 - reachability is decidable, but exponential
- Boundedness
 - a PN is bounded if the number of tokens in each place doesn't exceed a finite number \(k \) for any marking reachable from \(M_0 \)
 - a PN is safe if it is 1-bounded
Behavioral properties (2)

• Liveness
 – a PN is live if, no matter what marking has been reached, it is possible to fire any transition with an appropriate firing sequence
 – equivalent to deadlock-free
 – strong property, different levels of liveness are defined (L0=dead, L1, L2, L3 and L4=live)

• Reversibility
 – a PN is reversible if, for each marking M reachable from M0, M0 is reachable from M
 – relaxed condition: a marking M' is a home state if, for each marking M reachable from M0, M' is reachable from M
Behavioral properties (3)

• Coverability
 – a marking is coverable if exists M' reachable from M0 s.t. M'(p)≥M(p) for all places p

• Persistence
 – a PN is persistent if, for any two enabled transitions, the firing of one of them will not disable the other
 – then, once a transition is enabled, it remains enabled until it is fired
 – all marked graphs are persistent
 – a safe persistent PN can be transformed into a marked graph
Analysis methods (1)

• Coverability tree
 – tree representation of all possible markings
 • root = M0
 • nodes = markings reachable from M0
 • arcs = transition firings
 – if net is unbounded, then tree is kept finite by introducing the symbol ω
 – Properties
 • a PN is bounded iff ω doesn't appear in any node
 • a PN is safe iff only 0's and 1's appear in nodes
 • a transition is dead iff it doesn't appear in any arc
 • if M is reachable form M0, then exists a node M' that covers M
Coverability tree example

\[M_0 = (100) \]
Coverability tree example

M₀=(100)
M₁=(001)
“dead end”
Coverability tree example

\[M_0 = (100) \]

\[M_1 = (001) \]

"dead end"

\[M_0 = (100) \]

\[M_3 = (1_0 0) \]
Coverability tree example

\[M_0 = (100) \]
\[M_1 = (001) \]
\["dead end" \]
\[M_3 = (1\omega0) \]
\[M_4 = (0\omega1) \]
Coverability tree example

\[M_0 = (100) \]
\[M_1 = (001) \]
\[M_3 = (1\omega 0) \]

M1=(001) "dead end"

M4=(0\omega 1)

M3=(1\omega 0) "old"
Coverability tree example

- \(t_0 \):
 - \(M_0 = (100) \)
 - \(\text{"dead end"} \)

- \(t_1 \):
 - \(M_1 = (010) \)
 - \(\text{"old"} \)

- \(t_2 \):
 - \(M_3 = (1\omega0) \)
 - \(\text{"old"} \)

- \(t_3 \):
 - \(M_4 = (0\omega1) \)
 - \(\text{"old"} \)

- \(t_4 \):
 - \(M_5 = (0\omega1) \)
 - \(\text{"old"} \)

- \(t_5 \):
 - \(M_6 = (1\omega0) \)
 - \(\text{"old"} \)
Coverability tree example

coverability graph

coverability tree

- **M0=(100)**
- **M1=(001) “dead end”**
- **M3=(1\(\omega\)0) “old”**
- **M4=(0\(\omega\)1) “old”**
- **M5=(0\(\omega\)1) “old”**
- **M6=(1\(\omega\)0) “old”**
Subclasses of Petri Nets (1)

- **Ordinary PNs**
 - all arc weights are 1's
 - same modeling power as general PN, more convenient for analysis but less efficient

- **State machine**
 - each transition has exactly one input place and exactly one output place

- **Marked graph**
 - each place has exactly one input transition and exactly one output transition
Subclasses of Petri Nets (2)

• Free-choice
 – every outgoing arc from a place is either unique or is a unique incoming arc to a transition

• Extended free-choice
 – if two places have some common output transition, then they have all their output transitions in common

• Asymmetric choice (or simple)
 – if two places have some common output transition, then one of them has all the output transitions of the other (and possibly more)
Extensions

• High-level nets
 • Tokens have “colors”, holding (complex) information.

• Timed nets
 • Time delays associated with transitions and/or places.
 • Fixed delays or interval delays.
 • Stochastic Petri nets: exponentially distributed random variables as delays.
Thanks

- Chris Ling
- Gabriel Eirea