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In a recent elegant paper, Chvátal and Reed [2] consider the satisfiability of a conjunction of

random k-clauses. A random k-clause is the disjunction y1∨. . .∨yk where the yi are chosen uniformly

and independently from atoms x1, . . . , xn and their negations x1, . . . , xn. They set C = C1∧. . .∧Cm
where each Ci is an independently chosen random k-clause. Their most interesting result is with

k large and n approaching infinity. They show that if n < c2k

k n then almost surely C is satisfiable

while if n > c′2kn then almost surely C is not satisfiable. Here c, c′ are absolute constants and

almost surely refers to asymptotics in n for any fixed sufficiently large k.

We consider here the analogous problem for 2-colorability of random families. Let A1, . . . , Am be

uniformly and independently chosen k-sets from the family of k-element subsets of Ω = {1, . . . , n}.
Set F = {A1, . . . , Am}. F is 2-colorable (the term “has Property B” is equivalent) if there exists

χ : Ω→ {Red,Blue} so that no A ∈ F is monochromatic. Note the analogy. True/False correspond

to Red/Blue. Truth evaluation corresponds to 2-Coloring. Ci = yi1 ∨ . . . ∨ yik is satisfied if some

yij ← True. Ai = {ai1, . . . , aik} is nonmonochromatic if some aij ← Red and some aij′ ← Blue.

C is satisfied if all Ci are; F is 2-colored if all Ai are nonmonochromatic.

Surprisingly, we have not been able to duplicate the Chvátal-Reed result. Again we think of

k large and n → ∞. If m > c′2kn we show that F is almost surely not 2-colorable. In the other

direction we only have that if m < c2k

k2n then F is almost surely 2-colorable. The c, c′ are again

explicit positive absolute constants, though not the same constants as in the Chvátal-Reed case.

The Upper Bound. The proof resembles the one in [3]. Suppose m ∼ c′2kn with c′ > ln 2
2 . There

are 2n potential colorings of Ω = {1, . . . , n}. Fix a coloring χ with a Red and b = n−a Blue points.

The probability of a random k-set A being monochromatic is then(a
k

)
+
(b
k

)(n
k

) ≥
2
(n/2
k

)(n
k

) ∼ 21−k
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The probability that none of the A1, . . . , Am are monochromatic is then

(1− 21−k − o(1))m = o(2−n)

by our choice of m. The expected number of valid 2-colorings is then o(1) and so almost surely

there aren’t any of them. 2

The Lower Bound. Here we use the Lovász Local Lemma proved in [4] (see also, e.g., [1], Chapter

5), though it requires some interesting preparation. Suppose m ∼ c2k

k2n with c < 1
4e . (Note that a

set Ai on average intersects c2k other sets. If every set had that number of intersections we could

directly apply the Lovász Local Lemma even with c < 1
2e .) Say ε > 0 has c(1 + ε) < 1

4e . Fix δ with

0 < δ < ε. Call x ∈ Ω special if deg(x) > c2k

k (1+δ), where here deg(x) is the number of A ∈ F with

x ∈ A. Define deg+(x) to be deg(x) if x is special, otherwise zero. We know deg(x) has Binomial

distribution B[c2k

k n,
k
n ], asymptotically Poisson with mean µ = c2k. Large Deviation bounds (see,

e.g., [1], Appendix A), give E[deg+(x)] = o(1), asymptotics in k. (In fact, that expectation is

hyperexponentially small in k). Pick k large enough (as a a function of c and δ only) so that

E[deg+(x)] ≤ 1
10 . Set X =

∑
x∈Ω deg

+(x) so that by Linearity of Expectation E[X] ≤ 1
10n. For

k fixed and n → ∞ one can show V ar[X] = O(n) = o(n2) as, basically, the deg+(x) have small,

indeed negative, correlation. By Chebyschev’s Inequality X ≤ 1
8n almost surely. Call A special if it

contains any special x. The number of special A is bounded by X so almost surely there are fewer

than 1
8n special A.

Now we claim that almost surely we can select xi, yi ∈ Ai for each special Ai ∈ F so that all

elements selected are distinct. By Hall’s Theorem it suffices to show that

|A1 ∪ . . . ∪Al| ≥ 2l

for every subfamily A1, . . . , Al of special sets. But then it suffices to show the above holds for any

A1, . . . , Al ∈ F with 1 ≤ l ≤ 1
8n. The probability of this failing is bounded by

n/8∑
l=1

(
m

l

)(
n

2l − 1

)((2l−1
k

)(n
k

) )l

as we may fix A1, . . . , Al ∈ F , T ⊂ Ω with |T | = 2l−1 and then the probability of A1∪ . . .∪Al ⊆ T
is simply the l-th power of the probability that each Ai ⊆ T which is precisely the expression in

parenthesis. We replace 2l − 1 by 2l for convenience. Now we apply standard bounds(
a

b

)
≤
(
ae

b

)b
and

(2l
k

)(n
k

) ≤ (2l
n

)k

2



so that the above sum is at most

n/8∑
l=1

(
me

l

)l (ne
2l

)2l (2l
n

)lk

We select k large enough so that mn2e3

4 < 2k−6n3. Then the sum is at most

n/8∑
l=1

[(
4l
n

)k−3
]l

which is clearly o(1).

Now consider an F = {A1, . . . , Am} with this property and fix the xi, yi ∈ Ai for special

Ai. Consider a random coloring of Ω in which xi, yi are paired: χ(xi) is chosen Red or Blue

with probability .5 and then χ(yi) is set equal to the other color. The remaining z ∈ Ω are

independently colored Red or Blue with probability .5. In this probability space special Ai are

never monochromatic. For Ai nonspecial let Bi be the event that Ai is monochromatic. Then

either Pr[Bi] = 0 (if Ai happens to contain a pair xj , yj) or Pr[Bi] = 21−k. Define a dependency

graph on these Bi. Bi, Bj are dependent if either Ai∩Aj 6= ∅ or there is a pair xk, yk with xk ∈ Bi,
yk ∈ Bj . Ai has k elements and so at most 2k elements and members of pairs of elements. No

element can be in more than c2k

k (1 + δ) nonspecial sets as otherwise those sets would be special.

Thus the maximal degree D of the dependency graph and the maximal probability p of the Bi
satisfy

D + 1 ≤ (2k)c
2k

k
(1 + δ) = 2c(1 + δ)2k and p ≤ 21−k.

As

ep(D + 1) ≤ 22−kce(1 + δ)2k <
1 + δ

1 + ε
< 1

the Lovász Local Lemma gives ∧Bi 6= ∅, hence there is a two-coloring in the probability space for

which no A ∈ F is monochromatic. 2

Where lies the truth? As with the random clause situation we do not have a concentration

result. Analogous to it we conjecture that for each k there exists a ck so that for any ε > 0 if

m > ckn(1 + ε) then almost surely F is not 2-colorable while if m < ckn(1− ε) then almost surely

F is 2-colorable. Even without this we can define c−k as the supremum of those c so that if m ≤ cn
then almost surely F is 2-colorable and define c+

k as the infimum of those c so that if m ≥ cn then

almost surely F is not 2-colorable. Our results give

Ω(
2k

k2
) = c−k ≤ c

+
k = O(2k)
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The correct order of magnitude remains elusive, though it seems plausible to suspect that c−k =

c+
k = Θ(2k).

Working by analogy to the Chvátal-Reed result we offer a randomized algorithm and a conjecture

which, if true, would give c−k = Ω(2k

k ).

ALGORITHM CR

Input: Sets A1, . . . , Am ⊆ Ω = {1, . . . , n}, all of size k.

Output: Either a 2-coloring χ of Ω with no Ai monochromatic or failure.

Description: The algorithm has n = |Ω| rounds. In each round one x ∈ Ω is colored. At each round

the algorithm does the following.

(0) If some A ∈ F is already monochromatic return failure.

(1) If not (0), but some A ∈ F has k−1 points of one color, say Red, and its last point x uncolored

then the algorithm colors x the “other” color, Blue. If there are several such A the algorithm selects

one at random and colors its x accordingly. Note: if the x so colored lies in one A that is otherwise

Red and one that is otherwise Blue then this will lead to (0) in the next round.

(2) If not (0) and not (1) but some A ∈ F has k− 2 points of one color, say Red, and its two other

points x, y uncolored then the algorithm selects x or y randomly and colors it in the “other” color

Blue. If there are several such A it first picks one such A at random and then acts as above. Note:

if the x so colored is in two A, one nearly Red and the other nearly Blue, this leads to (1) in the

next round.

(3) If not (0), not (1) and not (2) then pick randomly an uncolored point x ∈ Ω and color it

randomly.

It is not difficult to see that this algorithm runs in polynomial time. Indeed, with the right data

structure it runs in linear time in n for fixed c, k. The question remains: how often does it lead to

failure?

Conjecture: There exists c > 0 and k0 so that for k > k0 the following holds: For m ∼ c2k

k n and for

F = {A1, . . . , Am} with Ai chosen uniformly and independently from the k-sets of Ω = {1, . . . , n}
the algorithm CR almost surely produces a coloring χ of Ω with no A ∈ F monochromatic.
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