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Abstract

While the maximin strategy has become the standard, and most agreed-upon solution for

decision-making in adversarial settings, as discussed in game theory, computer science and other

disciplines, its power arises from the use of mixed strategies, a.k.a. probabilistic algorithms. Nev-

ertheless, in adversarial settings we face the risk of information leakage about the actual strategy

instantiation. Hence, real robust algorithms should take information leakage into account. To

address this fundamental issue, we introduce the study of adversarial leakage in games. We

consider two models of leakage. In both of them the adversary is able to learn the value of b

binary predicates about the strategy instantiation. In one of the models these predicates are

selected after the decision-maker announces its probabilistic algorithm and in the other one they

are decided in advance. We give tight results about the effects of adversarial leakage in general

zero-sum games with binary payoffs as a function of the level of leakage captured by b in both

models. We also compare the power of adversarial leakage in the two models and the robustness

of the original maximin strategies of games to adversarial leakage. Finally, we study the com-

putation of optimal strategies for adversarial leakage models. Together, our study introduces a

new framework for robust decision-making, and provides rigorous fundamental understanding

of its properties.
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1 Introduction

Decision-Making lies in the foundations of fields such as Economics, Operations Research, and

Artificial Intelligence. The question of what should be the action to be taken by a decision-

maker when facing an uncertain environment, potentially consisting of other decision makers, is

a fundamental problem which led to a wide variety of models and solutions. The only type of

situations for which this question got an agreed-upon answer is in the context of two-player zero-

sum games. This setting can model any situation in which a decision-maker aims at maximizing his

guaranteed payoff. When mixed strategies are allowed, such desired behavior, termed an agent’s

maximin (or safety level) strategy, leads to a well defined expected payoff (known as the value of

the game). Moreover, when presented explicitly in a matrix form, the computation of a maximin

strategy is polynomial (by solving a linear program). Various equilibrium concepts have been

considered in the game-theoretic literature, but none of them provides a prescriptive advice to a

decision-maker which will be as acceptable as the maximin strategy solution in adversarial settings.

Since the introduction of the study of two-person zero-sum games by von Neumann and Morgenstern

[17], maximin strategies have received very little criticism (see Aumann and Maschler [5] for an

exception). Moreover, the safety level strategy has been advocated for some non zero-sum settings

as well (see Tennenholtz [15], following observations by Aumann [4]).

Much of the power of a maximin strategy is associated with the use of mixed strategies, a.k.a.

randomized algorithms. In such algorithms the randomization phase is assumed to be done in

a private manner by the decision-maker, and no information about the instantiation selected in

that phase is assumed to be revealed. In reality, however, nothing is really private; for example,

competitors will always strive to obtain the private actions of a business, possibly by means of

industrial espionage [12]; hence, information leakage should be considered. As a result, it may be

of interest to study the effects of adversarial leakage, where a limited amount of information on

an agent’s instantiation of its mixed strategy may leak in an adversarial manner. We believe that

only by considering this situation, it will be possible to construct robust strategies when acting in

an adversarial setting.

Information leakage appeared in game theory in the context of conditioning a player’s strategy

about the other player’s strategy [16, 10]; however that work did not consider the leakage of mixed

strategy instantiations nor its effects on designing robust algorithms in adversarial settings taking

information leakage into account. Other papers whose focus is related to information leakage

studied purchasing noisy information [14], partial exposure in games with many players [6], and

spies in matrix games [13].

Our model of adversarial leakage is general. We consider a two-player zero-sum game in strategic

form (a.k.a. matrix form), where the MAX player is our decision-maker and the MIN player is the

adversary. Both MAX and MIN have a set of (pure) strategies they can choose from. MAX chooses

a mixed strategy, that is, a distribution vector over its pure strategies. MIN may base its action on
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the value of b binary predicates defined on MAX’ pure strategies; each such predicate is a Boolean

formula on the set of strategies whose value is determined according to the actual instantiation of

MAX’ mixed strategy. The parameter b can be thought of as the amount of information leakage

(or number of leaking bits) regarding the instance of MAX’ mixed strategy. MAX would like to

maximize his guaranteed expected payoff against any choice of such b binary predicates.

We consider two settings, distinguished by the information structure assumed in them. In the

Strong Model the MAX player chooses a mixed strategy, which is observable by the MIN player,

who can then act upon it in determining the b predicates. In the Weak Model, on the other hand,

the MIN player chooses the b predicates first, and MAX can observe it and act upon it in choosing

his mixed strategy.

Note that by von Neumann’s minimax theorem, if MIN is allowed to choose the b predicates

probabilistically, then the Weak Model becomes equivalent to the Strong Model in terms of the value

that MAX (and MIN) can guarantee. However, the information structure in the Weak Model is such

that MIN is restricted to deterministically choosing the b predicates. This clearly provides MAX

with a potential advantage (compared to the Strong Model) and we are interested in understanding

and quantifying this advantage.

Other intriguing questions arise in this setting of adversarial leakage. What would be the best

mixed strategy for the MAX player? How well will the original maximin strategy of the game

perform? What is the computational complexity of finding the optimal strategy under information

leakage? We address all these questions, focusing our attention on general two-person games, where

the decision-maker has m strategies to choose from, the adversary has n strategies to choose form,

and the payoffs to the decision maker are either 1 or 0. This is known to be a highly applicable

model, as it captures games in which a goal is either achieved or not.

Our results. For the Strong Model, if the value of the game is q = 1 − ϵ (for small positive ϵ)

and 2b is much smaller than 1/ϵ, then MAX can ensure value close to 1 (at least 1− 2bϵ), and this

is tight. To do so, he simply uses the maximin strategy (that is, the optimal mixed strategy for the

original game with no predicates). On the other hand, if 2b is much bigger than 1/ϵ, then for every

mixed strategy of MAX, the MIN player can ensure value close to zero (at most e−2bϵ). Therefore,

for EVERY such game with value 1− ϵ, which is close to 1, a sharp transition occurs at b which is

about log(1/ϵ): if b is slightly smaller, the value stays close to 1; if it is slightly larger, the value

drops to nearly zero.

For games with value q bounded away from 1, even one bit enables MIN to square the value and

drop it to at most q2, and every additional bit squares the value again. There are also examples

showing that this is essentially tight. Finally, for any fixed value q < 1, log logm+Oq(1) bits suffice

to enable MIN to drop the value to precisely 0.

For the Weak Model, the situation is different. Clearly, here MAX is in a better shape, hence
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if the value of the game is q = 1 − ϵ (for small positive ϵ), MAX can still ensure a value close

to 1 if the number of bits is much smaller than log(1/ϵ) as in the Strong Model. For games with

value q bounded away from 1, however, there are examples in which he can do much better than

in the Strong Model, and in fact can ensure no essential drop in the value as long as the number of

leaking bits is somewhat smaller than log logm. More precisely, for any fixed value 0 < q < 1 and

for every large polynomially related m,n, there are examples of games represented by a binary m

by n matrix with value q + o(1), so that even if b = log logm − O(1), MAX can ensure that the

value will stay roughly q. This should be contrasted with the Strong Model, where every additional

bit squares MAX’ value.

Somewhat surprisingly, once the number of leaking bits is slightly larger, that is, b = log logm+

O(1), the MIN player can already ensure value 0 in any game with a fixed value q < 1. Thus, in the

examples above a sharp transition occurs at nearly b = log logm under the Weak Model: nearly

log logm bits have essentially no effect on the value, while slightly more bits already suffice to drop

the value to 0.

Note that, in contrast to leakage-free settings, where no advantage is gained by observing the

opponent’s mixed strategy (due to the minimax theorem), in settings of adversarial leakage, such

information can contribute a great deal to the informed player, reflected by the advantage obtained

by MAX in the Weak Model compared with the Strong Model.

With respect to computational complexity, computing the optimal strategy in the Strong Model

(for the MAX player) against b leaking bits is poly-time for any fixed b, while this problem becomes

NP-hard to compute, or even to approximate within any factor, for a general b. In the Weak Model,

the optimal strategy of MAX can be computed in polynomial time for every b.

2 Model

We consider two-player zero-sum games defined by an m by n matrix M with {0, 1} entries, where

the rows correspond to MAX’ pure strategies and the columns correspond to MIN’s pure strategies:

Mi,j is the payoff of MAX if MAX and MIN play row i and column j, respectively (the payoff of

MIN is then −Mi,j).
1 The matrix M is known to both players.

Given a matrix M and an integer b ≥ 0, we describe a precise setting of adversarial leakage, as

follows:

(1) MAX chooses a distribution vector p = (p1, . . . , pm) on [m] and MIN chooses a b-bit leakage

function f : [m] → {0, 1}b.
(2) MAX realizes i ∈ [m] according to p (i.e., chooses row i with probability pi).

(3) MIN observes f(i) (for i realized by MAX) and chooses a strategy j ∈ [n].

1While we focus on the natural binary case, some of our results hold for any matrix with entries in [0, 1] as well,

while others become non-interesting or easily seen to be false.
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(4) MAX and MIN receive payoffs Mi,j and −Mi,j , respectively.

The two leakage models we consider, referred to as the Strong Model and the Weak Model differ

in the order in which the choices in step (1) are made. In the Strong Model MAX first chooses a

mixed strategy p and MIN may base its choice of f on the knowledge of p. In the Weak Model

MIN first chooses a leakage function f and MAX may base its choice of p on the knowledge of f .

It will be convenient to formalize the choice of (pure) strategy made by MIN in step (3) as a

function g : {0, 1}b → [n]. Note that MIN decides on g when it already knows the mixed strategy

p of MAX. This is less important under the Strong Model, where it can be assumed that MIN

chooses g simultaneously with its choice of f . However, under the Weak Model, the choice of g

must be made at a later stage (when MIN already knows p).

Given a matrix M , a non-negative integer b, a distribution vector p on [m], a function f : [m] →
{0, 1}b, and a function g : {0, 1}b → [n], let

u(M, b,p, f, g) =
∑

w∈{0,1}b

∑
i:f(i)=w

piMi,g(w)

denote the expected payoff of MAX (with respect to these parameters). Denote

up(M, b) = min
f :[m]→{0,1}b and g:{0,1}b→[n]

u(M, b,p, f, g) .

The value of M against b leaking bits under the Strong Model is defined as

vstrong(M, b) = max
p∈∆(m)

up(M, b) ,

where ∆(m) is the set of all distribution vectors on [m]. We denote by p∗
b a distribution vector that

realizes vstrong(M, b), i.e., up∗
b
(M, b) = vstrong(M, b). The value of M against b leaking bits under

the Weak Model is defined as

vweak(M, b) = min
f :[m]→{0,1}b

max
p∈∆(m)

min
g:{0,1}b→[n]

u(M, b,p, f, g) .

When the leakage model is clear from the context, we may omit the superscripts and write simply

v(M, b). Observe that under this notation, v(M, 0) is the classical value of (the game defined by)

M .

Unless otherwise specified, all logarithms are in base 2.

3 Adversarial leakage in the Strong Model

We first show that for any m by n matrix with {0, 1} entries of value q = 1 − ϵ, the MAX player

can guarantee herself at least a payoff of 1 − 2bϵ. This can be done, in particular, by playing the

maximin strategy.
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Proposition 3.1. Let M be an m by n matrix with {0, 1} entries. Let q = 1 − ϵ be the value of

the game defined by M , that is, v(M, 0) = 1− ϵ. Then, for every b ≥ 0, up∗
0
(M, b) ≥ 1− 2bϵ.

Proof. Let p∗
0 = (p1, . . . , pm). For every w ∈ {0, 1}b, let Sw = {i ∈ [m]|f(i) = w}, and let

pw =
∑

i∈Sw pi. Fix some column j. Since 1 − ϵ is the value of the game, it holds that for every

w,
∑

i∈Sw piMi,j +
∑

i/∈Sw piMi,j ≥ 1 − ϵ. As Mi,j ≤ 1 for every i, j, we have
∑

i∈Sw piMi,j +∑
i∈[m]\Sw pi ≥ 1− ϵ. Substituting

∑
i/∈Sw pi = 1− pw and rearranging the last inequality yields∑
i∈Sw

piMi,j ≥ pw − ϵ. (1)

The expected payoff of MAX is given by the expression
∑

w∈{0,1}b
∑

i:f(i)=w pi ·Mi,g(w) and the

expected payoff of MAX conditioned on the event that some row i ∈ Sw is played is given by

the expression
∑

i:f(i)=w
pi
pw ·Mi,g(w), which is at least 1

pw (p
w − ϵ), by Equation (1). Therefore the

expected payoff of MAX is at least
∑

w∈{0,1}b p
w 1

pw (p
w − ϵ) = 1− 2bϵ.

The above bound is tight, as established in the following proposition.

Proposition 3.2. For every ϵ > 0 and every b ≥ 0, there exists a matrix M with {0, 1} entries so

that (1) v(M, 0) = 1− ϵ; and (2) up∗
0
(M, b) = up∗

b
(M, b) = 1− 2bϵ.

Proof. Let n = 1/ϵ and consider the n by n matrix M in which Mi,i = 0 for every i, and Mi,j = 1 for

every i ̸= j. From symmetry considerations, both the maximin strategy and the optimal strategy

against b leaking bits is the uniform distribution over the rows. Let f be a function which imposes

the following partition on the rows: each one of the first 2b−1 rows constitutes its own subset, and

the remaining rows constitute the last subset. In this case, if one of the first 2b − 1 rows is chosen

(each with probability ϵ), then MAX’ payoff is 0, while if one of the remaining rows is chosen (with

a total probability of 1− (2b − 1)ϵ), then the payoff obtained by the MAX player is
1
ϵ
−2b

1
ϵ
−(2b−1)

. The

expected payoff of the MAX player is therefore (1− (2b − 1)ϵ) ·
1
ϵ
−2b

1
ϵ
−(2b−1)

= 1− 2bϵ.

The above two propositions essentially say that for games with value q = 1− ϵ and b such that

2bϵ = o(1), MAX can guarantee a payoff of about q2
b
by playing the maximin strategy, and this

is optimal. The case of general q and b, however, requires more work, and this is the focus of the

following statement.

Theorem 3.3. Let M be an m by n matrix with {0, 1} entries. Let q be the value of the game

defined by M , that is, q = v(M, 0). Then, for every b ≥ 0 and every distribution vector p of the

MAX player, up(M, b) ≤ q2
b
.

Proof. Put p(1) = p, and let j1 ∈ [n] be a pure strategy of MIN (a column of M) ensuring a value of

q1 ≤ q against the mixed strategy p(1) of MAX. Such a pure strategy must exist since q is the value of
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the game. Define S1 = {i ∈ [m] | Mi,j1 = 0}. It holds that
∑

i∈S1
p
(1)
i Mi,j1 +

∑
i∈[m]−S1

p
(1)
i Mi,j1 =

q1, hence
∑

i∈[m]−S1
p
(1)
i = q1.

Let p(2) be the distribution vector defined by restricting p(1) to the rows in [m]− S1, namely,

p
(2)
i =

{
p
(1)
i /q1 if i ∈ [m]− S1;

0 otherwise.

Let j2 be a pure strategy of MIN ensuring a value of q2 ≤ q against the mixed strategy p(2) of

MAX. Once again, such a pure strategy must exist since q is the value of the game. Define S2 =

{i ∈ [m]− S1 | Mi,j2 = 0}. As before, it holds that
∑

i∈S2
p
(2)
i Mi,j2 +

∑
i∈[m]−S1−S2

p
(2)
i Mi,j2 = q2,

hence
∑

i∈[m]−S1−S2
p
(2)
i = q2.

Continuing in this manner for 2b steps, we obtain 2b pairwise disjoint subsets S1, . . . , S2b of [m]

with corresponding columns j1, . . . , j2b such that Mi,jk = 0 for every 1 ≤ k ≤ 2b and i ∈ Sk. For

convenience we index the words in {0, 1}b by w1, . . . , w2b and fix

f(i) =

{
wk if 1 ≤ k < 2b and i ∈ Sk;

w2b if i /∈ ∪k<2bSk

and

g(wk) = jk for every 1 ≤ k ≤ 2b .

The above construction guarantees that when MAX plays according to p, and MIN follows f and g,

the payoff is 1 with probability at most q1q2 · · · q2b ≤ q2
b
. It follows that up(M, b) = q1 · · · q2b ≤ q2

b

as required.

As a corollary of Theorem 3.3, we get the following.

Corollary 3.4. Let M be an m by n matrix with {0, 1} entries, and let q be the value of the game

defined by M , as above. If q2
b
< 1/m, then for every distribution vector p of the MAX player,

up(M, b) = 0. Therefore, for every fixed q satisfying 0 < q < 1, b = log logm + Oq(1) suffices to

ensure value 0 for the MIN player.

Proof. Let p be the uniform distribution on [m]. Theorem 3.3 guarantees the existence of f : [m] →
{0, 1}b and g : {0, 1}b → [n] such that if MAX plays according to p and MIN follows f and g, then

the expected payoff is at most q2
b
< 1/m. We argue that if MIN follows f and g, then in fact, the

expected payoff is 0. Indeed, since pi = 1/m for every i ∈ [m], a positive expected payoff is possible

only if it is at least 1/m, which derives a contradiction. It follows that for every w ∈ {0, 1}b and

for every i ∈ [m] such that f(i) = w, we must have Mi,g(w) = 0. But this means that the same f

and g guarantees that the expected payoff is 0 regardless2 of the mixed strategy of MAX.

2Note that as here the same f and g work against any mixed strategy of MAX, this works in the weak model as

well, providing a proof of Theorem 4.5.
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Remark: The corollary is essentially the known simple fact (proved in [7], [9]) that the ratio

between the fractional cover and the integer cover of a hypergraph with m edges is at most lnm.

The following theorem shows that both Theorem 3.3 and Corollary 3.4 are essentially tight.

Theorem 3.5. For every real 0 < q < 1, for every integer b ≥ 0 and for every large polynomially

related m and n satisfying q2
b
m > 2b log n, there exists an m by n {0, 1}-matrix M that satisfies

(i) v(M, 0) = q ± o(1), where the o(1)-term tends to 0 as m and n grow; and

(ii) if p = (p1, p2, . . . , pm) is the uniform distribution on the rows, then up(M, b) ≥ (1 − o(1))q2
b

(and thus up(M, b) = (1± o(1))q2
b
, by Theorem 3.3).

In particular, for, say, m = n2 and b ≤ log logm−Θ(1), up(M, b) > 0.

Proof. Let M be a random m by n matrix with {0, 1}-entries obtained by choosing each entry Mi,j ,

randomly and independently, to be 1 with probability q and 0 with probability 1 − q. We show

that M satisfies the assertion of the theorem with positive probability.

Since m,n are large and are polynomially related, almost surely (that is, with probability that

tends to 1 as m,n tend to infinity) every row of M has (1± o(1))qn 1-entries, and every column of

M has (1 ± o(1))qm 1 entries. This follows easily by the standard known estimates for Binomial

distributions, see, for example, [3]. This implies that the value of the game is (1±o(1))q: indeed, if

MAX (respectively, MIN) plays according to the uniform distribution on the rows (resp., columns),

then it guarantees an expected payoff of at least (resp., at most) (1± o(1))q. Thus (i) holds almost

surely.

We establish the assertion by showing that (ii) holds with high probability as well. For that

purpose, we argue that for every choice of a set J ⊂ [n] of size |J | = 2b, the number of indices

i ∈ [m] so that Mi,j = 1 for all j ∈ J is, almost surely, (1 ± o(1))q2
b
m. Indeed, for a fixed

choice of a set J , the random variable X that counts the number of such indices i is a Binomial

random variable with parameters m and q2
b
. Therefore the probability that X is not (1±o(1))q2

b
m

decreases exponentially with q2
b
m > 2b log n = log

(
n2b

)
. The assertion is established by applying

the union bound over all
(
n
2b

)
< n2b choices of the set J .

Remark: Theorem 3.5 is proved using a probabilistic argument: we show that a random matrix

M satisfies the promise of the theorem with positive probability. In Appendix A we present two

explicit constructions of the desired matrix M using either finite geometries, or character sum

estimates (Weil’s Theorem [18]). In general, one can use any construction of small sample spaces

supporting nearly 2b-wise independent binary random variables to supply additional examples.

Indeed, this guarantees that in a random row, every subset of 2b entries appear nearly independent,

and in particular, they are all 1 with probability close to q2
b
(recall that this is the main argument

in Theorem 3.5’s proof). General constructions of small sample spaces supporting nearly 2b-wise

independent random variables are developed in [11, 1].
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4 Adversarial leakage in the Weak Model

The following result deals with the Weak Model. It shows that in sharp contrast to the situation

with the Strong Model, here there are examples in which log logm − O(1) bits of information do

not enable the MIN player to gain any significant advantage.

Theorem 4.1. For every real q, 0 < q < 1, for every positive δ and for all large polynomially

related n,m satisfying

[(
10

δ
)]n2

b
< δ−m/

√
n and [

q(1− q)

10
]2

b ≥ 1√
n
,

there is an m by n matrix M with {0, 1}-entries so that the value of the game it determines v(M, 0)

is q± o(1), and vweak(M, b) ≥ q− δ. In particular, if n = m2 and b = log logm−Θ(1), vweak(M, b)

is essentially equal to v(M, 0).

The proof of the above theorem is more complicated than the ones in the previous section, and

requires several preparations. We need the following known result.

Lemma 4.2 ([2], Lemma 3.2). Let Y be a random variable with expectation E[Y ] = 0, variance

E[Y 2] > 0 and fourth moment E[Y 4] ≤ k(E[Y 2])2, where k is a positive real. Then Prob[Y ≥ 0] ≥
1

24/3k
.

Using the above lemma, we prove the following.

Lemma 4.3. Consider some real 0 < q < 1 and let p = (p1, p2, . . . , pn) be a distribution vector

on [n]. Let X1, X2, . . . , Xn be independent identically distributed indicator random variables, where

each Xj is 1 with probability q (and 0 with probability 1 − q). Define X =
∑n

j=1Xjpj. Then the

probability that X is at least its expectation (which is q) is bigger than q(1−q)
10 .

Proof. Define Yj = Xjpj − E[Xjpj ] = Xjpj − qpj , and Y =
∑

j Yj . By linearity of expectation,

Y = X − E[X], and E[Y ] = 0. In order to apply the previous lemma, we compute the variance of

Y , and estimate its forth moment:

V ar[Y ] =
∑
j

V ar[Yj ]

=
∑
j

[q(1− q)2p2j + (1− q)q2p2j ]

=q(1− q)
∑
j

p2j ;

8



similarly

E[Y 4] =
∑
j

E[Y 4
j ] + 6

∑
i<j

E[Y 2
i ]E[Y 2

j ]

=
∑
j

[q(1− q)4p4j + (1− q)q4p4j ] + 6
∑
i<j

q2(1− q)2p2i p
2
j

≤q(1− q)
∑
j

p4j + 6
∑
i<j

q2(1− q)2p2i p
2
j

≤ 1

q(1− q)
[q2(1− q)2

∑
j

p4j + 6
∑
i<j

q2(1− q)2p2i p
2
j ]

≤ 3

q(1− q)
(V ar[Y ])2 .

The desired result now follows from Lemma 4.2, (using the fact that 24/3 · 3 < 10).

Remark: For q ≤ 1/2 the estimate in the lemma is tight, up to a constant factor. Indeed, for

p = (1, 0, 0, . . . , 0) the probability that X is at least q is precisely the probability that X1 = 1,

which is q. For q = 1/k with k being an integer there is a simpler argument showing that in

this case the probability that X is at least its expectation is at least q (which is precisely tight).

The idea is to choose the random vector (X1, X2, . . . , Xn) by first choosing, for each 1 ≤ j ≤ n,

a random uniform number nj in {1, 2, , . . . , k} with all choices being independent, and then by

selecting a uniform random Z ∈ {1, 2, . . . , k}, defining Xj to be 1 if and only if nj = Z. Since

the sum
∑

Z∈[k](
∑

j:nj=Z pj) = 1, it follows that for each choice of the values nj , there is at least

one Z so that
∑

j:nj=Z pj ≥ 1/k, and therefore the probability that the obtained random sum is

at least q = 1/k is at least 1/k, as claimed. Note that for some values of q the probability that

X is at least q is strictly smaller than q. Indeed, for example, if q = 0.501 and the vector p is

(0.5, 0.5, 0, 0, . . . , 0), then the probability that X is at least q is the probability that X1 = X2 = 1,

which is q2, that is, roughly q/2.

Corollary 4.4. Let v be a random vector of length n with {0, 1} entries obtained by selecting each

entry, randomly and independently, to be 1 with probability q, and 0 with probability 1 − q. Let P

be any fixed set of distribution vectors of length n. Then, the probability that the inner product of

the vector v with each of the vectors p ∈ P is at least q, is at least ( q(1−q)
10 )|P|.

Proof. By the FKG Inequality (c.f., e.g., [3], Chapter 6.), the probability that the inner product of

v with each of the vectors p ∈ P is at least q is greater or equal to the product of these probabilities.

But according to Lemma 4.3, for every p ∈ P, the probability that the inner product of v with p

is at least q is greater than q(1−q)
10 . The desired result follows.

We are now ready to present the proof of Theorem 4.1.
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Proof of Theorem 4.1. Let M be a random m by n matrix with {0, 1}-entries obtained by choosing

each entryMi,j , randomly and independently, to be 1 with probability q, and 0 with probability 1−q.

As specified in the proof of Theorem 3.5, the value of this game is almost surely v(M, 0) = q±o(1).

Recall that in the Weak Model, MIN first chooses a function f : [m] → {0, 1}b. This can be

thought of as partitioning the rows of M into 2b disjoint subsets, each defining a submatrix of

M — denote these submatrices by A1, . . . , A2b . Each submatrix Ai corresponds to a two-player

zero-sum game by its own right. Given the choice of f , the value of M against b leaking bits under

the Weak Model is vweak(M, b) = max1≤i≤2b v(Ai, 0). Therefore, together with the choice of the

function f , MIN essentially chooses a set P = {p1, . . . ,p2b} of distribution vectors of length n,

where pi realizes v(Ai, 0). In order to show that vweak(M, b) ≥ q − δ, it suffices to prove that in

each submatrix Ai, there is some row ri such that the inner product of ri and pi is at least q − δ.

This will be established by arguing that almost surely, for every choice of a set P, there exists

some row Mi in M so that Mi · p ≥ q − δ for every p ∈ P. To that end, we take some δ-net N
of distributions of length n with respect to the ℓ1-norm, and show that almost surely, for every

P ⊆ N , |P| = 2b, there exists some row Mi in M so that Mi · p ≥ q for every p ∈ P.

It is a standard fact that there exists a δ-net N of distribution vectors of length n with respect

to the ℓ1-norm so that |N | ≤
(
10
δ

)n
. This δ-net exhibits at most

(
10
δ

)n2b
ways to choose a subset

of size 2b. Fix some set P ⊆ N , |P| = 2b, and fix some row Mi in M . By the last corollary,

the probability that Mi · p ≥ q for every p ∈ P is at least
(
q(1−q)

10

)2b

. Hence, the probability

that none of the m rows ensures MAX a value of at least q with each of the mixed strategies

p ∈ P is at most

(
1−

(
q(1−q)

10

)2b
)m

. Applying the union bound, with probability at least 1 −(
1− ( q(1−q)

10 )2
b
)m

(10δ )
n2b , for every set P ⊆ N , |P| = 2b, there exists some row Mi in M such that

Mi · p ≥ q for every p ∈ P. The assertion follows by applying the inequalities specified in the

statement of the theorem.

Somewhat surprisingly, even in the Weak Model, although there are examples in which the MIN

player cannot decrease the value by much using at most log logm−O(1) bits of information, if he

is allowed to use log logm+O(1) bits, he can always decrease the value to 0. This is described in

the next (simple) result, which, together with the previous theorem, exhibits an unexpected sharp

phase transition at b = log logm.

Theorem 4.5. Let M be an m by n matrix with {0, 1} entries, and let q be the value of the game

defined by M . If q2
b
< 1/m, then vweak(M, b) = 0. Therefore, for every fixed q satisfying 0 < q < 1,

b = log logm+Oq(1) suffice to ensure value 0 for the MIN player, even in the Weak Model.

The proof of Theorem 4.5 follows from the proof of Corollary 3.4.
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1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
T7 T7

Table 1: M ∈ {0, 1}9×14 of value 1/2, satisfying: (i) up∗
0
(M, 1) = 0; and (ii) up∗

1
(M, 1) ≥ 1/7.

5 Optimal strategy computation

We begin with a simple example of a {0, 1} matrix M with a maximin strategy p∗
0 that satisfies (i)

up∗
0
(M, 0) = 1/2; and (ii) up∗

0
(M, 1) = 0. On the other hand, there exists another mixed strategy

p of MAX that satisfies (i) up(M, 0) = 3/7; and (ii) up∗
1
(M, 1) ≥ 1/7. This shows that playing

the maximin strategy may be a naive behavior for b > 0, and hence motivates the computation

of better strategies. The matrix M showing the above is of dimension 9 × 14 and it is depicted

in Table 1. The main ingredient in the construction is a 7 by 7 matrix T7 with {0, 1} entries that

satisfies the following properties: (1) every row and every column of T7 contains exactly 3 1-entries;

and (2) for every choice of 1 ≤ j ≤ j′ ≤ 7, there exists some 1 ≤ i ≤ 7 such that Mi,j = Mi,j′ = 1.

(Refer to Example 1 in Appendix A.) Playing the first two rows with probability 1/2 each yields an

expected payoff of 1/2 for MAX. One can easily verify that this is a unique optimal strategy when

b = 0, while its expected payoff is clearly 0 when b = 1. Yet, by playing the uniform distribution

on the bottom 7 rows, MAX ensures an expected payoff of 3/7 when b = 0 and an expected payoff

of at least 1/7 when b = 1.

We now turn to consider the computational complexity of finding the optimal strategy for

the MAX player in the Strong Model. The following theorem shows that computing the optimal

strategy against b bits is poly-time for any fixed b.

Theorem 5.1. Given an m by n matrix M with {0, 1} entries and a fixed b ≥ 0, computing the

optimal strategy against b leaking bits (p∗
b) under the Strong Model is poly-time.

Proof. An optimal strategy p∗
b = (p1, . . . , pm) can be computed by solving the following linear

program:

maximize z s.t.∑
w∈{0,1}b

∑
i:f(i)=w

piMi,g(w) ≥ z ∀f : [m] → {0, 1}b,∀g : {0, 1}b → [n]

∑
i∈[m]

pi = 1

pi ≥ 0 ∀i ∈ [m] .

Since there are 2bm possible functions f and n2b possible functions g, this linear program admits

a polynomial number of variables, but an exponential number of constraints. However, a closer

analysis shows that it can be rewritten with a polynomial number of constraints.

11



The composition of f and g is essentially a mapping h : [m] → [n] with image of cardinality at

most 2b. Fixing some subset J ⊆ [n], |J | ≤ 2b, it is easy to compute a mapping hJ that minimizes

the expected payoff of MAX over all mappings h with image J : hJ simply maps each row i ∈ [m]

to a column j ∈ J that minimizes Mi,j . Therefore an optimal strategy p∗
b can be computed by

solving the linear program

maximize z s.t.∑
j∈J

∑
i:hJ (i)=j

piMi,j ≥ z ∀J ⊆ [n], |J | ≤ 2b (2)

∑
i∈[m]

pi = 1

pi ≥ 0 ∀i ∈ [m] ,

whose size is polynomial as long as b is a constant.

We next show that for general b, computing the optimal strategy against b bits is NP-hard.

Moreover, we show that it is NP-hard to approximate the optimal value by any factor.

Theorem 5.2. Given an m by n matrix M with {0, 1} entries, it is NP-hard to approximate

v(M, b) by any factor under the Strong Model.

Proof. We show that given an m by n matrix M with {0, 1} entries and some b ≥ 0, it is NP-hard

to decide whether v(M, b) > 0. This is done by reduction from set cover (SC). An instance of SC

is composed of a finite set of elements U = {1, . . . ,m}, a collection C = {C1, . . . , Cr} of subsets of

U and an integer k. The question is whether there is a subcollection C′ ⊆ C, |C′| ≤ k, such that

every element in U belongs to at least one member of C′.

Given an instance of SC , ⟨U, C, k⟩, we construct the following instance of our problem. Let M

be a binary matrix with m = |U | rows and n = r columns such that Mi,j = 0 ⇔ i ∈ Cj . Fix

b = log k. We show that there is a set cover of size at most k if and only if v(M, b) = 0.

Sufficiency: Suppose the size of the set cover is greater than k. Then, we show that taking the

uniform distribution over the whole action set (i.e. setting pi =
1
m ∀i ∈ [m]) yields v(M, b) > 0.

Consider inequality 2 and let p be the uniform distribution as described above. For every choice

of J ⊆ [n], the left-hand side of the inequality is composed of a finite set of summands. In order

to show that the obtained payoff is greater than zero, it is sufficient to show that at least one

summand is greater than zero. Indeed, since the set cover is greater than k = 2b, there must exist

some row i ∈ [m], call it i′, such that Mi′,j = 1 for every j ∈ J , and also p(i′) > 0 (since p has a

full support). Consequently, v(M, b) > 0.

Necessity: Suppose there exists a set cover of size at most k = 2b. Then, there is a set of columns

S, |S| ≤ 2b, s.t. for every i ∈ [m] there exists j ∈ |S| for which Mi,j = 0. Let g be a function that

12



maps every w ∈ {0, 1}b to a different column in S (arbitrarily). By the choice of S, it must hold

that for every i ∈ [m], Mi,g(fg(i)) = 0. Therefore, for every distribution vector p, every summand

in inequality 2 equals zero. Consequently, v(M, b) = 0.

In contrast to the last theorem, under the Weak Model, computing the optimal strategy for a

given f : [m] → {0, 1}b is trivially poly-time: For every w ∈ {0, 1}b, let Sw = {i : f(i) = w}, and
let Mw denote the sub-matrix Mw ∈ R|Sw|×n, induced by Sw. MAX will choose w that maximizes

v(Mw, 0) and play the corresponding maximin strategy.

Finally, we consider the computational complexity of finding the optimal f function for the MIN

player in the Weak Model. For a general b, the exact same reduction from Set Cover, presented in

the proof of Theorem 5.2, shows that computing the optimal f function is NP-hard and that it is

NP-hard to find an f function that approximates the optimal value (for the MIN player) within

any factor. The computational complexity of computing the optimal f function for a fixed b is still

open.
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APPENDIX

A Explicit Constructions

In this appendix we describe several explicit constructions of n by n {0, 1}-matrices representing

games with value q, such that if the MIN player has b bits and b is smaller than log log n+O(1), then

the MAX player can guarantee a payoff of at least roughly q2
b
. This shows (by explicit examples)

that the statements of Theorem 3.3 and Corollary 3.4 are essentially tight.

Example 1:

Let p be a prime power and let r be a positive integer. Fix n = pr − 1. Let M = (Mu,v) be the

following n by n binary matrix whose rows and columns are indexed by the set N of all nonzero

vectors of length r over GF (p). For each such u, v, Mu,v = 1 if and only if the two vectors u and

v are orthogonal over GF (p) (namely, their inner product over GF (p) is zero). Note that M is a

symmetric matrix, and every row and every column of it contains exactly pr−1−1 1-entries. Indeed,

this is the number of non-zero solutions of a single linear equation in r variables over GF (p). It is

easy to check that the maximin strategy of the game determined by M is the uniform distribution

over N , yielding a value of q = pr−1−1
pr−1 . Note that for large n = pr − 1 this is very close to 1/p.

We claim that for every set J ⊆ N of at most logp n columns, there are at least pr−|J | − 1 rows

u so that Mu,v = 1 for every v ∈ J . Note that if pr−|J | is large, then this number is very close to

q|J |n, implying that by playing the uniform distribution on the rows of M , MAX can ensure a value

close to q|J |. Note also that if b ≤ log r − O(1) = log log n − Op(1), then 2b is much smaller than

r, and hence pr−|J | is large provided |J | ≤ 2b. Fix a subset J ⊆ N of cardinality at most logp n.

By definition, row u satisfies Mu,v = 1 for every v ∈ J if and only if the inner product of u and v

over GF (p) is zero for every v ∈ J . This is a homogeneous system of |J | linear equations in the r

variables representing the coordinates of u. This system clearly admits at least pr−|J |−1 non-trivial

solutions; each such non-trivial solution corresponds to a row with the desired properties, proving

the claim.

This completes the description of the first set of examples. Note that it works for every value

q which is about 1/p, where p is a prime power.

Example 2 (sketch):

Let p be a prime and let M be a p × p binary matrix, where Mi,j = 1 if and only if i − j is a

quadratic residue modulo p (where here zero is considered a quadratic residue). The value of the

game represented by M is (p + 1)/(2p) which, for large p, is roughly 1/2. Using Weil’s Theorem,

it is not difficult to show that for every subset S of Zp of size at most (0.5 − δ) log p, the number

of rows i such that Mi,j = 1 for all j ∈ S, is (1 + o(1)) p
2|S| . A similar example holds for characters

of other orders instead of the quadratic character, providing examples with values close to 1/d for

any desired positive integer d > 1 (where here we have to choose a prime p so that d divides p− 1-
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by Dirichlet’s Theorem on primes in arithmetic progressions it is known that there are infinitely

many such primes for any such d).
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