School of
0368.2200
Fall 2010
Lecture |
Monday 13-16 (Dach 005) |
Recitations |
(a) Wednesday 14-15
(Schreiber 007) (b) Wednesday 15-16 (Schreiber 007) |
Lecturer |
|
Teaching Assistant |
|
Grader |
Ariel Jarovsky
(post box 303) ( arielhe -at- post -dot- tau -dot- ac -dot- il ) |
Exam |
Moed A 09/02/2011 |
|
Moed B 06/09/2011 |
Class Bulletin-Board
Date |
Announcement |
17/10/10 |
Welcome to computational models, fall 2010, we hope you have a wonderful semester! As an appetizer, we recommend to
read (and understand) this proof: http://www.ling.ed.ac.uk/~gpullum/loopsnoop.html |
19/10/10 |
ההרצאה בשבוע הבא (25.10) תתחיל בשעה 14:10. השעה הראשונה מבוטלת. |
27/11/10 |
רמז נוסף לשאלה 8 בתרגיל 2: נסו להראות ששפה כזו
היא איחוד סופי של שפות מהצורה xy* . |
13/12/10 |
ביום שישי ה-17.12.10 יתקיים תרגול השלמה.
לקבוצה 02 משעה 10:00 עד 11:00. לקבוצה 03 משעה 11:00 עד 12:00. התרגול יתקיים
בשרייבר 7. |
13/12/10 |
רמזים קלים לשאלה 2ג : ii- האם מה שעשיתם בסעיף הראשון לא
עובד? iii- כדאי להשתמש כאן
בעובדה שחיתוך של שפה ח"ה ושפה רגולרית היא שפה ח"ה. |
22/12/10 |
רמז קל לשאלה 7 בתרגיל 4: "לכסון". |
07/01/10 |
תיקון
לתרגיל 5 שאלה
5: (תודה לערן) הרדוקציה שהייתה במצגת של הרצאה 10 (שקף 31)
הייתה שגויה (ולכן אני מקווה שנכשלתם בהוכחת נכונותה J). החלפנו את הרדוקציה באחת אחרת במצגת, אנא
הורידו מחדש את המצגת וודאו שאתם מוכיחים נכונות של הרדוקציה הנכונה. |
09/01/10 |
בנושא "NP=P?", אנו ממליצים לקרוא
ולצפות בלינקים הבאים: http://www.claymath.org/ http://video.google.com/ |
23/01/10 |
מצורף קובץ עם
הרבה מבחנים קודמים ופתרונות. בהצלחה! |
30/01/10 |
מצורף קובץ עם ציוני
התרגילים עד תרגיל 5. אנא ודאו שהציונים שלכם הוזנו כהלכה. |
02/02/10 |
מצורפות הוראות לבחינה
(העמוד הראשון של הטופס). מצורף קובץ עם ציוני
כל התרגילים. |
12/12/10 |
מצורף טופס
המבחן (מועד א) וסקיצת פתרון |
23/09/11 |
את מועד ב' ניתן למצוא כאן http://tau-cm.wikidot.com/exam |
Homework Assignments -
(Files have been removed. Moed B students, contact Ori if you don't have
them)
Assignment |
date handed |
due date |
solution |
Remarks |
26/10/2010 |
10/11/2010, 14:00 |
|
||
17/11/2010 |
01/12/2010, 14:00 |
|
||
01/12/2010 |
15/12/2010,
14:00 |
|
||
15/12/2010 |
29/12/2010,
14:00 |
19.12 – הוכנס תיקון קטן בשאלה g6 |
||
29/12/2010 |
12/01/2011, 14:00 |
|
||
11/01/2011 |
30/01/2011, 14:00 |
We gave 1 week extensions. But, there won't be any more extensions… |
Your solution should be handed to the grader's mail box at the time and
date specified. You can collect your checked home assignments from room 114.
Course Timetable
Week |
Subject |
Reference(s) |
Lecture Slides* |
1 |
Administratrivia. Some
mathematical preliminaries. Finite automata. Regular languages. Closure
properties: Union. |
Sipser
0, 1.1 |
|
2 |
Non-Deterministic Finite Automata
(NFA). Closure properties of Regular Languages. |
Sipser 1.1-1.3 |
|
3 |
Regular expressions and their equivalence
with finite automata via generalized NFAs. The Pumping Lemma. |
Sipser 1.3, 1.4, 2.1-2.2 |
|
4 |
Canceled |
||
5 |
Myhill-Nerode Theorem, Context
free grammars. Closure under union, concatenation, and star. Linear grammars.
Ambiguity. CFL pumping lemma. Non context free languages. |
Hopcroft and Ullman 3.4 Sipser 2.1- 2.3 |
slides
updated
on 14/11 |
6 |
Chomsky normal form
of CFGs. More CFL closure properties. Some algorithmic questions for CFGs.
Push-down automata. Equivalence of Context Free Grammars and Push down
automata. |
Sipser 2.1-2.3 |
slides
uploaded
on 23/11 (Note
corrections in slides 33-39) |
7 |
Turing Machines and
alternative Models of Computers, Non Deterministic TMs. The language classes
R, RE and coRE. |
Sipser 3.1-3.3 |
slides
uploaded
on 28/11 |
8 |
The language classes
R, RE and coRE. What is an algorithm? The Church-Turing
Thesis. Hilbert's tenth problem. Encoding of Turing Machines. Universal
Turing Machine. The acceptance problem. Diagonalization. |
Sipser 3.3,4.1,4.2 |
slides
uploaded
on 04/12 |
9 |
Review
of Diagonalization. The acceptance and halting problems
are undecidable |
Sipser 4.1,4.2,5.1, 5.3 |
slides
updated
on 13/12 |
10 |
Undecidability by
Rice Theorem. Reduction by computational histories. |
Sipser 5.1,5.3 |
slides
updated
on 21/12 |
11 |
More reductions by computational
histories. Post Correspondence Problem is undecidable. Introduction to
Complexity. |
Sipser 5.1, 5.3, 7.1 |
slides updated on 07/01 |
12 |
The classes P, NP.
Examples of Problems in P and NP. Verifiability. |
Sipser 7.2, 7.3 |
slides
updated
on 04/01 |
13 |
Poly-Time Reductions.
NP completeness. Cook-Levin Theorem. |
Sipser 7.3,7.4,7.5 |
slides
updated
on 09/01 |
14 |
Additional NP-complete
problems. |
Sipser 7.5 |
slides
updated
on 15/01 |
* We try to upload the slides in advance, but note that the slides file is replaced with an updated one after the lecture.
Course requirements and important information:
· We will publish 6 homework assignments.
Assignment submission is usually due two weeks after publishing.
Late submission will be allowed only given proper approval (note from a doctor, etc.)
External sources (books, web pages) can be used but should be clearly quoted.
Solving assignments independently is crucial and is strongly encouraged.
· To pass the course, one has to pass the exam.
· The final grade is calculated as follows:
If (number of submitted homework assignments ³ 5) and (average of 5 best homework grades > exam grade) then
final grade = 0.9 * exam grade + 0.1* average of 5 best homework grades
Else
final grade = exam grade
Course Outline The course deals with fundamental questions of computer
science:
These
questions were mostly raised during the 20th century, and they accompanied and
guided the actual development of computers.
Many of
these and related questions were resolved, but some (especially those dealing
with computational hardness) retained their status as "key open
problems" into the 21st century.
Prerequisites The course is a required course for Computer Science students, and "extended intro to Computer Science" is a prerequisite.
"Discrete
Math" is recommended, though not required. Students from other disciplines
are encouraged to contact the lecturer.
Textbook Introduction
to the Theory of Computation, M. Sipser, PWS Publishing Co., 1997
(second edition, 2005).
Reference Books Introduction to Automata Theory, Languages, and Computation, J. Hopcroft and J. Ullman, Addison-Wesley Publishing Co., 1979.
Computational Complexity, C. Papadimitriou, Addison-Wesley Publishing Co., 1994.
Elements of the Theory of Computation, H. Lewis and C. Papadimitriou, Prentice-Hall, 1981.
Automata and formal languages, the open university (in Hebrew) , 1991.