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Support Vector 
Machines

Some slides adapted from  

•Aliferis & Tsamardinos, Vanderbilt University 
http://discover1.mc.vanderbilt.edu/discover/public/ml_tutorial_ol
d/index.html

•Rong Jin, Language Technology Institute
www.contrib.andrew.cmu.edu/~jin/ir_proj/svm.ppt
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Support Vector Machines

• Decision surface: a hyperplane in feature 
space 

• One of the most important tools in the 
machine learning toolbox

• In a nutshell: 
– map the data to a predetermined very high-

dimensional space via a kernel function
– Find the hyperplane that maximizes the margin 

between the two classes
– If data are not separable - find the hyperplane 

that maximizes the margin and minimizes the 
(weighted average of the) misclassifications
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Support Vector Machines

• Three main ideas:
1. Define what an optimal hyperplane is (taking into account 

that it needs to be computed efficiently): maximize 
margin

2. Generalize to non-linearly separable problems: have a 
penalty term for misclassifications

3. Map data to high dimensional space where it is easier to 
classify with linear decision surfaces: reformulate 
problem so that data are mapped implicitly to this space

ABDBM  © Ron Shamir
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Support Vector Machines

• Three main ideas:
1. Define what an optimal hyperplane is (taking into account 

that it needs to be computed efficiently): maximize 
margin

2. Generalize to non-linearly separable problems: have a 
penalty term for misclassifications

3. Map data to high dimensional space where it is easier to 
classify with linear decision surfaces: reformulate 
problem so that data are mapped implicitly to this space
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Which Separating Hyperplane 
to Use?

Var1

Var2
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Maximizing the Margin

Var1

Var2

Margin 

Width

Margin 

Width

IDEA 1: Select the 

separating 

hyperplane that 

maximizes the 

margin!

ABDBM  © Ron Shamir



7

Support Vectors

Var1

Var2

Margin 

Width

Support Vectors
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Setting Up the Optimization 
Problem

Var1
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The width of the 

margin is:
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Setting Up the Optimization 
Problem

Var1
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Scaling w, b so that 

k=1, the problem 

becomes:
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Setting Up the Optimization 
Problem

• If class 1 corresponds to 1 and class 2 
corresponds to -1, we can rewrite

• as

• So the problem becomes:

( ) 1,   with 1

( ) 1,   with 1

i i i

i i i

w x b x y

w x b x y
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Linear, Hard-Margin SVM Formulation

• Find w,b that solve 

• Quadratic program: quadratic objective, linear 
(in)equality constraints

• Problem is convex  there is a unique global 
minimum value (when feasible)

• There is also a unique minimizer, i.e. w and b 
values that provide the minimum

• No solution if the data are not linearly separable
• Objective is PD  polynomial-time soln
• Very efficient soln with modern optimization 

software (handles 1000s of constraints and 
training instances).

21
min

2

. . ( ) 1,  i i i

w
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Lagrange multipliers

• Convex quadratic programming problem

• Duality theory applies!
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Dual Space

• Dual Problem

• Representation for w 

• Decision function
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Comments
• Representation of vector w

– Linear combination of examples xi

• # parameters = # examples

– i: the importance of each examples
• Only the points closest to the bound have i0

• Core of the algorithm: xx’
– Both matrix D and decision function require the knowledge 

of xx’ 

(More on this soon)


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Support Vector Machines

• Three main ideas:
1. Define what an optimal hyperplane is (taking into account 

that it needs to be computed efficiently): maximize 
margin

2. Generalize to non-linearly separable problems: have a 
penalty term for misclassifications

3. Map data to high dimensional space where it is easier to 
classify with linear decision surfaces: reformulate 
problem so that data are mapped implicitly to this space
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Non-Linearly Separable Data

i
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Introduce slack 

variables

Allow some 

instances to fall 

within the margin, 

but penalize them

j
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Formulating the Optimization 
Problem

j
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Constraint becomes :

Objective function 

penalizes for 

misclassified instances 

and those within the 

margin

C trades-off margin width 

& misclassifications
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Linear, Soft-Margin SVMs

• Algorithm tries to keep i at zero while maximizing 
margin

• Alg does not minimize the no. of misclassifications 
(NP-complete problem) but the sum of distances 
from the margin hyperplanes

• Other formulations use i
2 instead

• C: penalty for misclassification
• As C, we get closer to the hard-margin solution
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Dual Space
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• Dual Problem

• Only difference: upper bound C on i

• Representation for w 

• Decision function
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Comments
• Param C

– Controls the range of i  avoids over emphasizing 
some examples

– i (C - i) = 0  (“complementary slackness”)

– C can be extended to be case-dependent

• Weight i

– i < C i = 0  i-th example is correctly classified 
not quite important

– i = C  i can be nonzero  i-th training example may 
be misclassified  very important
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Robustness of Soft vs Hard 
Margin SVMs

i

Var1

Var2

0 bxw
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Var20 bxw


Soft Margin SVM Hard Margin SVM
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Soft vs Hard Margin SVM

• Soft-Margin always has a solution

• Soft-Margin is more robust to outliers
– Smoother surfaces (in the non-linear case)

• Hard-Margin does not require to guess the cost 
parameter (requires no parameters at all)

ABDBM  © Ron Shamir



23

Support Vector Machines

• Three main ideas:
1. Define what an optimal hyperplane is (taking into account 

that it needs to be computed efficiently): maximize 
margin

2. Generalize to non-linearly separable problems: have a 
penalty term for misclassifications

3. Map data to high dimensional space where it is easier to 
classify with linear decision surfaces: reformulate 
problem so that data are mapped implicitly to this space
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Disadvantages of Linear 
Decision Surfaces

Var1

Var2
ABDBM  © Ron Shamir



25

Advantages of Non-Linear 
Surfaces

Var1

Var2
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Linear Classifiers in High-
Dimensional Spaces

Var1

Var2 Constructed 

Feature 1

Find function (x) to map to 

a different space

Constructed 

Feature 2
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Mapping Data to a High-
Dimensional Space

• Find function (x) to map to a different 
space, then SVM formulation becomes:

• Data appear as (x), weights w are now 
weights in the new space

• Explicit mapping expensive if (x) is very 
high dimensional

• Can we solve the problem without explicitly 
mapping the data ?
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The Dual of the SVM Formulation

• Original SVM formulation
– n inequality constraints
– n positivity constraints
– n number of  variables

• The (Wolfe) dual of this 
problem
– one equality constraint
– n positivity constraints
– n number of  variables 

(Lagrange multipliers)
– Objective function more 

complicated

• But: Data only appear as 
(xi)  (xj)
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The Kernel Trick

• (xi)
t  (xj) means: map data into new space, then 

take the inner product of the new vectors
• Suppose we can find a function such that: K(xi , xj) = 

(xi)
t  (xj) , i.e., K is the inner product of the images 

of the data
•  For training, no need to explicitly map the data into 

the high-dimensional space to solve the optimization 
problem

• How do we classify without explicitly mapping the new 
instances? Turns out
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Examples of Kernels

• Assume we measure x1,x2 and we use the 
mapping:

• Consider the function:

• Then:

• 𝜙 𝑥 t𝜙 𝑧 = 𝑥1
2𝑧1

2 + 𝑥2
2𝑧2

2 + 2𝑥1𝑥2𝑧1𝑧2 +
2𝑥1𝑧1 + 2𝑥2𝑧2 + 1 = 𝑥1𝑧1 + 𝑥2𝑧2 + 1 2 =
𝑥 ⋅ 𝑧 + 1 2 = 𝐾(𝑥, 𝑧)

1

2 2

1 2 2 1 2 1 2: , { , , 2 , 2 , 2 ,1}x x x x x x x x  
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Polynomial and Gaussian Kernels

is called the polynomial kernel of degree p.
• For p=2, with 7,000 genes using the kernel once: 

inner product with 7,000 terms,  squaring
• Mapping explicitly to the high-dimensional space:  

calculating ~50,000,000 new features for both 
training instances, then taking the inner product of 
that (another 50,000,000 terms to sum)

• In general, using the Kernel trick provides huge 
computational savings over explicit mapping!

• Another common option: Gaussian kernel (maps to l 
dimensional space with l=no of training points):

pzxzxK )1(),( 

)2/exp(),( 2zxzxK 
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The Mercer Condition

• Is there a mapping (x) for any symmetric function 
K(x,z)? No

• The SVM dual formulation requires calculation K(xi , xj) 
for each pair of training instances. The matrix Gij = 
K(xi,xj) is called the Gram matrix

• Theorem (Mercer 1908): There is a feature space (x) 
iff the Kernel is such that G is positive-semi definite

• Recall: M PSD iff z≠0 zTMz>0 iff M has non-negative eigenvalues
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Support Vector Machines

• Three main ideas:
1. Define what an optimal hyperplane is (taking into account 

that it needs to be computed efficiently): maximize 
margin

2. Generalize to non-linearly separable problems: have a 
penalty term for misclassifications

3. Map data to high dimensional space where it is easier to 
classify with linear decision surfaces: reformulate 
problem so that data are mapped implicitly to this space
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Complexity 
(for one implementation, Burges 98)

Notation: l training pts of dimension d, N support 
vectors (Nl)

• When most SVs are not at the upper bound:
– O(N3+N2l+Ndl) if N<<l

– O(N3+nl+Ndl) if N~l

• When most SVs are at the upper bound:
– O(N2 + Ndl) if N<<l

– O(dl2) if N~l

34ABDBM  © Ron Shamir
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Other Types of Kernel Methods
• SVMs that perform regression

• SVMs that perform clustering

• -Support Vector Machines: maximize 
margin while bounding the number of margin 
errors

• Leave One Out Machines: minimize the 
bound of the leave-one-out error

• SVM formulations that allow different cost 
of misclassification for different classes

• Kernels suitable for sequences of strings, 
or other specialized kernels
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Feature Selection with SVMs

• Recursive Feature Elimination
– Train a linear SVM
– Remove the x% of variables with the lowest 

weights (those variables affect classification 
the least)

– Retrain the SVM with remaining variables and 
repeat until classification quality is reduced

• Very successful
• Other formulations exist where minimizing 

the number of variables is folded into the 
optimization problem

• Similar algs for non-linear SVMs
• Quite successful
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Why do SVMs Generalize?

• Even though they map to a very high-dimensional 
space
– They have a very strong bias in that space

– The solution has to be a linear combination of the training 
instances

• Large theory on Structural Risk Minimization 
providing bounds on the error of an SVM
– Typically the error bounds too loose to be of practical use
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Conclusions
• SVMs formulate learning as a mathematical 

program taking advantage of the rich theory in 
optimization

• SVM uses kernels to map indirectly to extremely 
high dimensional spaces

• SVMs are extremely successful, robust, efficient, 
and versatile, and have a good theoretical basis
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Vladimir Vapnik
• Vladimir Naumovich Vapnik is one of the main developers of 

Vapnik–Chervonenkis theory. He was born in the Soviet 
Union. He received his master's degree in mathematics at 
the Uzbek State University, Samarkand, Uzbek SSR in 
1958 and Ph.D in statistics at the Institute of Control 
Sciences, Moscow in 1964. He worked at this institute from 
1961 to 1990 and became Head of the Computer Science 
Research Department. 

• At the end of 1990, he moved to the USA and joined the 
Adaptive Systems Research Department at AT&T Bell Labs 
in Holmdel, New Jersey. The group later became the Image 
Processing Research Department of AT&T Laboratories 
when AT&T spun off Lucent Technologies in 1996. Vapnik
Left AT&T in 2002 and joined NEC Laboratories in 
Princeton, New Jersey, where he currently works in the 
Machine Learning group. He also holds a Professor of 
Computer Science and Statistics position at Royal Holloway, 
University of London since 1995, as well as an Adjunct 
Professor position at Columbia University, New York City 
since 2003. He was inducted into the U.S. National Academy 
of Engineering in 2006. He received the 2008 Paris 
Kanellakis Award.

• While at AT&T, Vapnik and his colleagues developed the 
theory of the support vector machine. They demonstrated 
its performance on a number of problems of interest to the 
machine learning community, including handwriting 
recognition.http://en.wikipedia.org/wiki/Vladimir_Vapnik 40ABDBM  © Ron Shamir
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Suggested Further Reading

• http://www.kernel-machines.org/tutorial.html
• http://www.svms.org/tutorials/ - many tutorials
• C. J. C. Burges. "A Tutorial on Support Vector Machines for 

Pattern Recognition." Knowledge Discovery and Data Mining, 
2(2), 1998. 

• E. Osuna, R. Freund, and F. Girosi. "Support vector machines: 
Training and applications." Technical Report AIM-1602, MIT A.I. 

Lab., 1996. 
• P.H. Chen, C.-J. Lin, and B. Schölkopf. A tutorial on nu -support 

vector machines. 2003. 
• N. Cristianini. ICML'01 tutorial, 2001. 
• K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An 

introduction to kernel-based learning algorithms. IEEE Neural 
Networks, 12(2):181-201, May 2001. (PDF) 

• B. Schölkopf. SVM and kernel methods, 2001. Tutorial given at the 
NIPS Conference. 

• Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, 
Springel 2001
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Analysis of microarray GE data 
using SVM

Brown, Grundy, Lin, Cristianini, 

Sugnet, Furey, Ares Jr., Haussler

PNAS 97(1) 262-7 (2000)
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Data
• Expression patterns of n=2467 annotated 

yeast genes over m=79 different conditions

• Six gene functional classes: 5 related to 
transcript levels, tricarboxylic acid (TCA) cycle, respiration, 

cytoplasmic ribosomes, proteasome, histones, and 1 unrelated 
(control) helix-turn-helix proteins. 

• For gene x, condition i:
– Ei level of x in tested condition
– Ri level of x in reference condition

• Normalized pattern (X1,…,Xm) of gene x:
Xi= log(Ei/Ri)/(klog2(Ek/Rk))

0.5
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Goal

• Classify genes based on gene expression

• Tried SVM and other classifiers
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Kernel functions used

• Simplest : K(X,Y)=X•Y+1 (dot product; linear 
kernel)

• Kernel of degree d: K(X,Y)=(X•Y+1)d

• Radial basis (Gaussian) kernel: 
exp(-||X-Y||2/22)

• n+ / n- : no. of positive / negative examples

• Problem: n+ << n-

• Overcoming imbalance: modify K’s diagonal:  
Kij=K(Xi,Xj)+c/n+ for positive ex, 
Kij=K(Xi,Xj)+c/n- for negative ex

ABDBM  © Ron Shamir 48



Measuring performance

• The imbalance problem: very few positives

• Performance of method M: C(M) =FP+2FN

• C(N) = cost of classifying all as negatives

• S(M) =C(N)-C(M) (how much we save by the 
classifier).

• 3-way cross validation: 2/3 learn, 1/3 test

True

Classifier
+ -

+ TP FP

- FN TN
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Results – TCA class
Method FP FN TP TN S(M)

D-p-1-SVM 18 5 12 2,432 6

D-p-2-SVM 7 9 8 2,443 9

D-p-3-SVM 4 9 8 2,446 12

Radial-SVM 5 9 8 2,445 11

Parzen 4 12 5 2,446 6

FLD 9 10 7 2,441 5

C4.5 7 17 0 2,443 -7

MOC1 3 16 1 2,446 -1

D-p-i-SVM: dot product kernel, degree i

Other methods used: Parzen windows, Fisher linear discriminant, 

C4.5+MOC1: decision treesABDBM  © Ron Shamir 50



Results: Ribo Class

Method FP FN TP TN S(M)
D-p-1-SVM 14 2 119 2,332 224
D-p-2-SVM 9 2 119 2,337 229
D-p-3-SVM 7 3 118 2,339 229
Radial-SVM 6 5 116 2,340 226
Parzen 6 8 113 2,340 220
FLD 15 5 116 2,331 217
C4.5 31 21 100 2,315 169
MOC1 26 26 95 2,320 164
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Results: Summary
• SVM outperformed the other methods
• Either high-dim dot-product or Gaussian 

kernels worked best
• Insensitive to specific cost weighting
• Consistently misclassified genes require 

special attention
• Does not always reflect protein levels and 

post-translational modifications
• Can use classifiers for functional 

annotation
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David Haussler
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Gene Selection via the 
BAHSIC Family of Algorithms

Le Song, Justin Bedo,
Karsten M. Borgwardt, Arthur Gretton, Alex Smola

ISMB 07
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Testing

• 15 two-class datasets (mostly cancer), 2K-25K 
genes, 50-300 samples

• 10-fold cross validation
• Selected the 10 top features according to each 

method
– pc=Pearson’s correlation, snr=signal-to-noise ratio, 

pam=shrunken centroid, t=t-statistics, m-t = moderated t-
statistics, lods=B-statistics, lin=centroid, RBF= SVM w 
Gaussian kernel, rfe=SVM recursive feature elimination, 
l1=l1 norm SVM, mi=mutual information)

• Selection method: RFE: Train, remove 10% of 
features that are least relevant, repeat.
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Classification 
error %

Overlap btw the 10 genes 
selected in each fold

Linear kernel has best overall 
performance

L2 
dist 
from 
best

ABDBM  © Ron Shamir
# times alg was best
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Multiclass datasets

• In a similar comparison on 13 multiclass  datasets, 
linear kernel was again best.
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Rules of thumb

• Always apply the linear kernel for general 
purpose gene selection

• Apply a Gaussian Kernel if nonlinear effects 
are present, such as multimodality or 
complementary effects of different genes

• Not a big surprise, given the high dimension 
of microarray datasets, but point driven 
home by broad experimentation.
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