
Algorithms for Molecular Biology Fall Semester, 2001

Lecture 7: December 11, 2000
Lecturer: Ron Shamir Scribe: Noga Klinger and Rottem Peles1

7.1 Gene Finding

7.1.1 Motivation

There are approximately 14,397,000,000 bases in 13,602,000 sequence records as of October
2001 in GenBank. There are more than 3 billion bases of human DNA sequences and
complete DNA sequences for dozens of species available in GenBank (see Figure 7.1). More
species are being sequenced today. Not all the sequences are coding, namely are a template
for a protein. In the human genome only 2%-3% of the sequences are coding. Due to the
size of the database, manual searching of genes which do code for proteins is not practical.
This calls for developing a method for automatic finding of genes.

7.1.2 Biological Background

The central dogma describes the process of gene expression. Gene expression is the biological
process by which a DNA sequence generates a protein. It involves two steps: transcription
and translation. Transcription produces an mRNA (messenger RNA) sequence using the
DNA sequence as a template. The subsequent process, called translation, synthesizes the
protein according to information coded in the mRNA. This process is performed by sub
cellular elements called ribosomes (see Figure 7.2).
The transcription is carried out from the 5’ end to the 3’ end of the copied DNA strand.

This direction along the strand is called downstream while the opposite direction is called
upstream. The enzyme performing the transcription, RNA polymerase, starts transcription
a few bases upstream of the region that actually codes for a protein, and terminates a
few bases after the end of that coding region. The regions in both ends of the DNA coding
region which are transcribed into mRNA, but do not code the protein are called untranslated
regions (UTRs) (see Figures 7.4 and 7.10). RNA polymerase molecules start transcription
by recognizing and binding to promoter regions upstream of the desired transcription start
sites. Each promoter region has a signal which can encourage or suspend transcription. This
helps the cell control the transcription rate of the different genes. Proteins are composed of
amino acids. The ribosomes produce sequences of amino acids by translating the information

1Based on a scribe by Michal Ozery-Flato and Gil Shklarski December 11, 2000.
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Figure 7.1: Source: [3]. GenBank Statistics.

coded in the mRNA sequences. Each triplet of bases in the mRNA is a command for the
ribosomes, called codon. There are 64 different possible codons and only 20 amino acids,
thus multiple codons represent the same amino acid. The mapping from codons to amino
acids, called the genetic code, is shown in Figure 7.3. One of the codons, the start codon,
indicates the beginning of translation (as well as coding for the amino acid Methionine), and
three other codons, called stop codons, indicate end of translation. The ribosome scans the
mRNA molecule, sliding along it from its 5’ end to its 3’ end. Upon detecting a start codon
the ribosome starts generating an amino acid sequence coded by the mRNA. The process
stops when that ribosome detects a stop codon. When that happens the chain of amino
acids is detached from the Ribosome.
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Figure 7.2: Source: [2]. DNA → RNA → Protein .

7.2 Finding Genes in Prokaryotes

7.2.1 Prokaryotes

A prokaryotic cell is a cell which contains no nucleus, while eukaryotic cells have nuclei.
There are some differences between prokaryotic cells and eukaryotic cells which are relevant
to gene recognition. In prokaryotic cells most of the DNA sequence is coding for protein.
For example, almost 70% of the genome of the bacterium H.influenzea is coding. These
organisms replicate very fast, therefore less time is ’wasted’ on clever mechanisms. Each
gene is one continuous stretch of bases. That is, there are no introns in the coding region.

7.2.2 Long ORFs

Open Reading Frames (ORFs)

Any given nucleotide sequence (single DNA strand or mRNA) can be interpreted in three
possible ways, depending on where the coding starts. For example, the mRNA sequence
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Figure 7.3: Source: [7]. The genetic code. AUG is the start codon, while UAA, UAG and
UGA are the stop codons.

ACCUUAGCGUA can be translated into Threonine-Leucine-Alanine (ACC︸ ︷︷ ︸UUA︸ ︷︷ ︸GCG︸ ︷︷ ︸UA),
Proline-Stop-Arginine (ACCU︸ ︷︷ ︸UAG︸ ︷︷ ︸CGU︸ ︷︷ ︸A) or Leucine-Serine-Valine (AC CUU︸ ︷︷ ︸AGC︸ ︷︷ ︸GUA︸ ︷︷ ︸).
These three ways are called reading frames. An open reading frame (ORF) is a sequence of
codons with no stop codon.

Finding long ORFs

One way to distinguish coding regions from non-coding regions, is to examine the frequencies
of stop codons. Assuming a uniform random distribution, a stop codon is expected to be
observed every 64/3 ≈ 21 codons (since there are 3 stop codons). Average proteins are
much longer, being coded by about 1000bp (base pairs). Each coding region has only one
stop codon, which terminates the region. Therefore, one way to detect the coding regions,
is to look for long sequences of codons, without any stop codon. The algorithm that uses
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Figure 7.4: Typical prokaryotic gene structure at DNA level (not to scale).

the above idea scans the DNA sequence, looking for long ORFs in all three reading frames.
Upon detecting a stop codon, the algorithm scans backward, searching for a start codon.
This algorithm will fail to detect very short genes, as well as overlapping long ORFs on
opposite strands. Moreover, there are a lot more ORFs than genes. For example, we can
find 6500 ORFs in the DNA of the bacterium E.Coli while there are only 1100 genes.

7.2.3 Detection of Coding Regions

Codon frequencies in coding regions

A more informative method to determine coding regions, takes advantage of the frequencies
in which the various codons occur in coding regions. For example, the amino acids Leucine,
Alanine and Tryptophan are coded by 6,4 and 1 different codons respectively. In a translation
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of a uniformly random DNA sequence, these amino acids should occur in the ratio 6:4:1, but
in a protein they occur in a different ratio - 6.9:6.5:1. Therefore coding DNA is not random.
Another example of the non-uniformity of coding DNA is the fact that A or T occurs in the
third position of a codon in a rate over 90% (these statistics vary for different species).

First and Second Order Markov Chains

Non coding ORFs (NORFs) are short open reading frames, usually shorter than 100 codons.
In order to discriminate genes from NORFs, two Markov models (similar to CpG islands)
can be used. Each nucleotide is a state in the markov model. Let G denote a gene sequence
and R denote an NORF sequence. Given a sequence X1, . . . , Xn of nucleotides, we compute
the likelihood ratio:

log
P (X1, . . . , Xn|G)
P (X1, . . . , Xn|R) =

∑
i

log
AG

XiXi+1

AR
XiXi+1

where AG
XiXi+1

is the probability that xi+1 will appear right after xi in a gene. This is
based on the model that assumes that every nucleotide probability depends only on the last
nucleotide. The results as shown in 7.5 give different probabilities but the big variance makes
it useless for discrimination. Using second order markov chains gives similar results.

ORFs as Markov chains

Assuming we found all ORFs in a sequence, we can use codon frequencies to find which
ORFs are coding and which are NORFs. We translate each ORF into a codon sequence
and get 64-state Markov chain. We use a state for each codon rather than a state for each
amino acid, because codons are more informative than their translations. (There might be
a preference for a specific codon in gene expression over other codons that encode the same
amino acid ). The transition probabilities are the probabilities for each codon to follow any
other codon in a coding region. Using this model, we can compute the probability that a
given ORF is really a coding region. Figure 7.6 shows the results of this method.

Using codon frequencies

In the model described above the probability of a codon occurrence depends on the preceding
codon. We now consider a simpler model in which successive codons are independent. Let
fabc denote the frequency with which the codon abc occurs in a coding region. Given a coding
sequence a1, b1, c1, a2, b2, c2, . . . , an+1, bn+1 with an unknown reading frame, the probability
of observing the sequence of n codons appearing in the reading frame starting with a1b1c1 is

p1 = fa1b1c1 × fa2b2c2 × . . .× fanbncn
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Figure 7.5: Source: [8]. First Order Markov Model Histogram.

Similarly, the probability of observing the n codons in the second and third reading frames
are:

p2 = fb1c1a2 × fb2c2a3 × . . .× fbncnan+1

p3 = fc1a2b2 × fc2a3a3 × . . .× fcnan+1bn+1

Let Pi denote the probability of the ith reading frame being the coding reading frame (as-
suming the region is coding). Pi can be calculated as follows:

Pi =
pi

p1 + p2 + p3

The above computation can be used in a search algorithm as follows: Slide a window of size
n along the sequence, and compute Pi for each start position of the window. The Codon
Preference program, which is part of the GCG library, implements this method.
Figure 7.7 shows a the plot of log( P

1−P
), which is the log likelihood, for the three reading

frames. Each point represents the score for a 25 codon window around it. The actual genes
are plotted as rectangles at the bottom. We can see that in the reading frame matching the
upper plot, the genes are clearly recognized.
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Figure 7.6: Source: [8]. Coding regions recognition using 64 state markov model.

Figure 7.8 shows the plot of a program using only the third position bias information.
These methods depend on the accuracy of the codon frequency statistics of already found
genes. The algorithm will also have difficulty in detecting horizontal gene transfer and other
causes of heterogeneity.

7.2.4 Detection of Promoter Regions

RNA Transcription

Not all open reading frames are transcribed into genes. The transcription depends on reg-
ulatory regions that control the transcription rate. In the transcription process, an RNA
polymerase binds tightly to the promoter. The promoter is an “anchor” point, it pinpoints
where RNA transcription should begin. At the stop signal the polymerase releases the RNA
and detaches itself from the DNA.

E.Coli promoters

We will use E.Coli as an example. In E.Coli we can find the following consensus sequence
around RNA transcription start point:

nnnTTGACAnnnnnnnnnnnnnnnnnnTATAATnnnnnnNnnn

N is the transcription start point. TTGACA appears 35 bases before N , and TATAAT
(also known as TATA box or Pribnow box) appear 12 bases before N . We have here 2 anchor
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Figure 7.7: Source: [1]. Results of codon preference program.

points for the polymerase. These sequences are short but the frequency of their occurrence
is high enough to stand out. There are other common features that can be used to recognize
promoter regions which are beyond the scope of this lecture.

Positional Weight Matrix

Due to the variability of binding site sequences, exact methods cannot be used for identifying
promoter regions by the TATA box. Instead, we use a pattern search method based on
frequencies. We construct a table of statistics, fb,i, where fb,i is the frequency of the base b
in position i of the known promoter region suffixes. We assume positions are independent.
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Figure 7.8: Source: [1]. Results of codon preference program - third position bias.

Scoring Function

Let fb denote the expected frequency of the base b in the genome (the background frequency).
We calculate the likelihood of a given sequence being a TATA-box. For a sequence S =
B1B2 . . . B6 the likelihood of it being a TATA-box is:

P (S|S is a TATA-box) =
6∏

i=1

fBi,i

Similarly, the likelihood of observing it, given it is a ”non-promoter” is:

P (S|S is not a TATA-box) ≈ P (S) =
6∏

i=1

fBi
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The log-likelihood ratio is therefore:

log

(
P (S|promoter)

P (S|non-promoter)
)
= log

(∏6
i=1 fBi,i∏6
i=1 fBi

)
=

6∑
i=1

log

(
fBi,i

fBi

)

This model has the disadvantage that it does not exploit all of the known information (i.e.
dependencies between bases occurring in the promoter regions etc). The fBi

are given in
Figure 7.9.

Figure 7.9: Positional weight matrix for TATA box.

Promoter variation

Promoters aren’t uniform like the stop codons etc. A possible reason is that nature uses
the variation in promoters to control expression levels of various genes. That is, the rate
of the gene expression process depends on the conservation of the promoter region. This
hypothesis is supported by results from chemistry. Experiments show that when an RNA
polymerase molecule gets bounded to the promoter region for initial transcription, there is
an 80% correlation between the weight matrix score of the region and the binding energy.
This means that if the promoter region is very conserved, i.e., very similar to the consensus
sequence, then the binding energy barrier is low and thus the protein production rate is
higher (because the RNA polymerase can easily bind to the protein coding region). When
the difference from the consensus sequence is greater, the energy barrier is higher, and the
protein production is slower. One consequence of this insight is that finding regulatory
sequences is an inherently stochastic problem.
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7.3 Gene Finding in Eukaryotes

7.3.1 Eukaryote gene structure

The gene structure and the gene expression mechanism in eukaryotes are far more compli-
cated than in prokaryotes. In typical eukaryotes, the region of the DNA coding for a protein
is usually not continuous. This region is composed of alternating stretches of exons and in-
trons. During transcription, both exons and introns are transcribed onto the RNA, in their
linear order. Thereafter, a process called splicing takes place, in which the intron sequences
are excised and discarded from the RNA sequence. The remaining RNA segments, the ones
corresponding to the exons, are ligated to form the mature RNA strand. A typical multi-exon
gene has the following structure (as illustrated in Figure 7.10). It starts with the promoter
region, which is followed by a transcribed but non-coding region called 5’ untranslated re-
gion (5’ UTR). Then follows the initial exon which contains the start codon. Following the
initial exon, there is an alternating series of introns and internal exons, followed by the ter-
minating exon, which contains the stop codon. It is followed by another non-coding region
called the 3’ UTR. Ending the eukaryotic gene, there is a polyadenylation (polyA) signal:
the nucleotide Adenine repeating several times. The exon-intron boundaries (i.e., the splice
sites) are signaled by specific short (2bp long) sequences. The 5’(3’) end of an intron (exon)
is called the donor site, and the 3’(5’) end of an intron (exon) is called the acceptor site.

7.3.2 Typical figures: vertebrates

We will use the example of vertebrates. On average, a vertebrate gene is around 30Kb
long, out of which the coding region is only about 1-2Kb long. The average coding region
consists of 6 exons, each about 150bp long. The promoter is the DNA sequence to which
the RNA polymerase binds to begin transcription. The promoter is about 6bp long and
appears about 30bp upstream of the transcription start site (TSS). Huge deviations from
the average are observed. For example, the gene called dystrophin is 2.4MB long. Blood
coagulation-factor VIII has 26 exons whose size varies from 69bp to 3106bp. Intron number
22 produces 2 transcripts unrelated to this gene, one for each strand. Other typical figures
are transcription rate of less than 50b/sec and splicing process taking several minutes. Figure
7.11 shows typical length distribution of introns and exons in human genes.

7.3.3 Markov Sequence Models

There are several models for distinguishing coding regions from non-coding regions that use
Markov chains. These models are based on statistical differences between coding and non-
coding regions. A popular model is based on examining windows of 6 consecutive bases in the
DNA sequence. This is a fifth order Markov model. We prepare in advance two probability
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Figure 7.10: Typical eukaryote gene structure.

tables one for coding regions and one for non-coding regions. Each table will be of size 46.
For each 6-tuple of bases the table will register the probability of observing the sixth base,
given the 5 preceding bases appeared in our window. Given a sequence we will estimate the
likelihood of it being coding using those 2 tables. This model does not take into account any
reading frame information. It is therefore called a homogeneous model. A non-homogeneous
model is a model that has different tables for the three possible reading frames. The problem
with such models when dealing with eukaryote genome is that sometimes the exons are too
short and that it is hard to detect splice junctions (donor and acceptor sites).

7.3.4 Splicing and Splice junctions

Splicing is the removal of introns performed by complexes called spliceosomes. The spliceo-
somes are enzymes containing both proteins and snRNAs. The snRNA recognizes the splice
sites through RNA-RNA base-pairing. The recognition of the splicing sites must be precise
since any error can shift the reading frame making nonsense of its message. Many genes have
alternative splicing. This means that in different variations of a gene some exons are not
used. This happens in more than 50% of the genes, and on the average each gene has more
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Figure 7.11: Distribution of intron and exon lengths in human.

than 2 variations. Figure 7.12 shows a consensus sequence for a typical eukaryote gene. We
can see that in the exon-intron junctions there is great similarity to the consensus sequence
(i.e. the frequencies there are close to 100%).
The figure shows an anchor point in the intron called branch point that appears frequently.

Another statistical characteristic is a pyrimidine (bases C,T) rich area that appears between
the branchpoint and the acceptor site. This naturally leads to using algorithms based on
position specific weight matrices. This idea does not exploit all the information (reading
frames, intron/exon states, etc) and is not suitable for short genes. Consequently, we will
look for integrated approaches.

7.3.5 Length Distribution

A possible Hidden Markov Model (HMM)

Figure 7.13 shows a simple hidden Markov model for identifying a gene. Assuming probability
p for staying in an exon state, the exon state length has a geometric distribution:

P (exon of length k) = pk(1− p)
Since an HMM is a memory-less process, the only length distribution that can be modelled
is geometric.
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Figure 7.12: Intron-Exon splice junctions.

Figure 7.13: Simple HMM for eukaryotic genes.

Exon Length Distribution

Unfortunately, exon length does not have a geometric distribution. The length seems to
have a functional role on the splicing itself. Typically, exons that are too short (under 50bp)
leave no room for the spliceosomes. To operate and exons that are too long (above 300bp)
are being difficult to locate. This leads us to search for another model for exon length.

7.3.6 Generalized HMM

Introduction to GHMM

As we have seen, a Hidden Markov Model (HMM) is a Markov chain in which the states are
not directly observable. Instead, the output of the current state is observable. The output
symbol for each state is randomly chosen from a finite output alphabet according to some
probability distribution.
A Generalized Hidden Markov Model (GHMM) generalizes the HMM as follows: in a

GHMM, the output of a state may not be a single symbol. Instead, the output may be
a string of finite length. For a particular current state, the length of the output string as
well as the output string itself might be randomly chosen according to some probability
distribution. The probability distribution need not be the same for all states. For example,
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one state might use a weight matrix model for generating the output string, while another
might use an HMM. Formally a GHMM is described by a set of five parameters:

• A finite set Q of states.

• Initial state probability distribution π.

• Transition probabilities Ti,j for i, j ∈ Q.

• Length distributions f of the states (fq is the length distribution for state q).

• Probabilistic models for each of the states, according to which output strings are gen-
erated upon visiting a state.

GenScan Model

The probabilistic model for gene structure as suggested by Berge and Karlin [4], is based on
a GHMM (see Figure 7.14). The states of the GHMM correspond to the different functional
units on a gene, like promoter regions, exon, intron etc. The transition between the states
ensure that the order in which the model visits various states is biologically consistent. The
states for an intron and an internal exon are subdivided according to phase offset to the
codon frames. For 0 ≤ i ≤ 2, the state Ii (respectively, Ei) corresponds to introns (exons)
starting i positions after a codon starts. Note that the only transition from Ii to any internal
exon state is to Ei. The other states in the model are: F corresponding to the 5’ UTR, P
corresponding to the promoter region, T corresponding to the 3’ UTR, A corresponding to
the Poly A signal and Esngl corresponding to the exon state when there are no introns. Also
note that the model is divided into two symmetric halves. The upper half of the figure (states
with a “+” superscript) models a gene on the forward strand and the lower half models a
gene on the backward strand of the genomic sequence. If the parameters (like π, ai,j, etc.)
are suitably determined, then the model can be used for gene structure prediction in the
following manner.

Prediction

Definition 7.1 A parse Φ of a sequence S of length L is an ordered sequence of states
(q1, . . . , qt) with an associated duration di to each state (L =

∑t
i=1 di).

Parse is actually a possible annotation to a base sequence, matching each subsequence with
appropriate functional unit of a gene. Suppose we are given a parse Φ and a sequence S. Let
Si be the segment of S produced by qi, and let P (Si|di) be the probability of generating Si
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Figure 7.14: Source: [4]. GenScan Model.
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by the sequence generation model of state qi with length di. The probability that the model
went through the states to create S according to Φ is:

P (Φ, S) = πq1fq1(d1)P (S1|d1)
t∏

k=2

Tqk−1qk
fqk
(dk)P (Sk|dk)

Suppose we are given a DNA sequence S and a specific parse Φ, both of length L. The con-
ditional probability of the parse Φ given that the generated sequence is S, can be computed
as:

P (Φ|S) = P (Φ, S)

P (S)
=

P (Φ, S)∑
Φi is a parse of length L

P (Φi, S)

The most probable parse, Φopt, can be computed by Viterbi like algorithm. P (S) can be
computed by a forward-like algorithm. This algorithm is very time consuming and difficult
to train.

7.3.7 GENSCAN

GENSCAN, a computer program for gene identification, uses this model. In this section we
shall consider how GENSCAN determines various parameters of the model to get meaningful
results. The program uses a training set of completely sequenced genes from GenBank.

C+G Content

The C+G content (isochore) of the genomic sequence has a strong effect on gene density (see
Figure 7.15), gene length etc. For example: gene density in C+G rich regions is five times
higher than moderate C+G regions and 10 times higher than rich A+T regions. Thus, for
training GENSCAN the training set is divided into four categories depending on the C+G
content of the sequence. The categories are:

1. ( < 43% C+G)

2. (43 -51% C+G)

3. (51 - 57% C+G)

4. ( > 57% C+G)

For each of these categories, separate initial state probabilities, transition probabilities and
state length distributions are computed.
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Figure 7.15: Source: [4]. Gene density and structure as a function of C+G composition.
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Initial state probabilities

The initial state probabilities should be proportional to the frequencies with which various
functional units occur in the actual genomic data. For example, if the estimated proportion
of the non-coding intergenic region is 80%, then initial probability for the state N (see Figure
7.14) must be around 0.8.

Transition probabilities

Transition probabilities are also known to vary quite a bit with the C+G content (although
not as much as the initial probabilities). Thus, transition probabilities are also separately
computed for each of the categories. Of course, while estimating these probabilities, it is
ensured that the transitions are biologically permissible. For example, some transitions are
obligatory (like P+ → F+ ). Such transitions are assigned probability one.

State length distributions

Different functional units on a gene have different lengths. For example, an average internal
exon is about 150bp long, while introns of the order of 1Kbp length are not uncommon.
Thus, in our probabilistic model of gene structure, different states need to have different
length distributions. Intron lengths are known to vary dramatically with the C+G content
category. For example, the mean intron length for category I ( < 43% C+G) of the training
set is 2069bp as opposed to only 518bp for category IV ( > 57 % C+G) (see Figure 7.15).
Thus, the program uses separate distributions for intron states in each category. The learning
set shows quite different length distributions for initial exons, internal exons and terminal
exons. Consequently, different distributions are used for them. It is important to note here
that the length of an internal exon has to be consistent with the phase of its adjacent introns.
For example, if the preceding state is I2 and the succeeding state is I1, then the generated
internal exon length (for state E2 in this case) must be 3n + 2 for some n. n is therefore
generated randomly according to the length distribution and then a string of length 3n + 2
is generated according to the string generating model for that state. For the 5’ UTR and 3’
UTR states, geometric distributions with mean values of 769bp and 457bp are used.

Signal models

GENSCAN uses different signal models to model different functional units. One of the models
is a weight matrix model (WMM) in which every position has its own specific independent
distribution. It is used for modeling polyadenylation signals, translation initiation signal,
translation termination signal and promoters. Another model is the weighted array model
(WAM). The WAM model is a generalization of the WMM model that allows dependencies
between adjacent positions. The WAM model is used for the recognition of the splice sites
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([9, p. 61]). Correct recognition of these sites greatly enhances the ability to predict correct
exon boundaries. This modeling of splice sites gives GENESCAN a substantial improvement
in performance.

7.3.8 Performance of GENSCAN

The performance of GENSCAN has been compared to that of other computer programs writ-
ten for gene finding. The Burset/Guigo set of 570 vertebrate multi-exon gene sequences [5]
was used as the test set. The results (as reported in [5]) have been quite encouraging. Both
at the nucleotide level as well as the exon-level, GENSCAN’s accuracy has been significantly
better than other programs (see Figure 7.16).

Important features of GENSCAN include:

• Identification of complete intron/exon structures of a gene in genomic DNA.
• The ability to predict multiple genes and to deal with partial as well as complete genes.
• The ability to predict consistent sets of genes occurring on one or both strands of the
DNA.

• Predicts both optimal annotation and sub-optimal exons.
Although the results are good they are still not good enough for massive gene finding.

GENSCAN has 80% chance for detecting an exon. If a gene has more than one exon the
probability of correctly detecting all of them declines rapidly. On the positive side a more
permissive figure of merit, the prediction per bp, is over 90%. For GenScan results see Figure
7.17.

7.3.9 Spliced Alignment

Given a genomic sequence and a set of candidate exons, the spliced alignment algorithm [6]
explores all possible exon assemblies and finds a chain of exons which best fits a related target
protein. The set of candidate exons is constructed by considering all blocks between candi-
date acceptor and donor sites (i.e., between AG dinucleotide at the intron-exon boundary
and GU dinucleotide at the exon-intron boundary) and further filtration of this set. To avoid
losing true exons, the filtration procedure is designed to be very delicate, and the resulting
set of blocks may contain a large number of false exons. Instead of trying to identify the
correct exons by further pursuit of statistical methods, the algorithm considers all possible
chains of candidate exons and finds a chain with the maximum global similarity to the target
protein.
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Figure 7.16: Source: [4]. Accuracy of GENSCAN for different signal and exon types.
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Figure 7.17: Source: [4]. GENSCAN results.
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Definition of the spliced alignment problem

We start with the formal definitions and statement of the spliced alignment problem.

• Let G = g1g2 . . . gn be a string of letters and let B = gi . . . gj and B
′ = gi′ . . . gj′ be

substrings of G. We write B < B′ if j < i′, i.e. if B ends before B′ begins.

• A sequence Γ = {B1, . . . , Bk} of substrings of G is a chain if B1 < B2 < B3 < . . . < Bk.

• Let B1 ∗ B2 denote the concatenation of B1 and B2. We denote the concatenation of
all the strings from Γ by Γ∗.

• Given two strings G and T , let S(G, T ) be the score of the optimal global alignment
between them.

Problem 7.1 Spliced alignment
Instance: A new genomic sequence G = g1 . . . gn. A target sequence (related protein)
T = t1 . . . tm. A set B = B1, . . . , BL of blocks (substrings of G).
Question: Find a chain Γ of blocks from B such that S(Γ∗, T ) is maximum.

Network formulation

The spliced alignment problem can be formulated in network terms. The set of blocks
B = {Bi}L

i=1 is represented by a set of nodes {vi}L
i=1. A node vi is connected to a node vj if

Bi < Bj. The requested solution is the best alignment between the reference sequence (T )
and a path in the network.

Spliced alignment algorithm

To solve the problem, we use dynamic programming.
We start with a few notations:

• A j-prefix of block Bk = gi . . . gj . . . gl is Bk(j) = gi . . . gj.

• If Bk contains the position i, the i-prefix of Γ∗ = B1 ∗ ... ∗Bk is Γ
∗(i) = B1 ∗ ... ∗Bk(i).

• For a block Bk = gi . . . gj First(Bk) = i and Last(Bk) = j.

• A Chain Γ∗ = B1∗ . . .∗Bk ends at Last(Bk), and it ends before position i, if Last(Bk) <
i.

• B[i] is a set of blocks from B ending before i, i.e. if Bk ∈ B[i] then Last(Bk) < i.

• S(i, j, k) = max
Γ | Bk∈Γ

S(Γ∗(i), T (j)).
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The recursive relation of S(i, j, k) is :

S(i, j, k) = max




S(i, j − 1, k) + δindel

S(i− 1, j − 1, k) + δ(gi, tj) if i �= First(Bk)
S(i− 1, j, k) + δindel if i �= First(Bk)
max

Bl∈B[i]
S(Last(Bl), j − 1, l) + δ(gi, tj) if i = First(Bk)

max
Bl∈B[i]

S(Last(Bl), j, l) + δindel if i = First(Bk)

The Final score max
Bk∈B

S(Last(Bk), m, k) can therefore be computed in time complexity of

O(nmL2) and in space complexity of O(nmL).

Improved spliced alignment algorithm

Define P (i, j) = max
Bl∈B[i]

S(Last(Bl), j, l). The recursive relation for S(i, j, k) can be presented

as:

S(i, j, k) = max




S(i, j − 1, k) + δindel

S(i− 1, j − 1, k) + δ(gi, tj) if i �= First(Bk)
S(i− 1, j, k) + δindel if i �= First(Bk)
P (i, j − 1) + δ(gi, tj) if i = First(Bk)
P (i, j) + δindel if i = First(Bk)

The value of P (i, j) is obtained by an alignment of Γ ending at the i’th position (=P (i, j−1))
or exactly before the i’th position (=max

k
S(i− 1, j, k)). Therefore, the recursive relation for

P (i, j) is:

P (i, j) = max{P (i, j − 1),max
k
S(i− 1, j, k)}

The space complexity remains O(nmL). The time complexity is practically reduced but
the worst case remains O(nmL2)).

Results

The number of exon assemblies is huge; however, the spliced alignment algorithm is fast
enough to process large genomic fragments (up to 180,000 nucleotides) containing multi-
exon genes (more than 30 exons). After the highest-scoring exon assembly is found, the
hope is that it represents the correct exon-intron structure. This is almost guaranteed if a
protein sufficiently similar to the one encoded in the analyzed fragment is available (99%
correlation between predicted and actual genes with mammalian targets). This method is
good only if you have the right protein to compare to. It can identify up to 53% of all genes.
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