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The basal ganglia are part of a loop connecting the entire cortex to the frontal

cortex.  Despite a large body of clinical and experimental data, the processing they

perform remains obscure.  Recent physiological findings of uncorrelated activity of

basal ganglia neurons contradict available anatomical data showing the existence of

extensive convergence and lateral inhibitory connections. This discrepancy leads us

to propose that the basal ganglia use a combination of unsupervised and reward

driven learning to reduce the dimensionality of cortical information. Simulations

implementing key aspects of the cortico-striato-pallidal circuitry predict that during

learning the efficacy of the lateral synapses diminishes and neural activity becomes

uncorrelated. Through this process the basal ganglia achieve efficient extraction of

cortical information which is probably used by the frontal cortex for planning

upcoming action.

The critical role played by the basal ganglia in the pathogenesis of various

movement disorders such as Parkinson’s and Huntington’s diseases has been known for

many years 1.  Later research has indicated that the basal ganglia participate in everyday

complex behaviors that require coordination between cognition, motivation and movements
2.  The basal ganglia are comprised of many nuclei with complex interactions between the

neurons within each nucleus and between the nuclei 3.  A major pathway in the basal

ganglia circuitry is from most cortical areas to the striatum and then to the output stages of

the basal ganglia, e.g., the internal segment of the globus pallidus (GPi).  The GPi output

projects back to the frontal cortex through thalamic relay stations (Fig. 1a).  This pathway is

characterized by a high degree of anatomical convergence. The number of cortical neurons

projecting to the striatum is two orders of magnitude greater than the number of striatal

neurons 3 and an additional decrease of the same magnitude occurs from the striatum to the

GPi 4.  Although quantitative studies of the increase in the neuronal populations at the

pallido-thalamic and thalamo-cortical levels are still lacking, most anatomical studies

indicate that the bottle-neck is at the pallidal level 5,6.

The GABAergic projection neurons compose the vast majority of the basal ganglia

neurons 3.  The GABAergic projections also form massive collateral anatomical connections

in the striatum 3 and in the pallidum 7,8.  However, the prediction of strong collateral inhibition

has been thwarted by recent physiological studies in which no evidence was found for

functional synaptic interactions between striatal neurons 9.  Cross-correlation tests of the

firing synchrony in the striatum 10,11 and pallidum 12 have also revealed no correlation
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between the recorded neurons in contrast to the generally correlated activity of neighboring

neurons in the cortex 13.

This anatomical and physiological data enforces three major constraints on any

model of basal ganglia function: Massive stepwise funneling architecture, extensive network

of lateral inhibitory connections devoid of functional significance, and the absence of intra-

nuclear correlation of striatal and pallidal firing.  Previous models of the basal ganglia have

been motivated primarily by the anatomical evidence of the strong lateral connectivity to

assume mutual inhibition between striatal neurons 14, and view the basal ganglia as an

action selection network governed by mutual inhibitory domains 15-17.  Their key idea being

that the cortex generates many possible actions and that the basal ganglia select a single

action among those actions.  However, these models do not incorporate the recent

physiological data concerning the intra-nuclear interactions, and erroneously predict strong

lateral interactions and negative correlation of intra-nuclear neuronal firing.  Moreover they

do not address the massive stepwise funneling structure typical to the basal ganglia.

In this study we report on a new hypothesis that explains the above-mentioned

discrepancies.  The hypothesis is based on the proposal that the basal ganglia perform

dimensionality reduction of the large and complex information space spanned by the activity

of cortical neurons.  We show that a neural network featuring key aspects of the known

anatomical and physiological facts that characterize the basal ganglia is ideally suited to

perform such a process.  Finally, we use this computational model to provide explicit

predictions for future in-vitro and in-vivo experiments.

The term dimensionality reduction describes the process of projecting inputs from a

high dimensional data space to a considerably smaller one.  Efficient reduction is achieved

when all or most of the information contained within the original space is preserved.

Dimensionality reduction in the nervous system can be depicted as compression of the

information encoded by a large neuronal population to a smaller number of neurons.  This

process is eminently useful because it allows the transmission of large amounts of

information within a limited number of axons.  Further, the process allows exposure of

neurons in the final (output) layer to maximal incoming information using the anatomically

limited number of synapses that each neuron can receive.  Dimensionality reduction has

been proposed as an important part of processing in sensory systems, enabling efficient

identification by removal of redundancies in the sensory inputs.  A classical method for

performing dimensionality reduction is principal component analysis (PCA).  PCA retrieves
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the orthogonal axes of the input data that display maximal variance and can be used to form

its best linear approximation.  Theoretical studies demonstrate that neural networks can

extract principal components using a competitive Hebbian learning rule and lateral inhibitory

connectivity 18-20.  As will be shown the properties of these networks closely resemble the

functional properties of the basal ganglia network.

To examine the hypothesis that the basal ganglia circuitry performs dimensionality

reduction, we studied a simulated neural network consisting of a feed-forward network of

neurons with linear activation function and lateral connectivity within the layers (Fig. 1b).

Learning is Hebbian for the feed-forward weights and anti-Hebbian for the lateral weights.

The synaptic weights are constrained according to the known physiology and anatomy of

the basal ganglia.  Thus, positive weights are applied at glutamatergic synapses and

negative values at GABAergic ones.  The network is presented with a series of input

patterns. The elements of each pattern are correlated (see Methods section) modeling

cortical population vector inputs 21.  Initially, the network performs sub-optimal information

compression and the output neurons are correlated.  This correlation causes an increase in

the absolute value of the efficacies of the inhibitory lateral synapses (anti-Hebbian learning,

Fig. 2a) and changes in the efficacies of the feed-forward connections (according to

Hebbian learning rules, Fig. 2b).  These changes, in turn, result in decorrelation of neuronal

activity within the output layer (Fig. 2c) and improvement in information compression (Fig

2d).  Overall, the modification of the neural circuit leads to the formation of optimal

information compression and manifests important features of the basal ganglia:

uncorrelated activity of the output neurons and a diminished efficacy of lateral synaptic

interactions.

Dimensionality reduction in a behaving animal should be affected not only by the

statistical properties of the input patterns but also by their behavioral significance.  The

relative significance of the input is determined by its ability to predict reward to the animal.

Performing such reward-related dimensionality reduction in the basal ganglia can be

achieved through interaction of the aforementioned feed-forward network with a

reinforcement signal.  A candidate signal is received in the basal ganglia from striatal

cholinergic interneurons 2 and from dopaminergic neurons in the substantia nigra pars

compacta (SNc) which are known to respond to reward-related events 22. The SNc terminals

in the striatum are part of a complex architecture comprised of a cortical glutamatergic

projection which terminates on the head of a dendritic spine of a striatal projection neuron,

and a nigro-striatal dopaminergic synapse located on the neck of the same dendritic spine
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23.  Through this complex synaptic structure the reinforcement modulates the access of

striatal neurons to cortical inputs 24. The mechanism of the reinforcement signal formation

and its interaction with the cortico-striatal transmission has been modeled extensively 14 to

explain the role of the basal ganglia in the expression of learned responses.  We added

these reward-related properties to the model to generate Reinforcement Driven

Dimensionality Reduction (RDDR).  The simulation utilized a multi-layer feed-forward

network similar to the one described previously, but now the feed-forward network interacts

with a reinforcement signal provided at the intermediate (striatal) layer.  The extraction

becomes discriminative, performing better for reward related inputs and worse for events

not related to reward prediction (Fig. 3).

The RDDR mechanism also offers new explanations to some open questions in the

pathophysiology of movement disorders, especially Parkinson’s disease.  The model

clarifies why the effects of focal lesions in the normal basal ganglia are minimal 
25

 while the

effects of abnormal levels of dopamine are overwhelming.  In response to local lesions the

network adapts and reorganizes its connections losing only the minor components while

maintaining the principal ones, thereby minimizing the information loss (Fig. 4a).  On the

other hand dopamine depletion (a negative reinforcement signal 
22

), as in Parkinson’s

disease, substantially damages the RDDR process since no discrimination is possible

between important and negligible information (Fig. 4b).  Conventional dopamine

replacement therapy restores the background level of dopamine.  However, the pulsatile

nature of the treatment causes inevitable random fluctuations in dopamine levels in the

striatum resulting in the generation of random encoding and the development of dyskinesia.

The RDDR model emphasizes the role of the basal ganglia in extraction and pre-

processing of information from the whole cortex.  It provides an interesting explanation for

the apparent lack of evident physiological function of the lateral inhibitory connections and

uncorrelated activity observed in the previous studies of the basal ganglia.  These finding

were observed in studies carried out in adult animals that were not engaged in learning of

new skills and situations, where the RDDR model maintains that the lateral connections are

functional only during the learning phase, after which their efficacy vanishes.  The changes

in the lateral connections are augmented by the parallel changes in the feed-forward

projections to cause the output to become uncorrelated.

Major facts that were not implemented yet in the basic RDDR model can be

integrated into it.  Neurons in GPi are almost linear in their I-f (input current/firing rate) curve
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26, whereas striatal 27 and thalamic 28 projection neurons are highly non-linear in their

response.  Interestingly, multi-layer PCA networks containing two such non-linear layers and

a bottleneck linear layer perform better information extraction than linear PCA 29.  The

complexity of the model is further increased since the cortico-basal ganglia-cortico circuit is

not merely a feed forward network but a partially closed loop.  Major sources of input to the

striatum are the intralaminar thalamic nuclei and the frontal cortex that receive basal ganglia

output.  We hypothesize that the basal ganglia perform dimensionality reduction of the

cortical neural activity representing the present state of the animal.  The reduced information

is projected to the frontal cortex that uses it for planning future actions. This recurrent

processing may therefore explain the major role of the basal ganglia circuitry in sequential

behavior 30.

The RDDR model, like any model, encompasses only those elements that are

assumed to be the most significant to the function of the actual neural network.  However,

the model provides a novel perspective on basal ganglia function, suggesting answers to

fundamental questions in the field and yielding specific testable predictions.  From a high-

level functional perspective, the RDDR model has two main advantages: It enables the

efficient transfer of information from all over the cortex to executive regions in the frontal

cortex via a very small number of connections.  It also provides a vehicle by which

reinforcement learning (requiring a complex tri-synaptic structure to carry out the multi-

Hebbian learning rules involved) may be carried out in the brain in a central, parsimonious

location.  The model predicts an increase in correlated activity and increased synaptic

efficacies of lateral connections within the basal ganglia during periods of network

reorganization.  Such reorganization occurs in young animals, in adult animals following

focal lesions or in animals during intensive learning periods.  The model can also be tested

in vitro by examining the pertaining cellular learning rules and the effects of dopamine upon

them.  We believe that combining these future experiments with further theoretical insights

will shed new light on the basic functions of the basal ganglia in health and disease.

Methods

The simulations are based on a feed-forward neural network for performing PCA

using lateral inhibition 19,20.  The neural network is comprised of three layers: the first layer

representing the cortical input, an intermediate layer corresponding to the striatum and an

output layer representing the GPi (Fig. 1b). The network weights are constrained to either

positive or negative values to reflect the known neurotransmitter physiology. The feed-
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forward weights between the input and intermediate layers are limited to positive values

(corresponding to glutamatergic excitatory synapses).  The feed-forward weights between

the intermediate and output layers and the lateral weights in both processing layers are

constrained to negative values (corresponding to GABAergic inhibitory synapses).  To

implement reinforcement driven dimensionality reduction, a reinforcement signal is

combined with the feed-forward input at the intermediate layer to create a multi-Hebbian

learning rule, simulating the complex cortico-SNc-striatal synapses.  The reinforcement

signal is positive for reward-related events and zero for non reward-related events (baseline

dopamine levels). Dopamine depletion as in Parkinson’s disease is modeled by negative

reinforcement values.

Each input example pattern (c) is an N dimensional real valued vector.  Each

element of the input vector is generated from a linear transformation of a K dimensional

source vector (K<N), whose components are normally distributed i.i.d. variables.  This

procedure generates N dimensional input patterns that essentially lie within a K dimensional

subspace, thus enabling the complete reduction of the inputs into a K dimensional output

space. For the study of selective reinforcement in the RDDR model, several distinct subsets

of input patterns were generated.  Each subset is characterized by a distinct source to input

transformation matrix, receiving a specific reward level.

The intermediate layer activity (s) is

(1) ∑ ∑
= =

⋅+⋅=
N

j

M

j
jijjiji sacws

1 1

.

The learning rule for the feed forward weights (w) between the input and the intermediate

layer is a competitive multi-Hebbian rule, combining feed-forward and reinforcement signals

(2) 0,][ 2 ≥⋅−⋅⋅⋅=∆ ijijijiij wwscsrw η

and the learning rule for the intermediate layer lateral weights (a) is a competitive anti-

Hebbian rule

(3) 00,][ 2 =≤⋅+⋅−=∆ iiijijijiij aaasssa η .

The output layer activity (g) is

(4) ∑ ∑
= =

⋅+⋅=
M

j

K

j
jijjiji gbsug

1 1

.

The learning rule for the feed forward weights (u) between the intermediate and the output

layer is a competitive Hebbian rule



Bar-Gad et al., 1998

7

(5) 0,][ 2 ≤⋅−⋅⋅=∆ ijijijiij uugsgu η

and the learning rule for the output layer lateral weights (b) is competitive anti-Hebbian rule,

analogous to (3)

(6) 00,][ 2 =≤⋅+⋅−=∆ iiijijijiij bbbgggb η .

To measure the information loss of the network due to the RDDR process, the K

dimensional representation of the input patterns in the output layer is expanded back to a N

dimensional space to create the reconstructed, decompressed pattern.  The reconstruction

error is the mean squared difference between the original and reconstructed elements over

all input patterns.

The simulations employ an input layer of 16 neurons, an intermediate layer of 8

neurons and an output layer of 4 neurons. The learning rate (η), for both feed-forward and

lateral weights is 0.0002.  The reinforcement signal was 1 for positive reinforcement and -

0.1 for negative reinforcement.  The feed-forward weights were initialized to random values

and the lateral weights were initialized to zero.
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(a)    (b)

Figure 1. Structure of the reinforcement driven dimensionality reduction network

(a) Schematic diagram of the cortico-basal ganglia-cortical circuit (black - layers

incorporated in the model, gray- layers not included in the model).

(b) The model is composed of a three-layered feed-forward network simulating the cortico-

striato-pallidal circuit with lateral inhibitory connections at the intermediate (striato) and

output (pallidal) layers. A reinforcement signal is provided at the intermediate layer.

Arrow-head connections represent glutamatergic excitatory synapses, square-head

connections represent GABAergic inhibitory synapses and round-head connections

represent dopaminergic synapses.
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Figure 2. The learning phase of the dimensionality reduction network.

The following variables are displayed as a function of the number of input examples

presented to the network.

(a) Mean value of the lateral weights of the output (pallidal) layer.

(b) Mean change in the values of feed forward intermediate to output (striato-pallidal)

weights.

(c) Correlation between neurons of the output (pallidal) layer (solid line) and correlation of

the neurons of the input (cortical) layer (dotted line).

(d) Information loss due to the compression (reconstruction error).
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Figure 3. Selective reinforcement driven dimensionality reduction.

The mean reconstruction error of input patterns in a network receiving inputs from four

different sources.

(a) All patterns receive equal reinforcement.

(b) Selective reinforcement. Reinforced patterns (solid line) and non-reinforced patterns

(dotted line).
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 (a)                                                                             (b)

Figure 4. Effects of simulated lesions and dopamine depletion on information

compression.

(a) Effects of focal lesions in the output layer (GPi) on the reconstruction error. 25% of the

neurons are removed after every 100,000 examples. Each lesion is followed by a sharp

increase in the reconstruction error that decreases gradually as the network rearranges

to extract the principal components.  The increase in the steady state level of the

reconstruction error is hyper-linear since the minor components are the first to be lost.

(b) Effects of dopamine depletion on the reconstruction error. The network receives

constant negative reinforcement after 100,000 examples, causing a loss of its

compression capabilities in an increasing manner.
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