
Neuronal Regulation vs Synaptic Unlearningin Memory Maintenance MechanismsDavid Horn and Nir LevySchool of Physics and AstronomyTel Aviv University, Tel Aviv 69978, IsraelandEytan RuppinDepartments of Computer Science & PhysiologyTel Aviv University, Tel Aviv 69978, IsraelApril 21, 1998AbstractHebbian learning, the paradigm of memory formation, needs further mechanisms toguarantee creation and maintenance of a viable memory system. One such additionalmechanism is Hebbian unlearning, a process hypothesized to occur during sleep. Itcan remove spurious states and eliminate global correlations in the memory system.The problem of spurious states is unimportant in the biologically interesting case ofmemories that are sparsely coded on excitatory neurons. Moreover, if some memoriesare anomalously strong and have to be weakened to guarantee proper functioning ofthe network, we show that it is advantageous to do that by neuronal regulation (NR)rather than synaptic unlearning. Neuronal regulation leads to dynamical maintenanceof memory systems that undergo continuous synaptic turnover. This neuronal basedmechanism, regulating all excitatory synapses according to neuronal average activity,has recently gained strong experimental support. NR achieves synaptic maintenanceover short time scales by preserving the average neuronal input �eld. On longer timescales it acts to maintain memories by letting the stronger synapses grow to their upperbounds. In aging, NR further increases the synaptic values to overcome the loss ofsynaptic degredation.1 IntroductionIn a recent viewpoint article, van Hemmen[1] has reviewed problems caused by Hebbianlearning in some memory models, and the unlearning method that resolves them. Un-learning, in this context, is the idea of applying Hebbian learning with a reversed sign toundesired states, such as spurious mixed states in a Hop�eld model[2]. This idea was putforward in 1983 by Crick and Mitchison[3] and by Hop�eld, Feinstein and Palmer[4]. In0



his review paper, van Hemmen discusses the motivation of this approach and describes thereasons for its success. He puts unlearning in the larger context of eliminating undesirableglobal correlations between memories and performs thorough simulations to substantiatethe theory. Nonetheless the simulations cannot be extended to the biologically interestingcase of low coding. Moreover, the problem of spurious states is absent in models of sparsecoding.The one situation that may need a cure of an unlearning type is the case of pathologicattractors[5, 6]. This concept refers to memories in an associative memory model, thatpossess anomalously large basins of attraction. An associative memory system that performsfree recall from random stimuli, and then learns in a Hebbian fashion the memories it recalls,can fall into a pathologic behavior in which some basins of attraction grow exponentiallyand overshadow all other memories. Obviously this should be avoided in functional memorysystems.We have found a cure for the problem of pathologic attractor formation while tryingto address a completely di�erent problem, namely, the question how can memories bemaintained for long time in the face of continuous metabolic turnover of synapses. Wehave presented[7] a novel solution based on a neuronal regulation (NR) mechanism thatacts to maintain neuronal activity. This mechanism operates in conjunction with randomactivation of the memory system, and is able to counterbalance degradation of synapticweights. At the same time, it normalizes basins of attraction of memories, thus preventingthe creation of pathologic attractors.Activity-dependent neural regulatory processes have been previously observed experi-mentally[8] and studied theoretically[9, 10]. The main new feature introduced in our workis the view of NR as a common change in the synaptic e�cacies of a neuron that, dependingon the neuron's activity, keeps the relative weights of di�erent synapses unchanged. Thiskey feature has recently received direct experimental support from the work of Turrigiano1



et al: [11], showing that neocortical pyramidal neurons regulate their �ring rates by scalingthe strength of their synaptic connections up or down as a function of activity. This isa slow process, a�ecting AMPA-type receptors that mediate excitatory synaptic transmis-sion. Just as in the model[7], it produces long-lasting regulation in the desired multiplicativepost-synaptic fashion.In Section 2 we briey describe our model. We show that there exists an analogy betweenNR and unlearning, as both mechanisms weaken memories that are too strongly retrieved.However, in contradistinction to unlearning, NR does not involve an anti-Hebbian synapticmechanism. Instead, it employs a neuronal mechanism, acting simultaneously on all itsdendritic synapses. This mechanism cohabitates harmoniously with Hebbian learning, andensures homeostasis of memory systems.Section 3 is devoted to long term maintenance, when synapses are no longer kept at theiroriginal values, nonetheless memories can be maintained in tact. In Section 4 we reviewpathologies that arise when neuronal regulation fails (dementia) or when it acts under wrongconditions, as in a model of schizophrenia. We contrast the achievements of NR with theresults of synaptic unlearning in Section 5, and end with a discussion in Section 6 that ismainly devoted to the possible implementation of NR in sleep.2 Neuronal Regulation2.1 Short Term MaintenanceAs a platform for the formulation and testing of our approach we use the neural networkmodel of Tsodyks[13], taking it to represent a module of associative cortex in which a set ofmemories is engraved. The model includes N excitatory neurons that encode M memorypatterns with sparse coding level p << 1. The e�ect of inhibitory neurons is represented byglobal inhibition that is proportional to the overall activity of the excitatory neurons. Theconventional Hebbian approach speci�es an increase in the synaptic weight Jij , projecting2



from neuron j to neuron i, in terms of the product of the joint activities of these two neuronswhen a new memory is encoded. Thus, the synaptic weight matrix, after the consecutivestorage of M memory patterns ��, becomesJij = 1Np MX�=1 ��i ��j : (1)The dynamics of retrieval is given byVi(t0 + �t0) = S �hi(t0)� T � (2)where Vi is the activity of the ith binary neuron, t0 denotes the fast time scale of networkupdating in a single retrieval trial, and T is the threshold. S(x) is a stochastic sigmoidfunction, getting the value 1 with probability (1 + e�x)�1 and 0 otherwise, andhi(t0) = hei (t0)� Np NXj Vj(t0) + Ii (3)is the membrane potential. It includes the excitatory Hebbian coupling of all other excita-tory neurons, hei (t0) = NXj 6=i JijVj(t0) (4)an external input Ii, and inhibition that is proportional to the total activity of the excitatoryneurons.In the model the synaptic weight matrix undergoes two types of changes. One is Jij !(1� �ij)Jij , due to synaptic turnover, represented here by a deterioration factor �ij that issynapse speci�c and is newly chosen at every deterioration cycle in a random fashion (withmean � and variance �2 ). The second type of change is the NR e�ect, multiplying eachsynaptic weight at every NR cycle by Jij ! ciJij . Note that this corrective action is neuronspeci�c, i.e. ci is determined by the post-synaptic neuron i, multiplying all the synapses onthe dendritic tree of neuron i by the same factor. ci itself is chosen to be slightly larger (orsmaller) than 1, according to whether the average input seen by neuron i in the NR cycle3



is weaker (or stronger) than a speci�ed baseline value. This is the same type of regulationas has been recently observed experimentally[11]. The de�nition of c is given byci = 1 + �tanh"� 1� hhei(t)iHei !# (5)where Hei = hhei(t = 0)i and � and � are rate constants.The NR mechanism can counter-balance the average deterioration of the system, andworks nicely as long as the accumulated variance is small. We have run it[7] on a systemthat undergoes consecutive cycles of Hebbian learning, synaptic degradation and neuronalregulation and found that it performs very well, maintaining both old and new memories,and storing all of them with roughly the same strength, i.e. similar basins of attraction.In our calculations we have to make a clear distinction between Hebbian learning andneuronal regulation periods. In Nature we assume that the two correspond to di�erentmodes of activity in the brain. As already stated above, the Hebbian process modi�es thesingle synapse, based on the activity of both pre- and post-synaptic neurons, whereas theNR mechanism modi�es all synapses of the (post-synaptic) neuron based on its averageactivity. To measure this average activity, random excitations of the memory system areinvoked and hence learning cannot take place during this stage. These random activations,in turn, evoke many memories, thus activating every neuron. This activity indicates to eachneuron the size of its overall synaptic degradation, on which it can base its appropriatecorrective measure ci.2.2 Experimental EvidenceThe recent results of [11] point out an experimental behavior which is very much in thespirit of the NR model outlined above. They show that blocking the activity of a corticalculture, the amplitude of miniature postsynaptic currents (mEPSCs) increases. If, on theother hand, inhibition is blocked, thus increasing the activity, the mEPSC amplitudes willdecrease until �ring rates return to baseline values. Thus, the neuron is able to keep its4



�ring rate at a steady-state value irrespective of external input changes. This works throughup or down regulation of excitatory AMPA-type receptors. Moreover, it is a multiplicativee�ect, just as expected from the neuronal regulation factor of Eq. (5). This type of synapticplasticity was observed over periods of up to 48 hours. We may thus conclude that NR andHebbian learning are two di�erent synaptic modi�cation mechanisms: NR is a slow, neuron-speci�c process that directly modi�es AMPA-mediated conductance, while Hebbian learning(i.e., LTP/LTD) is carried out by fast, NMDA-dependent synapse-speci�c processes.Homeostatic mechanisms controlling synaptic e�cacies were also recently reported by[14]. Working on genetically manipulated muscle innervation in the Drosophila they haveobserved a compensatory change in quantal size at the neuromuscular junction that is anti-correlated with the increase or decrease of the innervation, as would be expected from theaction of NR processes. In addition there exists evidence[15] that during the formation ofthe neuromuscular junction weak synapses are eliminated while stronger ones are retained.This is in agreement with our ideas concerning long term maintenance that are discussedin Section 3.We view all these results as experimental evidence for homeostatic regulation of neuronalactivity. Within our model we make additional assumptions that are, so far, still speculative:When applying NR to an associative memory model we assume that there exist periods ofrandom activation that are being used by the system to estimate the average excitatory �eldand take the required corrective measures. How this is taking place, and if this is indeedconnected to sleep (as was previously suggested[3, 4] for random activation in unlearning)is still an open question.2.3 Normalization of Basins of AttractionHomeostasis of neuronal baseline activity has an interesting consequence for an associativememory model. If all neurons have a similar baseline it follows also that all memories5



have a similar basin of attraction since, if this would not be the case, some neurons thatbelong to the stronger memories would be more active than others. To demonstrate thisproperty we display in Fig. 1 a case of 50 memories, few of which start out with di�erentbasins of attraction because their coding level p is less sparse than that of the rest. Notethat van-Hemmen[1] points out the di�culty of unlearning and homogenizing the basins ofattraction in such a situation of mixed coding levels. In our model this poses no problem,and the basins of attraction homogenize as NR is being activated.
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Figure 1: Regulation of the size of basins of attraction with mixed coding levels. In thissimulation of M = 50 memories in a system of N = 1000 neurons some of the memorieshave di�erent coding levels. This system undergoes synaptic degradation and NR cycles,without any Hebbian learning, leading to homogenization of the basins of attraction. Thedi�erent symbols refer to the leading memories and to the null-attractor. The latter is theonly attractor in this system other than the memories. It corresponds to the state of totalquiescence. Its basin of attraction grows and then diminishes as the process continues. After200 simulation steps the basins of attraction of the memories are much more homogeneousthan at the start.We �nd this property to be particularly important since it explains how one may avoidthe creation of pathologic attractors. It allows one to train an associative memory model6



using di�erent memory strengths and durations during the Hebbian paradigm, and let theNR phase regulate the result into a homogeneous and well balanced memory system.3 Long Term MaintenanceSynaptic maintenance by NR fails if the variance of synaptic deterioration becomes toostrong. Even if each deterioration step has small variance, the cumulative variance willincrease with time leading eventually to the demise of the system. Thus one may de�nea critical time[7], that decreases rapidly with increasing �, beyond which the spread ofthe synaptic weights that arises from the deterioration process becomes so wide that thesystem loses its memories. There exists, however, a remedy to this problem: putting anupper bound on synaptic weights. This is displayed in Fig. 2, where we test a system withlarge variance of synaptic degradation, that causes fast deterioration in memory retrievalperformance unless synapses are appropriately bounded. We �nd [7] that, for appropriatesynaptic upper bounds, the network may successfully maintain its stored memories forevereven in face of ongoing, continuous, synaptic turnover. The simple intuitive explanation isthat by letting the degradation-maintenance process continue for a long time the synapsesundergo a random walk process with bounds. If the synaptic bound is su�ciently low, thenumber of large synapses retained by the NR mechanism will be higher than the minimalnumber of synapses required to maintain memory performance. By maintaining the neu-rons' average post-synaptic potentials, the NR mechanism preserves the number of largesynapses practically forever, even though the identity of these synapses may change duringthe network's life-time.The possibility that the network can achieve stability, i.e. that it continues to exhibithigh retrieval performance forever, is further enhanced when a `viability' bound is incor-porated. In this case, synapses whose values decrease below some lower bound die andtheir values are set to zero. This NR induced selective synaptic death process helps pre-7
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Figure 2: The e�ect of synaptic bounds. The small circles denote the performance of thenetwork without synaptic bounds. The `+' symbols denote the performance of the networkwith an upper bound of 8=Np (i.e., 8 times the size of a synapse that stores one memory att = 0), while the `*' symbols correspond to an upper bound of 3=Np. The other parametersof the simulation are N = 500, M = 25, p = 0:075, � = 0:005, � = 0:2. For further detailssee [7].serve the network's performance because synapses with large initial values (i.e., synapsesthat encode several memories) have greater chances to survive than synapses with smallinitial values. The former are clearly more signi�cant. This intuitive notion, supportedby the work of Sompolinsky[16] on clipped synapses, has recently been proven formally byChechick et al: [17].4 Neuronal Regulation and its Failure in the Aging and theAiling BrainThe regular synaptic turnover processes take a turn for the worse in the aging brain, whichhas to cope with synaptic deletion, a considerable synaptic loss in various cortical regions.NR in this case is manifested by an increase of the synaptic size reecting a functionalcompensatory increase of synaptic e�cacy [18, 19, 20]. The combined outcome of these8



counteracting synaptic degenerative and compensatory processes can be evaluated by mea-suring the total synaptic area per unit volume (TSA). The latter correlates strongly withcognitive ability. For patients of Alzheimer's disease one �nds that the TSA decreases as thedisease progresses [19, 21, 22, 23], pointing to the important role that pathological synapticchanges play in the cognitive deterioration of AD patients.This raises the interesting possibility that disturbances of NR mechanisms may underliethe clinical manifestations of Alzheimer's disease[24], explaining the onset of dementia. Inthe model of [24] a fraction di of the input synapses to each neuron i are deleted, and arecompensated for by a factor ci which each neuron adjusts individually. This is equivalent toperforming the replacement Jij ! ciwijJij where wij is either 0 or 1, andPj wij=N = 1�di.The local compensatory factor ci is determined via neuronal regulation, which keeps themembrane potential and neural activity at their original, premorbid levels. That is, NR mustnow compensate for the accumulative deletion of synapses. Our working hypothesis was thatNR based synaptic compensatory mechanisms, that in normal aging succeed in preservinga considerable level of cognitive functioning, are disrupted in AD. Numerical simulationshave allowed us to study the network's performance at various NR (compensation) rates.The performance level is better maintained if the compensation rate is high. As reviewedin [25], young and very old AD patients su�er from rapid clinical deterioration, while themajority of AD patients have a more gradual pattern of decline. These clinical patterns mayarise because very old patients have almost no compensation resources and young patientshave very potent synaptic compensation mechanisms. Interestingly, studies of reactivesynaptogenesis following experimental hippocampal dea�erentation lesions in rodents showthat the rate of compensatory synaptogenesis decreases as a function of age [26, 27].Interestingly, not only de�cient NR mechanisms may cause pathology. Our modelingstudies have shown that even if the NR mechanisms are intact, pathologies may arise if thesystem in which they operate changes in a way that the mechanism was not designed to9



control. In [6] we studied a computational model of Stevens' theory of the pathogenesis ofschizophrenia [28]. This theory hypothesizes that the onset of schizophrenia is associatedwith reactive synaptic regeneration occurring in frontal regions receiving degenerating tem-poral lobe projections. These synaptic changes are modeled in the framework of a \frontal"associative memory network whose internal synapses are strengthened in response to weak-ened input synapses representing incoming temporal projections. Superimposed on thesealterations, we incorporated an enhancement of activity-dependent synaptic changes, tomodel the hypothesized e�ects of increased dopaminergic activity observed in schizophrenia(see [6] for more details). As a result of these alterations, the network begins to spon-taneously retrieve memory patterns even in the absence of any input retrieval cues, asdemonstrated in Fig. 3. This �gure traces the distribution of the memory patterns towhich the network has spontaneously converged after the assumed pathological alterationsare induces. The total frequency of convergence to memory patterns increases as timeevolves. As evident, the distribution of the memory patterns spontaneously retrieved tendsto concentrate on a single memory pattern as more trials occur. Although the synapticmatrix was initially non-biased, small, random correlations between the network's initialstates and a few of the memory patterns are su�cient to overwhelmingly and \patholog-ically" enhance their retrieval. We therefore see that biased retrieval is formed, and outof the many patterns stored in the network only very few are actually spontaneously re-trieved. This pathologic attractor formation of biased spontaneous retrieval can account forthe occurrence of schizophrenic delusions and hallucinations without any apparent exter-nal trigger, and for their tendency to concentrate on a few central cognitive and perceptualthemes. The model presented in [6] also explains why schizophrenic positive symptoms tendto wane as the disease progresses, why delayed therapeutical intervention leads to a muchslower response, and why delusions and hallucinations may persist for a long duration.The demonstration of pathologic attractor formation in schizophrenia points to the10
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Figure 3: Distribution of spontaneous memory retrieval. The positive feedback that comesabout from regulatory compensation, Hebbian learning and random activation, leads to theemergence of pathologic attractors. The x-axis enumerates the memories stored, and they-axis denotes the retrieval frequency of each memory. For details see [6].
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importance of preventing the latter in normal processing. This protective task is probablycarefully regulated, and depends on a rather delicate balance between neuronal regulationand the level of activity-dependent synaptic changes (i.e., synaptic plasticity and learning).It further emphasizes the importance of keeping neuronal regulation and learning segregated.If random activation of memories is combined with Hebbian learning it leads to a positivefeedback loop that ends up with pathologic attractors.The possible involvement of NR in both AD and schizophrenia can explain the agedi�erence in the appearance of these disorders. Elderly people are more likely to su�er fromdecreased compensatory resources and NR dysfunction and hence AD is typically a diseaseof the old-aged. In contradistinction, in response to a pathologic disconnection betweenvarious cortical regions, normal functioning NR can lead to the emergence of spontaneousactivation of cortical networks and to the subsequent formation of pathologic attractors. Infact, ailing NR mechanisms will fail to cause spontaneous cortical activation, explaining whyschizophrenia (more speci�cally, its psychotic, positive, symptoms) is typically a disorderof the young.5 Neuronal Regulation vs Synaptic UnlearningBoth Hebbian unlearning and neuronal regulation were proposed as complementary mech-anisms to Hebbian learning. In this Section we wish to compare the two methods.� Originally, [3, 4] have suggested that unlearning serves to eliminate spurious attractorstates and thus increase the memories' basins of attraction. However, while spuri-ous states are abundant in the Hop�eld model, they occupy a small and practicallynegligible fraction of the retrieval scene of the more biologically realistic low-codingmemory networks (e.g., [7]). Hence the proposed cure is unwarranted.12



� As proposed by van Hemmen's work, by eliminating global correlations unlearningmay serve to store many patterns with varying activities. As shown here, NR mayserve the same goal by homogenizing the basins of attraction of patterns with mixedcoding levels (Fig. 1).It is helpful to distinguish between the issues of reducing global correlations and stor-ing patterns with di�erent activity levels. As noted by van Hemmen himself[1], forlow-coding values typical of biological networks, the overlaps between di�erent pat-terns are much smaller than those manifested in the range of coding levels used byhim. Thus, reducing global correlations may not be a real problem. With regardto the second issue, it may well be that both unlearning and NR are insu�cient fore�cient storage of memories with coding levels that di�er by an order of magnitude.For this task, we have recently shown[29] that a multi-modular network is clearlyadvantageous. Its architecture is based on segregation between inter-modular synap-tic couplings and intramodular ones, with the latter undergoing nonlinear dendriticprocessing.� Neuronal regulation is a vital mechanism for counteracting the formation of pathologicattractors and for achieving long-term memory maintenance. While it is conceivablethat unlearning may also serve to e�ciently counteract the formation of pathologicattractors, it cannot cope with the problem of synaptic turnover and cannot act as amemory maintenance mechanism.� Computationally, there is an important advantage to using NR rather than anti-Hebbian synaptic unlearning: The NR mechanism regulates itself, unlike unlearningthat needs an external agent to turn it o� after a certain optimal number of unlearningcycles. 13



� Biologically, while there is a rising body of recent experimental evidence testifying thatNR takes place in both the peripheral and central nervous systems, the experimentalsupport for unlearning has been fairly scarce. Correct timing is very important forHebbian learning, as pointed out by van Hemmen[1], but its relation to unlearningremains to be studied.� Unlearning has the advantage that it is able to increase the memory capacity ofthe intact network, while NR mainly works to preserve the existing capacity of anetwork undergoing synaptic turnover and degradation. Hence, the possibility thatboth mechanisms may exist should not be ruled out.6 DiscussionThe di�erent facets of neuronal regulation extend over di�erent time periods. The basic NRmechanism of Section 2 occurs both in the developing brain as well as in the mature brainover daily periods. We propose a more speci�c realization of it in the brain in the nextfew paragraphs. Development over periods of years �ts into the description of long termmaintenance of Section 3, where the original synaptic e�cacies are no longer maintainedand the stronger synapses survive. Finally, aging brings with it the phenomenon of synapticdeletion, which can be coped with provided the potential for NR is there and the systemhas not yet reached its critical capacity. Otherwise dementia will follow, as described inSection 4. Neuronal regulation hence presents an attractive and quite unique opportunityto address a broad range of normal and altered memory-related cognitive functioning withina common, simple framework.Neuronal regulation relies on activation of the memory system by random inputs, thustesting all basins of attraction without requiring the explicit knowledge of the memorypatterns themselves. For this purpose we use the same approach that was employed inthe works [3, 4] that suggested the unlearning mechanisms. Such random activation of14



cortical memory systems may be triggered by PGO waves[30] during REM sleep, raisingthe possibility that NR takes place during sleep. NR is therefore a possible realizationof `dynamic stabilization', a term that describes the idea that during sleep there existdynamic processes that maintain synaptic e�cacies[12]. Note that in our approach wehave to segment between Hebbian learning and neuronal regulation. The two processes,although being complementary, cannot take place simultaneously. This segregation seemsto �t nicely with the existence of di�erent stages of sleep that may thus subserve bothmemory consolidation and neuronal regulation. The triggering of one process or the othermay be caused by the di�erent neuromodulators that are dominant in di�erent stages ofsleep[31].NR is a corrective procedure. As such it is advantageous to perform it quite oftenand in small doses. This way it is possible to intertwine learning of new memories andregulation of the whole system in an e�cient manner[7]. Hence there is an advantage toinvoking a regular periodic mechanism to implement NR, which is another reason to thinkof sleep, with its alternating phases of REM and non-REM sleep, as the suitable means forsubserving this process.Further experimental studies are needed to evaluate how the �ndings of Turrigianoet al: [11] of NR in the developmental stage carry on to adults. However, the instrumentalpotential of NR in obtaining memory maintenance, coupled with morphometric evidenceshowing that the average total synaptic area per unit volume is maintained throughoutnormal aging[32, 18], make it highly likely that NR plays an important functional role inadulthood too.In summary, we conclude that neuronal regulation is a natural and plausible candidatefor performing homeostasis of memory systems. Its common feature with unlearning is thatit reduces basins of attraction that are too large, a very important property for keepingmemory systems well balanced. It replaces synaptic unlearning by a neuronal based process,15
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